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Abstract

Exploiting sentence-level labels, which are
easy to obtain, is one of the plausible methods
to improve low-resource named entity recogni-
tion (NER), where token-level labels are costly
to annotate. Current models for jointly learn-
ing sentence and token labeling are limited
to binary classification. We present a joint
model that supports multi-class classification
and introduce a simple variant of self-attention
that allows the model to learn scaling factors.
Our model produces 3.78%, 4.20%, 2.08%
improvements in F1 over the BiLSTM-CRF
baseline on e-commerce product titles in three
different low-resource languages: Vietnamese,
Thai, and Indonesian, respectively.

1 Introduction

Neural named entity recognition (NER) has be-
come a mainstream approach due to its superior
performance (Huang et al., 2015; Lample et al.,
2016; Ma and Hovy, 2016; Chiu and Nichols, 2016;
Akbik et al., 2018). However, neural NER typi-
cally requires a large amount of manually labeled
training data, which are not always available in
low-resource languages. Training neural NER with
limited labeled data can be very challenging. In
this paper, we consider bridging multi-task learn-
ing (MTL) (Caruana, 1993; Ruder, 2017) and pre-
training (Peters et al., 2018; Devlin et al., 2019) to
leverage training signals of an auxiliary task that
has a sufficiently large number of labeled data.

Researchers have investigated a wide variety
of auxiliary tasks and resources to boost the per-
formance of neural NER, e.g., training coarse-
grained NER (Aguilar et al., 2017), fine-tuning
bilingual word embeddings (Wang et al., 2017),
applying language models (Rei, 2017), integrating
part-of-speech (POS) tagging (Lin et al., 2018),
using cross-lingual knowledge (Feng et al., 2018),
and learning paraphrases (Watanabe et al., 2019).

Category: HEALTH_BEAUTY
Title: COMBO Gôm xịt tóc Tigi Bed Head

Label: O B-PRODUCT I-PRODUCT E-PRODUCT B-BRAND I-BRAND E-BRAND

Translation: combo hairspray Tigi Bed Head

‘‘…  Tigi  Bed  Head  hairspray  combo  …’’

Category: ELECTRONICS
Title: Ốp lưng silicon dẻo Hàn Quốc

Label: B-PRODUCT E-PRODUCT S-MATERIAL S-PATTERN O O

Translation:  case silicon flexible Korea

‘‘…  Korean  flexible  silicon  case  …’’

Figure 1: Examples of product titles with NER annota-
tion in Vietnamese. Product categories are provided by
sellers and can be used as sentence-level labels.

While most of the previous studies have exploited
token-level information from auxiliary tasks, a few
of them have tried to use sentence-level informa-
tion (Rei and Søgaard, 2018; Devlin et al., 2019).
Our work is closely related to the joint labeling
framework in Rei and Søgaard (2019). However,
they only focused on binary classification, while
we attempt to handle multi-class classification on
both sentence and token levels.

In this work, we focus on improving low-
resource NER by exploiting large data, only having
sentence-level labels. Figure 1 shows examples of
product titles on an e-commerce website in Viet-
namese. While the product titles with NER annota-
tion done by our annotators are limited, those with
product categories (e.g., ELECTRONICS) labeled
by sellers are abundant, which can be used to train
a sentence-level classifier.1 A key challenge is to
pass useful training signals from the sentence-level
classification to the token-level NER.

Our contributions are as follows. We present the
joint sentence and token labeling framework that
enables multi-class classification equipped with a
pre-training strategy (§2.1). We show that the cur-
rent attention mechanisms can produce suboptimal

1The sellers are required to assign a category when up-
loading the product, but such input could be noisy as well.
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Figure 2: Architecture of our joint sentence and token
labeling model. The attention layer is optional, which
can be skipped or replaced with the desired approach.

results and propose a simple approach that allows
the model to learn scaling factors to obtain a proper
attention distribution (§2.2). Results on product
title texts indicate that the proposed method is ef-
fective for low-resource NER across three different
languages: Vietnamese, Thai, and Indonesian.

2 Proposed method

Figure 2 shows the architecture of our joint sen-
tence and token labeling model. Our model is based
on hard parameter sharing (Ruder, 2017) in which
the hidden layers are shared between two tasks. The
task-specific layers include a conditional random
field (CRF) layer for NER and a linear layer for
sentence classification.2

Unlike the standard MTL, which trains multiple
tasks at once and expects the model to perform
well on all tasks (Hashimoto et al., 2017; Rei and
Søgaard, 2019), the goal of our work is to improve
the performance of the main task (NER) using the
auxiliary task (sentence classification) for creating
pre-trained representations and as a regularizer.

2.1 Joint learning framework for multi-class
classification

Shared layers Let w1, . . . , wT be an input token
sequence, where wt denotes the t-th token in the
sequence. We represent each wt using a pre-trained
word embedding et ∈ Rde , where de is the dimen-
sionality of word embeddings. We do not fine-tune
word embeddings but project them into a new space

2We use the term “sentence” to conform with the literature,
although our data are not always complete sentences.

using xt = W1et, where W1 ∈ Rde×de is a train-
able weight matrix. We then feed the projected em-
bedding sequence X = [x1, . . . ,xT ] ∈ RT×de to a
bidirectional long short-term memory (BiLSTM)
layer to obtain a forward hidden state sequence
→
H = [

→
h1, . . . ,

→
hT ] ∈ RT× dh

2 and a backward hid-

den state sequence
←
H = [

←
h1, . . . ,

←
hT ] ∈ RT× dh

2 ,
where dh is the number of hidden units.

We concatenate the hidden states of both
directions to obtain the final hidden rep-
resentation H = [h1, . . . ,hT ] ∈ RT×dh , where

ht = concat(
→
ht,
←
ht) ∈ Rdh . We can either use H

for both the sentence classification and NER tasks
directly or apply an attention mechanism on it to
help the model focus on particular tokens (detailed
in §2.2).
Sentence classification We create a fixed size
vector by applying max-pooling (Collobert et al.,
2011; Conneau et al., 2017) over H, which encour-
ages the model to capture the most useful local
features encoded in the hidden states. We feed the
fixed size global feature vector to a linear layer to
obtain the unnormalized predicted scores for each
class. Let K be the number of target classes, sk be
the k-th normalized predicted score after applying
a softmax function, and t ∈ RK be the one-hot en-
coded true label. To train the sentence classification
model, we minimize the multi-class cross-entropy
loss:

LC = − 1

N

N∑
i=1

K∑
k=1

t
(i)
k log(s

(i)
k ), (1)

where i denotes the sentence index, and N is the
number of training examples.

We not only train the sentence classification and
NER models jointly but also pre-train the sentence
classification model using a sufficiently large num-
ber of training examples with sentence-level labels
only. We expect that pre-trained hidden represen-
tations would help the model generalize better on
our main task, as described below.
NER Following Huang et al. (2015); Lample et al.
(2016), we feed H to a CRF layer to obtain the
probability of a label sequence y. To train the NER
model, we minimize the negative log-likelihood of
the correct label sequences over the training set:

LNER = − 1

N

N∑
i=1

logp(y(i)|H(i)). (2)
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Joint labeling objective Combining Eqs. (1) and
(2), we obtain:

LJOINT = LNER + λLC, (3)

where λ is the balancing parameter. The LC acts as
a regularization term, which helps in reducing the
risk of overfitting on our main task.

2.2 Revisiting attention mechanisms

We first consider a soft-attention mechanism (Shen
and Lee, 2016), which is used in Rei and Søgaard
(2018, 2019). This method is computationally ef-
ficient because the attention distribution a ∈ RT

over tokens in a sentence is computed from the final
hidden representation without considering relation-
ships between hidden states. Specifically, the new
final representation H′ ∈ RT×dh can be derived as
follows:

H′ = H+H⊗ a,

a =
ã∑T

j=1 ãj
,

ã = σ(w2g + b2),

g = tanh(W3H
> + b3),

(4)

where w2 ∈ Rdh , b2 ∈ R,W3 ∈ Rdh×dh ,b3 ∈ Rdh

are trainable parameters, and ⊗ denotes the
column-wise matrix-vector multiplication. We use
a residual connection (He et al., 2016) between
the input hidden representation and the attention
output as shown in Figure 2. H′ can be fed to NER
and sentence classification.

We further explore attention mechanisms that
take into account the relationships between hid-
den states. In particular, we apply the multi-head
self-attention mechanism in Transformer (Vaswani
et al., 2017), which has shown promising results
in many applications (Radford et al., 2018; Devlin
et al., 2019). We replace Eq. (4) with:

H′ = H+ concat(head1, . . . ,headn)W
O,

headj = attention(Qj ,Kj ,Vj),

Qj ,Kj ,Vj = HWQ
j ,HWK

j ,HWV
j ,

(5)

where WQ
j ,W

K
j ,W

V
j ∈ Rdh×

dh
n ;WO ∈ Rdh×dh

are trainable parameters, and n is the number

of parallel heads. The attention function can be
computed by:

attention(Q,K,V) = softmax(
QK>

α )V. (6)

We drop the head index j for simplicity and in-
troduce the scaling factor α ∈ R. When setting
α =

√
dh/n, Eq. (6) falls back to the standard

scaled dot-product attention in Transformer. Yan
et al. (2019) observed that the scaled dot-product
attention produces poor results for NER and pro-
posed the un-scaled dot-product attention, where
α = 1.

In this work, we consider α as the softmax tem-
perature (Hinton et al., 2015) that allows adjusting
the probability distribution of a softmax output.
Using a higher temperature yields a softer attention
distribution. However, a sharper attention distribu-
tion might be more suitable for NER because only
a few tokens in the sentence are named entities.
Instead of setting α to 1 or

√
dh/n, we propose to

learn the scaling factors δ ∈ RT for each token.
We modify Eq. (6) with:

attention(Q,K,V) = softmax(
QK>

δ
)V,

δ = min(ReLU(w4H
> + b4),

√
dh/n) + 1,

(7)

where w4 ∈ Rdh , b4 ∈ R are the trainable parame-
ters. Since the ReLU activation function produces
output values in the range [0,∞), the t-th element
of δ is bounded in the range [1, 1 +

√
dh/n]. This

allows the model to dynamically adapt δ without
increasing much computational cost.

3 Experiments

3.1 Datasets
The data used in our experiments are product ti-
tles obtained from major e-commerce websites in
Southeast Asian countries during May-June, 2019.
They cover three languages, including Vietnamese
(VI), Thai (TH), and Indonesian (ID). A product
title is a brief, information-rich description (less
than 200 characters) written by the sellers. We hired
annotators and linguists for each language to anno-
tate the product titles based on our definitions and
annotation guidelines.

After the annotation process, we obtained 2,000
product titles per language labeled with 6 product
attribute NER tags, including PRODUCT, BRAND,
CONSUMER_GROUP, MATERIAL, PATTERN, and
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COLOR. For each language, we split the data into
1,000/500/500 – training/development/test sets.3

The statistics of NER tags can be found in Table 3
(see Appendix A).

For some NER tags, especially PRODUCT, the
number of tags is much larger than the number
of examples used. One reason is that the sellers
writing a product title tend to include multiple
different expressions referring to the same entity
(near-synonyms), with the likely intention of ac-
quiring more hits from potential customers. Using
English to illustrate: “Genuine Leather Sling Bag
Crossbody Bag Messenger bag for Men Women
Office Laptop”, the underlined elements are 3
PRODUCT and 2 CONSUMER_GROUP entities.

The other reason is that in one product title, it
is common to find repeated identical expressions
in the same language, as well as the same entity
words appearing in English. Using a VI example
to illustrate: “T-Shirt - Áo thun in phản quang -
Ao thun Nam - Ao thun nữ - Áo thun phong cách
Nam Nữ”, the underlined elements refer to the same
product (t-shirt), appearing multiple times in VI
and in English.

3.2 Training details

We implement our model on top of the Flair frame-
work (Akbik et al., 2019), which has recently
achieved state-of-the-art results in various sequence
labeling tasks. Following Lample et al. (2016), we
use the IOBES tagging scheme. We use the pre-
trained word embeddings of fastText4 (Bojanowski
et al., 2016) with de = 300 dimensions for each lan-
guage and a single-layer BiLSTM with dh = 512
hidden units. We apply a locked dropout (Merity
et al., 2018) with the probability of 0.5 before and
after the BiLSTM layer and to the attention output
before the residual connection. For the multi-head
self-attention layer, we adapt the implementation of
“The Annotated Transformer” (Rush, 2018)5 and
use its default hyperparameters.

We train all models using Adam (Kingma and
Ba, 2015) with the batch size of 32, the learning
rate of 1e-3, and the gradient clipping of 5. We
initialize all model parameters by sampling from
U(−0.1, 0.1). We set λ in Eq. (3) to 1. We use the
same parameter setting for all languages. We apply
early stopping in which the learning rate decays by

3For TH, 941 training examples remain after removing
annotation errors.

4https://fasttext.cc/docs/en/crawl-vectors.html
5https://nlp.seas.harvard.edu/2018/04/03/attention.html

0.5 if the F1 score on the NER development set
does not improve 3 times. We train until the learn-
ing rate drops below 1e-5, or the training epochs
reach 100.

3.3 Pre-trained classification models
We collect unannotated product titles for each lan-
guage and group them into 6 main categories,
including FASHION, HEALTH_BEAUTY, ELEC-
TRONICS, HOME_FURNITURE, MOTORS, and
OTHER. Since the number of product titles is
different from one language to another, we can
create 360k/30k, 1.2M/60k, 864k/60k – train-
ing/development sets for VI, TH, and ID, respec-
tively. Since product titles are not segmented in TH,
we segment them using a character cluster-based
method simplified from the hybrid model of Kru-
engkrai et al. (2009). We implement our word seg-
menter based on CRFsuite (Okazaki, 2007) and
train the model using the BEST corpus (Kosawat
et al., 2009).

We pre-train the classification models for each
language. Since our batch size is relatively small
compared to the training data size, we find it suf-
fices to train for 2 epochs. The F1 scores on the
development sets are 90.08%, 89.79%, and 91.91%
for VI, TH, and ID, respectively. The pre-trained
model parameters are used to initialize the projec-
tion and BiLSTM layers.

3.4 Main results
We run each experiment 10 times using different
random seeds and report the average F1 score. All
experiments are run on NVIDIA Tesla P100 GPUs.
Table 1 shows the results of various models on
the test sets. The Joint models consistently show
improvements over the NER-only models, while
the Joint + Pre-trained models further boost the
F1 scores. These results suggest that the proposed
framework is effective for all three languages.
The Joint + Pre-trained model with the Self +
Learned attention mechanism achieves the best
F1 scores at 62.16%, 61.54%, and 76.10% (i.e.,
3.78%, 4.20%, and 2.08% improvements over the
NER-only baselines) for VI, TH, and ID, respec-
tively.

In addition, we experiment using simple data
augmentation. The “+10k” and “+50k” rows in
Table 1 indicate the number of additional training
examples automatically labeled using a dictionary
created from the training set. We do not observe
any improvement in both the development and test
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Model Attention VI TH ID

NER-only (+10k) – 53.47 52.47 74.22
NER-only (+50k) – 51.12 50.35 71.60

NER-only – 58.38 57.34 74.02
Soft 58.18 57.49 74.20
Self + Scaled 58.82 57.80 74.55
Self + Un-scaled 59.68 58.53 75.24
Self + Learned 60.18 58.63 74.83

Joint – 59.47 58.81 74.67
Soft 59.50 58.82 74.88
Self + Scaled 59.34 58.46 75.03
Self + Un-scaled 60.58 59.56 75.66
Self + Learned 60.25 59.35 75.18

Joint + Pre-trained – 61.26 60.27 75.86
Soft 61.05 60.50 75.80
Self + Scaled 61.80 61.32 75.90
Self + Un-scaled 62.09 61.45 76.01
Self + Learned 62.16 61.54 76.10

Table 1: F1 scores on the test sets. NER-only = base-
line BiLSTM-CRF; Joint = joint labeling model; Joint
+ Pre-trained = Joint initialized with the pre-trained
classification model; Soft = soft-attention (Shen and
Lee, 2016; Rei and Søgaard, 2019); Self = multi-head
self-attention described in §2.2, where Scaled = scaled
dot-product (Vaswani et al., 2017), Un-scaled = un-
scaled dot-product (Yan et al., 2019), and Learned =
our learned scaling factors.

Model VI TH ID

Joint + Pre-trained & Self + Learned 62.16 61.54 76.10
w/o residual connection 61.28 61.52 75.74
w/o locked dropout 61.87 61.08 76.22

Table 2: Model ablations for our best configuration, the
Joint + Pre-trained model with the Self + Learned
attention mechanism.

results and hence do not pursue this idea further
with the attention mechanisms.

Table 2 shows the model ablations for our best
configuration, the Joint + Pre-trained model with
the Self + Learned attention mechanism. Feeding
the attention output to the CRF layer without the
residual connection leads to a consistent drop in
the F1 scores, although it shows a less pronounced
effect on TH. The results indicate that the resid-
ual connection is a useful component in our archi-
tecture. Adding the attention output to the hidden
representation without applying the locked dropout
(i.e., setting the dropout probability to 0) hurts the
F1 scores on VI and TH but shows an improvement
on ID, suggesting that fine-tuning the dropout rate
could help boost the F1 scores.

3.5 Discussion

Our Self + Learned scaling approach shows the
competitive results for the NER-only model and
achieves the best results when training in tandem
with the Joint + Pre-trained model. The Soft at-
tention mechanism (Shen and Lee, 2016; Rei and
Søgaard, 2019) shows slight or no improvements,
suggesting that considering relationships between
hidden states when computing the attention distri-
bution is crucial for the NER task. The Self + Un-
scaled approach (Yan et al., 2019) yields better F1
scores than the Self + Scaled approach (Vaswani
et al., 2017) for all configurations, suggesting that
a sharper attention distribution is helpful for the
NER task.

Although VI, TH, and ID are used in Southeast
Asia, they do not belong to the same language fam-
ily and have different writing systems and scripts
(i.e., VI = Austroasiatic; TH = Kra-Dai; ID = Aus-
tronesian). Handling these three languages with-
out much engineering effort reflects the general-
izability of our method. Furthermore, we examine
whether our method still provides improvements,
even if the NER training data size increases. We
create an additional set of 2k labeled examples
for VI and add them to the training set (3k in to-
tal). The baseline NER-only produces 66.81% F1,
while Joint + Pre-trained with Self + Learned
achieves 69.26% F1 (i.e., 2.45% improvement).

4 Conclusion

We have shown that the proposed joint sentence
and token labeling model is remarkably effective
for low-resource NER in three different languages:
Vietnamese, Thai, and Indonesian. Our model sup-
ports multi-class classification where the sentence
and token labels can be weakly related, which in-
dicates the potential of our model for many other
real-world applications. Using a larger amount of
general domain texts to build pre-trained represen-
tations (Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019; Clark et al., 2020) can comple-
ment with our model and is one of the directions
that we plan to take in future work.
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A Statistics of NER tags

Table 3 shows the statistics of NER tags in the
training, development, and test sets.
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NER Type VI TH ID
Train Dev Test Train Dev Test Train Dev Test

BRAND 358 160 170 725 408 387 490 215 229
COLOR 488 249 195 640 298 322 582 277 295
CONSUMER_GROUP 763 369 341 399 238 217 1910 1098 1026
MATERIAL 291 154 135 490 258 221 260 109 151
PATTERN 843 435 392 501 273 245 1021 537 493
PRODUCT 1982 964 963 2808 1473 1521 4786 2584 2557

TOTAL 4725 2331 2196 5563 2948 2913 9049 4820 4751

Table 3: Statistics of NER tags.


