
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5918–5928
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

5918

Pyramid: A Layered Model for Nested Named Entity Recognition

Jue Wang †, Lidan Shou ‡†∗ , Ke Chen †, Gang Chen ‡†
‡State Key Laboratory of CAD&CG,

†College of Computer Science and Technology,
Zhejiang University, China

{zjuwangjue,should,chenk,cg}@zju.edu.cn

Abstract
This paper presents Pyramid, a novel lay-
ered model for Nested Named Entity Recog-
nition (nested NER). In our approach, token
or text region embeddings are recursively in-
putted into L flat NER layers, from bottom to
top, stacked in a pyramid shape. Each time an
embedding passes through a layer of the pyra-
mid, its length is reduced by one. Its hidden
state at layer l represents an l-gram in the input
text, which is labeled only if its corresponding
text region represents a complete entity men-
tion. We also design an inverse pyramid to
allow bidirectional interaction between layers.
The proposed method achieves state-of-the-art
F1 scores in nested NER on ACE-2004, ACE-
2005, GENIA, and NNE, which are 80.27,
79.42, 77.78, and 93.70 with conventional em-
beddings, and 87.74, 86.34, 79.31, and 94.68
with pre-trained contextualized embeddings.
In addition, our model can be used for the
more general task of Overlapping Named En-
tity Recognition. A preliminary experiment
confirms the effectiveness of our method in
overlapping NER.

1 Introduction

Named Entity Recognition (NER), which aims at
identifying text spans as well as their semantic
classes, is an essential and fundamental Natural
Language Processing (NLP) task. It is typically
modeled as a sequence labeling problem, which
can be effectively solved by RNN-based approach
(Huang et al., 2015; Lample et al., 2016; Ma and
Hovy, 2016). However, such formulation oversim-
plifies the problem and is based on a very strong as-
sumption that entity mentions do not overlap with
each other, which is certainly not the real case.
In real-world languages, entities might be deeply
nested or overlapping, calling for better models to
handle such complexity.

∗Corresponding author

Former U.N. Ambassador Jeane Kirkpatrick ...

Former	U.N. U.N.
Ambassador

Ambassador
Jeane

Jeane
Kirkpatrick

...

Former	U.N.
Ambassador

U.N.	Ambassador
Jeane

Ambassador
Jeane	Kirkpatrick

...

Former	U.N.
Ambassador	Jeane

U.N. Ambassador
Jeane Kirkpatrick

...

Former	U.N.	Ambassador
Jeane Kirkpatrick ...

layer	1

layer	2

layer	3

layer	4

layer	5

Former U.N. Ambassador Jeane Kirkpatrick ...inputs:
labels: ORG ROLE FIRST NAME

ROLE PER
ROLE

PER

Figure 1: Pyramid output of a sentence from NNE
(Ringland et al., 2019) containing 8 nested entities.

Many previous studies have focused on recog-
nizing nested entity mentions. A few works use
proprietary structures, such as constituency graph
(Finkel and Manning, 2009) or hypergraph (Lu and
Roth, 2015; Muis and Lu, 2017), to explicitly cap-
ture nested entities. These structures, however, do
not produce satisfactory performance results.

Some other works handle nested entity mentions
in a layered model, which employs multiple flat
NER layers(Alex et al., 2007; Ju et al., 2018; Fisher
and Vlachos, 2019). Each layer is usually responsi-
ble for predicting a group of nested entities having
the same nesting level.

Unfortunately, conventional layered schemes do
not address the more general overlapping setting,
and also suffer from layer disorientation. The latter
is a problem arising when the model might output
a nested entity from a wrong layer. For example,
entity “U.N. Ambassador” is labeled as a second-
layer entity (containing “U.N.” and “Ambassador”).
Thus, prediction of it from the first layer is consid-
ered an error. Generally, a false positive prediction
with the correct span and class but from a wrong
layer produces an over-estimated loss (despite the
correct entity itself), causing the entire model re-
luctant to predict positive, and eventually harming
the recall. This problem occurs quite often, as the

5919

target layer for a nested entity is determined by the
nesting levels of its composing entities rather than
by its own semantics or structure. A recent study
on a layered model (Ju et al., 2018) also reports the
error propagation issue, i.e. errors in the first few
layers are propagated to the next layers.

In this paper, we propose a novel layered model
called Pyramid for nested NER. The model con-
sists of a stack of inter-connected layers. Each layer
l predicts whether a text region of certain length l,
i.e. an l-gram, is a complete entity mention. Be-
tween each two consecutive layers of our model,
the hidden state sequence is fed into a convolu-
tional network with a kernel of two, allowing a text
region embedding in the higher layer to aggregate
two adjacent hidden states from the lower layer,
and thus forming the pyramid look (as the length of
the sequence in the higher layer is one token shorter
than the lower layer). Such process enumerates all
text spans without breaking the sequence structure.

Figure 1 shows a sentence containing eight
nested entities being fed into the Pyramid model.
These entities are separated into 5 layers according
to their number of tokens. The job of each decod-
ing layer is simple and clear – it needs to output
entity type when it encounters a complete entity.

In the above scheme, the higher decoding layer
relies on the output of the lower decoding layer in
a bottom-up manner (from layer 1 to 5 in Figure
1). It is also desirable to construct an inverse pyra-
mid, where a lower decoding layer receives input
from a higher layer (from layer 5 to 1), allowing
information to flow in the opposite way.
Pyramid outperforms the previous methods in

nested NER while addressing all the aforemen-
tioned problems with layered model. First, it can be
used for more general overlapping NER. Second, it
prevents layer disorientation as an l-length entity in
the input is only predicted on layer l. Third, it miti-
gates the error propagation problem, as predictions
in one layer do not dictate those in other layers.
Our main contributions are as follows:

• We propose a novel layered model called
Pyramid for nested NER. The model rec-
ognizes entity mentions by its length with-
out layer disorientation and error propagation.
The proposed model can also address the more
general overlapping NER task.

• Besides the normal pyramid, we design an
inverse pyramid to allow bidirectional interac-
tions between neighboring layers.

• We evaluate the proposed method on four
datasets, namely ACE-2004 (Doddington
et al., 2004), ACE-2005 (Walker et al., 2006),
GENIA (Kim et al., 2003) and NNE (Ring-
land et al., 2019). The results suggest that
our model significantly outperforms the pre-
vious methods, and achieves state-of-the-art
performance with and without pre-trained lan-
guage model embeddings (ALBERT (Lan
et al., 2019), BERT (Devlin et al., 2019), and
Flair (Akbik et al., 2018)).

• Additionally, we construct a small dataset that
contains overlapping but non-nested entities.
Preliminary results on this dataset show the
potential of our model for handling overlap-
ping entities.

2 Related Work

Existing approaches for recognizing non-
overlapping named entities usually treat the NER
task as a sequence labeling problem. Various
sequence labeling models achieve decent perfor-
mance on regular NER, including probabilistic
graph models such as Conditional Random Fields
(CRF) (Ratinov and Roth, 2009), and deep neural
networks like recurrent neural networks (RNN) and
convolutional neural networks (CNN). Recently,
LSTM-CRF has become a standard architecture
for sequence labeling tasks. Huang et al. 2015 uses
hand-crafted spelling features; Ma and Hovy 2016
uses CNN to capture character features; Lample
et al. 2016 utilizes LSTM instead. These sequence
labeling models can only detect non-overlapping
entities and fail to handle nested ones.

Nested NER has been intensively studied re-
cently. Finkel and Manning 2009 proposes a CRF-
based constituency parser and use a constituency
tree to represent a sentence. Lu and Roth 2015 in-
troduces the idea of hypergraph which allows edges
to connect to multiple nodes to represent nested
entities. Muis and Lu 2017 uses a multigraph rep-
resentation and introduces the notion of mention
separator for nested entity detection. Wang and
Lu 2018 presents a neural segmental hypergraph
model using neural networks to obtain distributed
feature representation. Katiyar and Cardie 2018
also adopts a hypergraph-based formulation but in-
stead uses neural networks to learn the structure.
Lin et al. 2019 borrows the Anchor Region Net-
works (ARNs) architecture to predict nested entity

5920

mentions. All the above works design proprietary
structures to explicitly capture nested entities.

Layered models are common solution for nested
NER. Alex et al. 2007 stacks multiple flat NER
layers, where the first recognizes the innermost (or
outermost) mentions, then the following taggers
are used to incrementally recognize next-level men-
tions. Ju et al. 2018 dynamically stacks multiple
flat NER layers and extract outer entities based on
the inner ones. Fisher and Vlachos 2019 can also
be considered as a layered model with a novel neu-
ral network architecture. Our method differs from
the above layered models in that (1) it is able to han-
dle overlapping NER, and (2) it does not suffer the
layer disorientation or error propagation problem.

Exhaustive region classification model enumer-
ates all possible regions of the input sentence.
Byrne 2007; Xu et al. 2017; Sohrab and Miwa
2018; Zheng et al. 2019 aggregate all possible ad-
jacent tokens into potential spans. These spans,
together with their left and right contexts, are fed
into a classifier - a maximum entropy tagger (Byrne,
2007) or a neural network (Xu et al., 2017; Sohrab
and Miwa, 2018; Zheng et al., 2019). Unfortu-
nately, all these works fail to take advantage of
the dependencies among nested entities, but per-
form prediction merely on individual text frag-
ments, thus limiting the performance. Luan et al.
2019 uses propagation layers to capture relation
and coreference between spans. Our method also
potentially enumerates all possible spans, while
maintaining the sequence structure, which leads to
better performance.

Pre-trained word embeddings, e.g. Glove (Pen-
nington et al., 2014), have proved to be effective in
improving NER performance. Recently, with the
rapid development of language model techniques,
the performance of NER models has been pushed
to a new height. The recent pre-trained language
model embeddings include ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018), BERT (Devlin
et al., 2019), ALBERT (Lan et al., 2019), etc. In our
experiments, we leverage these embeddings and ob-
serve significant performance improvements.

3 Proposed Method

In this section, we describe the proposed model and
its architecture, which includes an encoder, a pyra-
mid, an inverse pyramid, and a logits layer. Figure
2 shows a toy model with a pyramid (5 bottom-up
decoding layers in blue) and its inverse counterpart

(5 top-down layers in pink). As shown in the blue
pyramid, each decoding layer contains a convolu-
tional network with a kernel of two to reduce the
sequence length in its output, so that all possible
mention spans can potentially be enumerated. The
top-down inverse pyramid will be described later.

We shall use the following notations:
Embed the embedding layer
LSTM the bidirectional LSTM layer
LM the language model embedder
Linear the fully-connected layer
LayerNorm layer normalization

The mentioned layers with the same notation, su-
perscript and subscript share the same parameters.
For the sake of brevity, we omit the dropout layer
in this section.

3.1 The Input and Output

The input is a T -length textual sentence. After
the encoder, embedding sequences are recursively
fed into flat NER decoding layers, producing L
tag sequences in the IOB2-format1 with length T ,
T − 1, ..., T − L + 1, where L is the number of
decoding layers. Note we only label n-grams that
are complete mentions, so I-{class} usually
does not appear.

Given the running example in Figure 1, input sen-
tence “Former U.N. Ambassador Jeane Kirkpatrick
...” contains eight entity mentions, namely (U.N.,
ORG), (Ambassador, ROLE), (Jeane, FIRST),
(Kirkpatrick, NAME), (U.N. Ambassador, ROLE),
(Jeane Kirkpatrick, PER), (Former U.N. Ambas-
sador, ROLE), and (Former U.N. Ambassador
Jeane Kirkpatrick, PER).

The output from the pyramid would contain lay-
ered tag sequences (l = 1, . . . , 5) as follows:

l=5: B-PER ...
l=4: O O ...
l=3: B-PER O O ...
l=2: O B-ROLE O B-PER ...
l=1: O B-ORG B-ROLE B-FIRST B-NAME ...

Unfortunately, the above layered sequences can-
not include any entities of more than 5 tokens. Gen-
erally, a stack of L layers cannot predict entities
containing more than L tokens!

To address this issue, we propose a remedy so-
lution: to predict all entities longer than L tokens
on the topmost flat NER layer. Specifically, the
bottom L− 1 layers predict B-{class} tags for

1Label the first token of a mention as B-{class}; other
tokens inside a mention as I-{class}; tokens outside any
mention as O.

5921

PAD PAD

PAD PAD

PAD

PAD

PAD

PAD

inverse pyramid

LSTM'dec

LayerNorm'
Dropout

Conv1d'

Dropout

Concat

decoding
(layer 1)

LSTMenc

Embedding Layer (char, word)

"The input sentence ..."

Dropout

Encoder

decoding
(layer 2)

decoding
(layer 3)

decoding
(layer 4)

decoding
(layer 5)

inverse decoding
(layer 1)

inverse decoding
(layer 2)

inverse decoding
(layer 3)

inverse decoding
(layer 4)

Lineardec (Logits Layer)

(B, T, C) (B, T-1, C) (B, T-2, C) (B, T-3, C) (B, T-4, C)

pyramid

inverse
pyramid

Inverse

Normal

Bidirectional

Language
Model Concate

Linearenc

Conv1d'

Concat zeros

LSTMdec

LayerNorm
Dropout

Conv1d

Dropout

decoding layer

layer 1

layer 2

layer 3

layer 4

layer 5

pyramid

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=0 t=1 t=2 t=3 t=4 t=5 t=6

inverse decoding layer

The Network

Detailed Structure

Figure 2: Overview of a toy network with 5 decoding layers. The upper half shows the overall structure, while the
lower half shows the details. B is the batch size; T represents the length of original text; C is the class number.

complete entity mentions; and the topmost layer
predicts both B-{class} and I-{class} tags.
This stipulates that when two entities are nested, if
one of them is longer than L, the other one cannot
be longer than L− 1.

In the running example, suppose we had only
4 decoding layers (l = 1, . . . , 4), then the longest
mention (Former U.N. Ambassador Jeane Kirk-
patrick) would be recognized in the fourth decod-
ing layer as following:

l=4: B-PER I-PER ...
l=3: B-PER O O ...
l=2: O B-ROLE O B-PER ...
l=1: O B-ORG B-ROLE B-FIRST B-NAME ...

With the remedy solution, our model is able to
handle entities longer than L. As most entity men-
tions are not too long (99% are no longer than 15
tokens), and it is even rarer for both two nested
mentions to be longer than 15, we set the default
number of flat decoder layers to L = 16 to mini-
mize the impact of the remedy. Parameter L can be
tuned for balance between accuracy and inference
speed.

3.2 The Encoder
We represent each word by concatenating character
sequence embeddings and word embeddings. First,
the character embeddings are dynamically gener-
ated by a LSTM (Lample et al., 2016) to capture
the orthographic and morphological features of the
word. It is suggested that with the introduction of
character embeddings the model can better handle
out-of-vocabulary (OOV) words. Second, the word

embeddings are initialized with pre-trained word
vectors. For OOV words, we randomly initialize an
embedding for [UNK], which is tuned during train-
ing. The concatenated character and word embed-
dings are fed into a bidirectional LSTM encoding
layer to further leverage contextual information.

Formally, given the input sentence x:

x̃char = LSTM char(Embedchar(x)) (1)

x̃word = Embedword(x) (2)

x̃ = LSTM enc([x̃char; x̃word]) (3)

For better performance, we adopt the popular
pre-trained contextualized language model embed-
dings, such as BERT (Devlin et al., 2019). These
embeddings are concatenated to the output of
LSTM enc, followed by a linear layer to reduce
the embedding dimension. i.e.:

x̃ = Linearenc([x̃;LM(x)]) (4)

3.3 The Pyramid
The pyramid recognizes entities in a bottom-up
manner. It consists of L decoding layers, each of
which corresponds to a flat named-entity recognizer.
Each decoding layer has two main components, a
LSTM and a CNN with a kernel of two. In layer
l, the LSTM recognizes l-length entity mentions,
and the CNN aggregates two adjacent hidden states
and then feeds the text region embeddings enriched
with layer information to the higher (l + 1-th) de-
coding layer. By passing through l decoding layers

5922

ACE-2004 ACE-2005 GENIA NNE
train dev test train dev test train dev test train dev test

sentences
total 6,198 742 809 7,285 968 1,058 15,022 1,669 1,855 43,457 1,989 3,762

nested
2,718
(44%)

294
(40%)

388
(48%)

2,797
(38%)

352
(36%)

339
(32%)

3,222
(21%)

328
(20%)

448
(24%)

28,606
(66%)

1292
(65%)

2489
(66%)

entities

total 22,195 2,514 3,034 24,700 3,218 3,029 47,006 4,461 5,596 248,136 10,463 21,196

nested
10,157
(46%)

1,092
(43%)

1,417
(47%)

9,946
(40%)

1,191
(37%)

1,179
(39%)

8,382
(18%)

818
(18%)

1212
(22%)

20,6618
(83%)

8,487
(81%)

17,670
(83%)

max length 57 35 43 49 31 27 20 20 15 16 15 15

Table 1: Statistics of the datasets used in the experiments. A sentence is considered nested if any two mentions in
it are nested. An entity mention is considered nested if it contains any mention or is contained by any mention.

with l − 1 CNNs, each hidden state (at t) actually
represents the region of l original tokens (from t
to t + l − 1). Therefore, the l-th decoding layer
enumerates text spans of length l. And all these L
layers together produce all possible entity spans.

One may notice that the pyramid structure intrin-
sically provides useful inductive bias: The higher
the layer, the shorter the input sequence, forcing
the model to capture high-level information for pre-
dicting long entities and low-level information for
predicting short entities. Moreover, as the length
of each span representation is reduced to one on its
target decoding layer, the prediction task on each
layer is simple and clear - to predict entities whose
representation length is one in this layer.

Since the input of the first decoding layer is from
the encoder while the others are from the output of
their lower neighboring layers, the input bias and
scale may differ among layers. This is detrimental
to training. To address this issue, we apply layer
normalization (Ba et al., 2016) before feeding the
region embeddings into the decoding LSTM.

Let x̃1 = x̃, for each decoding layer l:

hl = LSTMdec(LayerNorm(x̃l)) (5)

x̃l+1 = Conv1d(hl) (6)

3.4 The Inverse Pyramid

Each decoding layer in the bottom-up pyramid
takes into account layer information from lower
layers. However, a layer cannot get feedback from
its higher neighbors, which could potentially help.
Moreover, for long entities, their embeddings need
to go through numerous lower layers and tend to
lose important information.

Therefore, we add an inverse pyramid, which
recognizes entity mentions in a top-down manner,
to address the above issues. While in the pyramid,
sequences pass through a CNN to reduce sequence
length before being fed into the higher decoding

layer, in the inverse pyramid, however, we use an-
other CNN with zero paddings and a kernel of two
to reconstruct the lower-level text region embed-
dings. Specifically, to reconstruct the text region
embeddings at the l − 1-th decoding layer, we con-
catenate the hidden states of the l-th normal and
inverse decoding layers, and feed it to the inverse
CNN (see bottom-left pink box in Figure 2).

There are two benefits for using the top-down
inverse pyramid: (1) It gives the feedback from
higher decoding layers, allowing bidirectional in-
teraction between neighboring decoding layers; (2)
Since the inverse pyramid needs to reconstruct
lower-level sequence, it requires the pyramid to
retain as much original information as possible,
thereby mitigating the information loss for long
entities.

Formally we have the following output from the
inverse decoding layers:

h′l = LSTM ′dec(LayerNorm′(x̃′l)) (7)

x̃′l−1 = Conv1d′([hl;h
′
l]) (8)

For the top inverse decoding layer, we cannot com-
pute h′L, so we use zeros instead.

Finally, with the concatenation of the hidden
states of both the normal and inverse decoding lay-
ers, we use a feed-forward layer to predict their
class:

logitsl = Lineardec([hl;h
′
l]). (9)

4 Experiment

4.1 Datasets
We evaluate our model on four nested entity recog-
nition corpora: ACE-2004 (Doddington et al.,
2004), ACE-2005 (Walker et al., 2006), GENIA
(Kim et al., 2003), and NNE (Ringland et al.,
2019). For ACE-2004 and ACE-2005, we adopt
the train/dev/test split of Lu and Roth 20152, as

2https://statnlp-research.github.io/
publications/

https://statnlp-research.github.io/publications/
https://statnlp-research.github.io/publications/

5923

Setting Value
batch size 32,32,64,32
optimizer SGD

momentum 0.9
learning rate (lr) 0.01

dropout rate 0.3,0.4,0.4,0.2
hidden dim 200

stacked layers 16
token emb dim 100,100,200,100
char emb dim 30,30,60,30

gradient clipping 5.0

Table 2: Hyperparameters used in our experiments. If 4
values are given, they correspond to ACE-2004, ACE-
2005, GENIA and NNE respectively.

used in most previous studies. For GENIA, we use
GENIAcorpus3.02p3, and follow the train/dev/test
split of previous works (Finkel and Manning, 2009;
Lu and Roth, 2015) i.e.: (1) split first 81%, subse-
quent 9%, and last 10% as train, dev and test set,
respectively; (2) collapse all DNA, RNA, and pro-
tein subtypes into DNA, RNA, and protein, keeping
cell line and cell type, and (3) removing other en-
tity types, resulting in 5 entity types. For NNE, we
keep the original dataset split and pre-processing.
The statistics of each dataset are shown in Table 1.

4.2 Training Details

We denote by Pyramid-Basic the model us-
ing the normal bottom-up pyramid only; and by
Pyramid-Full the one with both the normal
and inverse pyramids. We try to use as similar
settings as possible on all datasets, and Table 2 de-
scribes the settings used in our experiments. For
the word embeddings, we use 100-dimensional
GloVe word embeddings trained on 6B tokens4

as initialization. We disable updating the word
embeddings during training. Besides, character-
based embeddings are generated by a LSTM (Lam-
ple et al., 2016). We set the hidden dimension
to 200 (100 for each direction in bidirectional
LSTM). We use inverse time learning rate decay:
l̂r = lr/(1+decay rate∗steps/decay steps), with
decay rate 0.05 and decay steps 1000. All results
are averaged on 4 runs to ensure reproducibility.

The GENIA corpus significantly differs from the
others in its distribution, as it belongs to medical
domain. So for GENIA, we initialize word embed-
dings with word vectors pre-trained on biomedical

3http://www.geniaproject.org/
genia-corpus/pos-annotation

4https://nlp.stanford.edu/projects/
glove/

corpus (Chiu et al., 2016)5, which are in 200 di-
mensions.

We also evaluate our method with pre-trained
language model embeddings:

• [Flair] (Akbik et al., 2018): Pre-trained
contextualized character-level embed-
dings. Here, we use the concatenation of
news-forward and news-backward,
forming embeddings of dimension 4096. For
GENIA, we use pubmed-forward and
pubmed-backward.

• [BERT] (Devlin et al., 2019): Trans-
former based pre-trained contextual
word embeddings. Here we use the
bert-large-uncased checkpoint, with
embeddings of dimension 1024. For each
token, we generate the contextualized word
embedding by averaging all BERT subword
embeddings in the last four layers without
fine-tuning. For GENIA, we use BioBERT
v1.1 (Lee et al., 2020)6.

• [ALBERT] (Lan et al., 2019): A lite BERT
with shared transformer parameters. Here we
use the albert-xxlarge-v2 checkpoint,
with embeddings of dimension 4096. For each
token, we average all ALBERT subword em-
beddings in the last four layers without fine-
tuning.

We generate Flair embeddings with the library
provided by Akbik et al. 20197. We use the imple-
mentation by Wolf et al. 20198 to generate BERT
and ALBERT embeddings.

With pre-trained contextualized embeddings, the
model is more prone to overfitting. So we increase
the dropout rate by 0.05 for these settings.

4.3 Results of Comparison

Table 3 presents the comparison of our model with
existing methods. Our method outperforms all
previous methods by a large margin. With con-
ventional word embeddings, our method achieves
80.27, 79.42, 77.78, and 93.70 in terms of F1-score,

5https://github.com/cambridgeltl/
BioNLP-2016

6https://github.com/naver/
biobert-pretrained

7https://github.com/zalandoresearch/
flair

8https://github.com/huggingface/
transformers

http://www.geniaproject.org/genia-corpus/pos-annotation
http://www.geniaproject.org/genia-corpus/pos-annotation
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
https://github.com/naver/biobert-pretrained
https://github.com/naver/biobert-pretrained
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

5924

ACE-2004 ACE-2005 GENIA NNE
Model P R F1 P R F1 P R F1 P R F1
Finkel and Manning 2009 - - - - - - 75.4 65.9 70.3 - - -
Lu and Roth 2015 70.0 56.9 62.8 66.3 59.2 62.5 74.2 66.7 70.3 - - -
Muis and Lu 2017 72.7 58.0 64.5 69.1 58.1 63.1 75.4 66.8 70.8 - - -
Xu et al. 2017 68.2 54.3 60.5 67.4 55.1 60.6 - - - - - -
Katiyar and Cardie 2018 73.6 71.8 72.7 70.6 70.4 70.5 79.8 68.2 73.6 - - -
Ju et al. 2018 - - - 74.2 70.3 72.2 78.5 71.3 74.7 - - -
Wang et al. 2018 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9 77.4 70.1 73.6
Wang and Lu 2018 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1 91.8 91.0 91.4
Sohrab and Miwa 2018 - - - - - - 93.2 64.0 77.1 - - -
Fisher and Vlachos 2019 - - - 75.1 74.1 74.6 - - - - - -
Lin et al. 2019 - - - 76.2 73.6 74.9 75.8 73.9 74.8 - - -
Straková et al. 2019 - - 77.1 - - 75.4 - - 76.4 - - -
Pyramid-Basic 80.83 78.86 79.83 79.27 79.37 79.32 77.91 77.20 77.55 93.37 93.91 93.64
Pyramid-Full 81.14 79.42 80.27 80.01 78.85 79.42 78.60 77.02 77.78 93.44 93.95 93.70
LM-based
Xia et al. 2019 [ELMO] 81.7 77.4 79.5 79.0 77.3 78.2 - - - - - -
Fisher and Vlachos 2019 [ELMO] - - - 79.7 78.0 78.9 - - - - - -
Fisher and Vlachos 2019 [BERT] - - - 82.7 82.1 82.4 - - - - - -
Shibuya and Hovy 2019 [BERT] - - - 83.0 82.4 82.7 76.3 74.7 75.5 - - -
Luan et al. 2019 [ELMO] - - 84.7 - - 82.9 - - 76.2 - - -
Straková et al. 2019 [BERT] - - 84.3 - - 83.4 - - 78.2 - - -
Straková et al. 2019 [BERT+Flair] - - 84.4 - - 84.3 - - 78.3 - - -
Pyramid-Basic [BERT] 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19 93.97 94.79 94.37
Pyramid-Basic [BERT+Flair] 87.01 86.55 86.78 84.90 86.08 85.49 79.98 78.51 79.24 93.97 94.98 94.47
Pyramid-Basic [ALBERT] 86.54 87.44 86.99 85.20 86.56 85.87 80.07 77.60 78.82 94.11 94.91 94.51
Pyramid-Basic [ALBERT+Flair] 86.63 87.15 86.89 85.10 87.22 86.15 78.48 79.39 78.93 94.18 94.79 94.48
Pyramid-Basic [ALBERT+BERT] 87.65 87.74 87.70 85.24 87.32 86.27 80.12 77.82 78.95 94.28 94.99 94.63
Pyramid-Full [BERT+Flair] - - - - - - 80.31 78.33 79.31 - - -
Pyramid-Full [ALBERT+BERT] 87.71 87.78 87.74 85.30 87.40 86.34 - - - 94.30 95.07 94.68

Table 3: Results of nested NER. Ju et al. 2018 used different dataset split. Straková et al. 2019 introduces two
methods, here we report the better one. Bold and underline indicate the best and the second best F1 respectively.

even compatible with some LM-based baselines.
A close one is from Straková et al. 2019, which
employs many extra features including input forms,
lemmas and POS, whereas our method does not.
Additionally, our method brings much higher recall
values than the other methods.

With pre-trained language model embeddings,
specifically with ALBERT+BERT for ACE-2004,
ACE-2005, NNE and with BERT+Flair for GE-
NIA, our model achieves state-of-the-art F1 scores:
87.74, 86.34, 79.31, and 94.68 respectively.

4.4 Tuning Number of Layers
We evaluate our method with different L on all
datasets. Due to space limit, we only present the
results of ACE-2005 in Table 4. The findings on
the other datasets are similar.
Results From All Layers We report in Table 4
the detailed results for all entity lengths while tun-
ing L on ACE-2005. Obviously 1-word and 2-word
entities account for the majority of entities (77%),
where we achieve competitive results. Longer enti-
ties see reductions in performance. However, due
to our remedy strategy, entities longer than L are
still recognized with acceptable performance. Note

R(N) is the recall of nested entities, i.e. for layer l,
entities nested with other entities shorter than l are
also counted in.

Inference Speed Table 4 also shows the infer-
ence speed with different L for the basic and full
models. Although the basic model does not per-
form as good as the full model, it is significantly
faster. Since the time complexity of our method
is O(TL) with T being the number of tokens and
L the number of stacked layers, we can further
speed up the inference by using smaller L value
(e.g. L = 8 or 4), while achieving F1 scores higher
than most baselines.

4.5 Ablation Study

We conduct ablation study to verify the effective-
ness of components of Pyramid. Likewise, we
only present the results on ACE-2005 here.

Character Embeddings: Using character is a stan-
dard technique for NER to dynamically capture or-
thographic and morphological features. It provides
some improvements.

Layer Normalization: LayerNorm eliminates
the bias and scale difference of the inputs of each

5925

Pyramid-Basic L = 32 L = 16 L = 8 L = 4
len(e) # entities F1 R(N) F1 R(N) F1 R(N) F1 R(N)

all - 79.3 73.6 79.3 74.4 78.8 73.9 77.6 69.5
1 1706 (56%) 84.0 82.3 84.3 82.5 84.0 83.0 83.4 81.4
2 635 (21%) 79.3 77.5 79.7 78.6 78.8 77.7 78.6 76.2
3 248 (8%) 74.9 75.5 75.3 76.8 75.6 77.5 72.9 73.7
4 140 (5%) 72.1 73.1 71.8 75.0 72.0 73.3 65.7 61.1
5 90 (3%) 73.6 77.5 72.3 78.9 69.3 75.5 63.6 60.3

6-8 106 (3%) 57.9 59.3 56.2 59.3 53.4 56.7 47.7 45.9
9-16 81 (3%) 42.0 36.4 43.1 39.9 42.3 39.5 40.0 36.8

17- 25 (1%) 33.8 26.1 23.0 18.8 27.2 21.7 23.6 18.8
Inference Speed (Basic/Full, words per second) on GTX 1080 Ti
batch size = 1 708 / 445 842 / 545 1116 / 781 1494 / 1153
batch size = 4 1526 / 955 2085 / 1361 2987 / 2151 4230 / 3280
batch size = 16 2949 / 2084 4372 / 3282 6660 / 5169 8999 / 7852

Table 4: Details of tuning L on ACE-2005. len(e) is the
length of entities. R(N) is the recall of nested entities.
Numbers below the horizontal lines indicate the results
where the remedy solution starts working

Pyramid-Basic P R F1
CharEmbs

with 79.27 79.37 79.32
without 79.54 77.67 78.59 (-0.73)

LayerNorm
with 79.27 79.37 79.32
without 79.17 78.01 78.59 (-0.73)

LSTMdec

shared weights 79.27 79.37 79.32
independent 78.19 78.75 78.47 (-0.85)

ReduceLength
Conv1d 79.27 79.37 79.32
MeanPooling 79.18 77.77 78.47 (-0.85)
MaxPooling 79.69 77.47 78.56 (-0.76)

Table 5: Ablation study on ACE-2005

decoding layer and improve the F1 score. It also
substantially accelerates the converging speed.

Sharing LSTMdec: The jobs of decoding layers
are similar: inheriting information from previous
layers and recognizing entity representations of
length one. Therefore, sharing weights maximizes
the use of training data and prevents overfitting.

Method of Reducing Length: We use CNN to re-
duce the sequence length at each decoding layer.
As shown in Table 5, compared with average pool-
ing and maximum pooling, CNN can effectively
retain the original semantic information and cap-
ture the boundary information.

Pyramid Layers: Apart from the results shown in
Table 5, we emphasize that the performance gain of
Pyramid owes a lot to the pyramid layers (both
normal and inverse ones). As shown in Table 4,
reducing L to 4 leads to a drop of F1 (-1.7). It is
clear that when L = 1, our method degrades to a
flat entity recognizer, which cannot handle nested
mentions any more.

Dataset Statistics train dev test

Sentences
total 1599 400 600
nested 1594 400 600
overlap 230 54 75

Entities
total 16202 3978 5989
nested 14506 3597 5390
overlap 511 115 164

Pyramid-Basic P R F1
overall 87.5 86.9 87.2
nested - 87.4 -
overlap - 70.1 -

Table 6: Results of Pyramid-Basic with nested and
overlapping entities. The dataset is based on part of
NNE, with additional program-generated labels.

4.6 Overlapping Entity Recognition

Overlapping mentions usually occur along with the
attributive clause in natural language. For example,
sentence “The burial site of Sheikh Abbad, who
died 500 years ago, is located.” contains two over-
lapping mentions “The burial site of Sheikh Abbad”
and “Sheikh Abbad, who died 500 years ago”.

Due to lack of datasets for overlapping NER, we
create a small dataset. For all sentences in NNE, we
find 2599 which contain “, which” or “, who”. We
use the ELMo-based constituency parser9 to find at-
tributive clauses together with their modified noun
phrases (“Sheikh Abbad, who ...”), and then see
if a bigger noun phrase (“the burial site of Sheikh
Abbad”) contains the noun phrase. Next, while
keeping the original annotations, we add these two
mentions to form a new dataset where around 14%
sentences have overlapping but non-nested entity
mentions. This dataset is split randomly into train-
ing, dev, and test sets containing 1599, 400, and
600 sentences respectively. Note the additional an-
notations are not verified by human, meaning they
might contain some errors. However, it is still use-
ful for testing the performance of our model for
overlapping NER.

The statistics of the data and the experimental
results are shown in Table 6. It can be seen that our
method can effectively handle overlapping NER.

5 Conclusion

This paper presented Pyramid, a novel layered
neural model for nested entity recognition. Our
model relies on a layer-wise bidirectional decoding
process (with both normal and inverse pyramids),

9Stern et al. 2017 with ELMo: https:
//allennlp.s3.amazonaws.com/models/
elmo-constituency-parser-2018.03.14.tar.
gz, implemented by Gardner et al. 2018.

https://allennlp.s3.amazonaws.com/models/elmo-constituency-parser-2018.03.14.tar.gz
https://allennlp.s3.amazonaws.com/models/elmo-constituency-parser-2018.03.14.tar.gz
https://allennlp.s3.amazonaws.com/models/elmo-constituency-parser-2018.03.14.tar.gz
https://allennlp.s3.amazonaws.com/models/elmo-constituency-parser-2018.03.14.tar.gz

5926

allowing each decoding layer to take into account
the global information from lower and upper layers.
Pyramid does not suffer from layer disorientation
or error propagation, and is applicable for the more
general overlapping NER. The proposed method
obtained state-of-the-art results on four different
nested NER datasets, confirming its effectiveness.

Acknowledgments

This work was supported by the Natural Science
Foundation of China (No. 61672455), the Key
Research and Development Program of Zhejiang
Province of China (No. 2020C01024), the Natural
Science Foundation of Zhejiang Province of China
(No. LY18F020005), and the National Research
Foundation, Prime Minister’s Office, Singapore un-
der its Strategic Capability Research Centres Fund-
ing Initiative.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics (Demonstrations), pages 54–
59.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

Beatrice Alex, Barry Haddow, and Claire Grover. 2007.
Recognising nested named entities in biomedical
text. In Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Lan-
guage Processing, pages 65–72. Association for
Computational Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Kate Byrne. 2007. Nested named entity recognition in
historical archive text. In International Conference
on Semantic Computing (ICSC 2007), pages 589–
596. IEEE.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical nlp. In Proceedings of the
15th workshop on biomedical natural language pro-
cessing, pages 166–174.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie M Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Lrec, volume 2, page 1. Lisbon.

Jenny Rose Finkel and Christopher D Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing, pages 141–150.

Joseph Fisher and Andreas Vlachos. 2019. Merge
and label: A novel neural network architecture for
nested ner. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5840–5850.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1–6.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named en-
tity recognition. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1446–1459.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl 1):i180–i182.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.

5927

2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun.
2019. Sequence-to-nuggets: Nested entity mention
detection via anchor-region networks. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5182–5192.

Wei Lu and Dan Roth. 2015. Joint mention extraction
and classification with mention hypergraphs. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 857–
867.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3036–3046.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Aldrian Obaja Muis and Wei Lu. 2017. Labeling gaps
between words: Recognizing overlapping mentions
with mention separators. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2608–2618.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155.

Nicky Ringland, Xiang Dai, Ben Hachey, Sarvnaz
Karimi, Cecile Paris, and James R Curran. 2019.
Nne: A dataset for nested named entity recognition
in english newswire. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5176–5181.

Takashi Shibuya and Eduard Hovy. 2019. Nested
named entity recognition via second-best se-
quence learning and decoding. arXiv preprint
arXiv:1909.02250.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2843–2849.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827.

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-
ral architectures for nested ner through linearization.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
5326–5331.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia, 57.

Bailin Wang and Wei Lu. 2018. Neural segmental hy-
pergraphs for overlapping mention recognition. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
204–214.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018.
A neural transition-based model for nested mention
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1011–1017.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C De-
langue, A Moi, P Cistac, T Rault, R Louf, M Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Congying Xia, Chenwei Zhang, Tao Yang, Yaliang Li,
Nan Du, Xian Wu, Wei Fan, Fenglong Ma, and S Yu
Philip. 2019. Multi-grained named entity recogni-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 1430–1440.

Mingbin Xu, Hui Jiang, and Sedtawut Watcharawit-
tayakul. 2017. A local detection approach for named
entity recognition and mention detection. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1237–1247.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung Le-
ung, and Guandong Xu. 2019. A boundary-aware
neural model for nested named entity recognition. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the

5928

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 357–
366.

