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Abstract
Recent models for unsupervised representa-
tion learning of text have employed a num-
ber of techniques to improve contextual word
representations but have put little focus on
discourse-level representations. We propose
CONPONO1, an inter-sentence objective for
pretraining language models that models dis-
course coherence and the distance between
sentences. Given an anchor sentence, our
model is trained to predict the text k sen-
tences away using a sampled-softmax objec-
tive where the candidates consist of neighbor-
ing sentences and sentences randomly sam-
pled from the corpus. On the discourse rep-
resentation benchmark DiscoEval, our model
improves over the previous state-of-the-art by
up to 13% and on average 4% absolute across
7 tasks. Our model is the same size as BERT-
Base, but outperforms the much larger BERT-
Large model and other more recent approaches
that incorporate discourse. We also show that
CONPONO yields gains of 2%-6% absolute
even for tasks that do not explicitly evaluate
discourse: textual entailment (RTE), common
sense reasoning (COPA) and reading compre-
hension (ReCoRD).

1 Introduction

Pretraining large language models has become the
primary method for learning representations from
unsupervised text corpora. Since the initial im-
provements demonstrated by ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019), many al-
ternative pretraining methods have been proposed
to best leverage unlabeled data. These methods
include bi-directional language modeling (Peters
et al., 2018), masked language models (Devlin
et al., 2019), word order permutation (Yang et al.,

∗ Work done during internship at Google.
1Code is available at https://github.com/google-

research/language/tree/master/language/conpono and
https://github.com/daniter-cu/DiscoEval

2019), more robust training (Liu et al., 2019) and
more efficient architectures (Lan et al., 2019). How-
ever, little focus has been put on learning discourse
coherence as part of the pretraining objective.

While discourse coherence has been of great
interest in recent natural language processing lit-
erature (Chen et al., 2019; Nie et al., 2019; Xu
et al., 2019), its benefits have been questioned
for pretrained language models, some even opt-
ing to remove any sentence ordering objective
(Liu et al., 2019). However, in a recently pub-
lished benchmark for evaluating discourse repre-
sentations, Chen et al. (2019) found that the best
performing model was surprisingly BERT, despite
comparing against models specifically designed
for discourse, such as DisSent (Nie et al., 2019)
and a new recurrent network trained on a large
range of sentence ordering objectives. We show
that combining transformer encoders with our inter-
sentence coherence objective, we can further im-
prove discourse-level representations in language
models.

We present a model that trains a sentence-level
encoder to capture discourse relationships between
sentences, including ordering, distance and coher-
ence. The encoder is trained by using its output to
predict spans of text that are some k sentences away
from a context in either direction. The predictions
are made discriminatively with a sampled-softmax
that contrasts the correct target sentence against
negatives, including hard examples sampled from
the same paragraph. Our objective is inspired by
the recently proposed Constrastive Predictive Cod-
ing (CPC) (van den Oord et al., 2018), but, among
other differences, is applied on the sentence-level
rather than the token-level and is bi-directional.
We call this the CONtrastive Position and Ordering
with Negatives Objective (CONPONO)2.

2Also means arrange or order in Latin.
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We evaluate our model on DiscoEval (Chen et al.,
2019), a recently published benchmark for evalu-
ating and probing for various aspects of discourse-
level semantics in representations output by dis-
course models. We observe that the representations
learned with CONPONO outperform BERT-Large
and achieve a new state-of-the-art despite using
fewer parameters and training on the same data.
Furthermore, we show that our new objective im-
proves model performance on other tasks including
textual entailment, common-sense reasoning and
reading comprehension. We compare CONPONO

against BERT-Base on RTE (Giampiccolo et al.,
2007; Bentivogli et al., 2009), COPA (Roemmele
et al., 2011) and ReCoRD (Zhang et al., 2018),
while controlling for model size, training data and
training time.

Our main contributions are:

1. We describe a novel sentence-level discourse
objective that is used in conjunction with a
masked language model for unsupervised rep-
resentation learning for text. We show that
this objective can leverage the cross-attention
and pretrained weights of a transformer model
to learn discourse-level representations.

2. We show that our model achieves a new state-
of-the-art on DiscoEval, improving the results
on 5 of the 7 tasks and increasing accuracy
by up to 13% and an average of over 4% ab-
solute across all tasks. We also show 2%-
6% absolute improvements over Bert-Base on
RTE, COPA and ReCoRD as evidence that
discourse pretraining can also improve model
performance on textual entailment, common-
sense reasoning and reading comprehension.

2 Model

Figure 1 illustrates the CONPONO model. The intu-
ition is that if the model is able to accurately predict
the surrounding target sentences given some anchor
text, then the vector representations for these sen-
tences should also be useful for downstream tasks.

The input to the model is a paragraph that is split
into sentences. A sentence is chosen at random as
the anchor, and will be denoted as si. We encode
si with a transformer encoder to produce a vector
ci. The surrounding sentences are denoted as si+k
where k ∈ [−K ..−1, 1 .. K], meaning the maxi-
mum distance we use is K. We report results for
K ∈ [1..4]. These sentences, si+k, are encoded

jointly with the anchor sentence. We use just a
single encoder gθ so all text is encoded with the
same weights. The encoded vectors are named ti+k
because these are the target vectors the model tries
to identify given the anchor and a target distance k.
Equation 1 defines ti+k and ci as a function gθ of
the input sentences. Note that the CONPONO gθ is
different from the encoder in CPC because we in-
put both the anchor and the target into the encoder,
rather than separate anchor and target encoders.

ti+k = gθ(si, si+k), ci = gθ(si) (1)

Given the anchor and targets, we define a log-
bilinear model in equation 2 to score the plausibility
of target ti+k being in position k from anchor ci.
The full set of parameters for our model is θ for the
encoder and a Wk for each k. CPC has the same
bi-linear form as Equation 2 but the architecture
for the encoders is different.

fk(si+k, si) = exp(tTi+kWkci) (2)

The loss for each k is given in equation 3 where
the score for the correct target is contrasted to
scores of random samples sj , sampled from both in-
document and random sentences from the corpus,
S.

Lk = −ES
[
log

fk(si+k, si)

Σsj∈S fk(sj , si)

]
(3)

To train CONPONO, we sample negative exam-
ples randomly from the corpus and from the same
paragraph but different k as hard negatives. Note
that when |k| is greater than 1, there will be sen-
tences between the anchor sentence and target sen-
tence that will be purposely omitted from the input.
The missing context is intended to create a chal-
lenging objective where the model may not be able
to rely on trivial signals that often appear in con-
tiguous sentences.

2.1 Encoder Architectures
For each example we encode two text spans, the
anchor and the target. There are three main options
for encoding the two spans into ci and ti+k. The
simplest method, and most similar to CPC is to
encode the anchor and target separately, which we
call isolated encoding. With this encoder, equation
1 will be ti+k = gθ(si+k). The major drawback of
this approach is that there is no token-level cross-
attention between the anchor and the target, which
has been shown to generally improve text encoding
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Figure 1: During training, a text segment is selected as the anchor (Si). The anchor as well as all the targets,
Si−2...Si+2 plus random samples Sr are encoded with the transformer masked language model. The encoded
representation of the anchor is used to predict each target at its target distance. The Si objects are raw text sentences,
the encoder is the transformer model, and ci and ti are vectors.

(Vaswani et al., 2017). Cross-attention is the mech-
anism in neural networks that allows for attention
to be shared between multiple inputs, in our case,
two separate spans of text.

Alternatively, we can encode the anchor and tar-
get together and then dot product the latent vector
with a learned vector representation for each dis-
tance k. We call this approach a uni-encoder. With
this encoder, equation 2 will be fk(si+k, si) =
exp(tTi+kwk). The class matrix Wk in equation 2 is
replaced by a class vector wk, which has fewer pa-
rameters. This is similar to the ordering objectives
in BERT and ALBERT where the pooled represen-
tation is used for a binary classification task and the
learned vector representation for each distance k is
just the softmax weights. The potential drawback
to this method is that each pair of sentences is rep-
resented by a single vector. This encoder may learn
a representation that is similar for all examples that
have the same label but does not explicitly model
the content of the input.

CONPONO implements the intersection of these
two approaches. The targets are concatenated to
the anchor when encoded, to make use of the cross-
attention of the transformer encoder. The anchor,
is encoded independently, though with the same
weights. This objective allows for more freedom
in the values of ci and ti+k, unlike the uni-encoder.
Furthermore, since the encoder, gθ, can encode
either one span (si) or two spans (si, si+k), it can
be used for downstream tasks that have either single
(eg. SSP) or double (eg. BSO) span inputs.

2.2 Comparing Inter-Sentence Modeling
Objectives

There are different tasks that can be used for learn-
ing inter-sentence representations. BERT (Devlin
et al., 2019) included a next sentence prediction
(NSP) task. For NSP, two spans are fed into the
model with the second span either being the next
contiguous span of text from the source or 50% of
the time it is replaced with a random span from
the corpus. The task is a binary classification of
whether the two spans are from the same source.
ALBERT (Lan et al., 2019) compares the NSP ap-
proach to using no inter-sentence objective and to
sentence order prediction, which for clarity we re-
fer to as binary sentence ordering (BSO). For BSO,
the input is two spans that are always contiguous
and from the same source but 50% of the time are
in reverse order. With CONPONO we capture the
benefits of both learning ordering between coherent
sentences and contrasting against random negatives.
We make the objective even more challenging by
also predicting order on spans that are multiple sen-
tences apart, and using other sentences from the
same paragraph as harder negatives.

2.3 Technical details

In practice, we use a 512 token input which is much
larger than most two sentence pairs. To train on
longer sequence lengths, we use 4 sentences as the
anchor and 3 sentences as the target segment. We
truncate longer sentences and pad tokens up to the
sequence length as done for typical BERT input.
There is no overlap between the two segments and
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the k distance refers to the number of sentences
omitted between the two segments. For example,
for a paragraph we may choose s7..s10 as the an-
chor and s1..s3 as the target for k = −4 because s3
is 4 positions behind s7. Since most paragraphs are
not long enough to have many sentences in both di-
rections of a 4 sentence anchor, we randomly select
4 of the 8 possible k targets for a given paragraph.
Because of the random sampling, we oversample
shorter distances because they occur more consis-
tently in the data.

We train with 32 input sentences, where 1 is
the correct target, 3 are hard negatives from the
same document and 28 are random sentences from
other documents. For fair comparison, we train
on the same data as BERT, using only Wikipedia
and BooksCorpus (Zhu et al., 2015). We initialize
our model with BERT-Base weights and train until
the model has seen one-fourth as many segment
pairs as the original BERT model ( 32M total),
so the total compute and iterations of training are
not significantly greater than BERT-Base. We also
use a masked language model objective similar
to BERT but dynamically mask during training for
different masks each epoch. When jointly encoding
two inputs, we concatenate the input tokens and
separate the two spans with a “[SEP]” token to
mimic the BERT format.

3 Evaluation

We evaluate our model on the DiscoEval bench-
mark (Chen et al., 2019) and on the RTE (Giampic-
colo et al., 2007; Bentivogli et al., 2009), COPA
(Roemmele et al., 2011) and ReCoRD (Zhang et al.,
2018) datasets. We chose the DiscoEval benchmark
because it is intended to evaluate a model’s ability
to represent the “role of a sentence in its discourse
context”. We also report results on RTE, COPA
and ReCoRD because these tasks have a discourse
or sentence ordering aspect to them but are not
exclusively designed for discourse evaluation.

3.1 Discourse Evaluation

Tasks: DiscoEval (Chen et al., 2019) is a suite
of tasks “designed to evaluate discourse-related
knowledge in pretrained sentence representations”.
The benchmark is composed of seven tasks; four
based on sentence ordering or coherence (Sentence
position (SP), Binary sentence ordering (BSO), Dis-
cource coherence (DC) and Sentence section pre-
diction (SSP)) and three that are based on classi-

fying the type of relationship between a pair of
text sequences (Penn Discourse Tree Bank Explicit
and Implicit (PDTB-E/I) and Rhetorical structure
theory (RST)). PDTB (Prasad et al., 2008) and
RST (Carlson et al., 2001) are human annotated
datasets. Both are multi-class classification tasks
where PDTB is classifying a pair of sentences
whereas RST is predicting the class of a node
in a document-level discourse tree. Both classes
of tasks are critical aspects of understanding dis-
course.

Baselines: The previously best overall perform-
ing model from DiscoEval (Chen et al., 2019) was
BERT-Large (Devlin et al., 2019). We also include
the results for BERT-Base because our model is
most comparable to BERT-Base in terms of pa-
rameter size, training data and training compute.
We also evaluate RoBERTa-Base (Liu et al., 2019)
because it was trained on more data, reported im-
provements over BERT-Base on other tasks but
dropped the next sentence prediction objective en-
tirely. We also compare against a BERT-Base
model which we trained with binary sentence order-
ing (BERT-Base BSO) because this objective has
been shown to be more useful than next sentence
prediction (Lan et al., 2019). This BERT-Base
BSO model was initialized with BERT weights and
trained on the same data but only on contiguous
spans of text where 50% of the time we switch the
order. This model and CONPONO are initialized
from the same weights and trained on the same
number of segment pairs so that the two models
can be compared fairly.

In Section 2.1 we describe different encoding
approaches for generating the sentence-level repre-
sentations. We report results from versions of CON-
PONO using each of these encoding approaches,
labeled isolated to represent separate encoding and
uni-encoder to represent joint encoding of the an-
chor and target without a separate anchor encoding.
The final line in Table 1 is the combined approach
that we describe in Section 2.

Modeling DiscoEval We reuse the code from
DiscoEval and generally maintain the same pro-
cess for collecting our results on the benchmark,
such as freezing all weights and only training a
logistic regression or one layer perceptron on top
of the sentence encodings. Note that since we are
only interested in the vector representations of the
input, we drop the weight matrix Wk and only use
the output of the encoder. We omit the details for
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Model SP BSO DC SSP PDTB-E PDTB-I RST-DT avg.
BERT-Base 53.1 68.5 58.9 80.3 41.9 42.4 58.8 57.7
BERT-Large 53.8 69.3 59.6 80.4 44.3 43.6 59.1 58.6

RoBERTa-Base 38.7 58.7 58.4 79.7 39.4 40.6 44.1 51.4
BERT-Base BSO 53.7 72.0 71.9 80.0 42.7 40.5 63.8 60.6

CONPONO isolated 50.2 57.9 63.2 79.9 35.8 39.6 48.7 53.6
CONPONO uni-encoder 59.9 74.6 72.0 79.6 40.0 43.9 61.9 61.7

CONPONO (k=2) 60.7 76.8 72.9 80.4 42.9 44.9 63.1 63.0
CONPONO std. ±.3 ±.1 ±.3 ±.1 ±.7 ±.6 ±.2 -

Table 1: CONPONO improves the previous state-of-the-art on four DiscoEval tasks. The average accuracy across
all tasks is also a new state-of-the-art, despite a small drop in accuracy for PDTB-E. BERT-Base and BERT-Large
numbers are reported from Chen et al. (2019), while the rest were collected for this paper. We report standard
deviations by running the evaluations 10 times with different seeds for the same CONPONO model weights.

the encoding logic for each task since that is ex-
plained in detail in Chen et al. (2019). Here we
only mention our deviations from the Chen et al.
(2019) methodology. The most salient difference
is that we only use the pooled representation from
our model rather than the average from multiple
layers of the model for the SP, BSO and DC tasks.

For encoding individual tasks we prefer to en-
code pairs of sentences together. For SP we encode
the first sentence concatenated with every other sen-
tence instead of taking the point-wise difference
and concatenate the 5 vectors. For BSO we also
encode the two sentences together instead of sep-
arately. For DC we split the paragraph into pairs
of sentences and encode those together. We con-
catenate the 3 output vectors. For RST instead of
embedding each sentence and doing a mean of all
the sentences in a subtree, we simply concatenate
those sentences and encode them all together as a
single text span. Any text segments longer than
512 tokens are truncated from the end.

Results: Table 1 shows that our model outper-
forms the previous state-of-the-art accuracy on
DiscoEval overall. Our model excels in particu-
lar on the sentence ordering and coherence tasks
(SP, BSO, and DC). Note that our model parame-
ter count is the same as BERT-Base but it outper-
forms BERT-Large, which has significantly more
parameters and has used much more compute for
pretraining. From the discussion in Section 2.2,
BERT represents using the NSP objective and we
train BERT-Base BSO to compare NSP, BSO and
CONPONO directly. BERT-Base BSO scores tend
to fall between those of BERT-Base and our model,
implying that the sentence ordering objective is
improving the models for this benchmark, but that

binary sentence ordering is not sufficient to capture
the added benefits of including more fine-grained
ordering and negative examples.

We observe that CONPONO outperforms both
the isolated encoding and uni-encoding approaches.
CONPONO isolated preforms significantly worse
than both other approaches, suggesting that cross-
attention between the anchor and the target is criti-
cal to learning stronger discourse representations.
CONPONO uni-encoder results are closer to our
combined encoding approach but still fall short on
every task. This empirical result suggests that the
separate encoding of the anchor during pretrain-
ing is important despite the fact that theoretically
CONPONO could trivially reduce to the uni-coder
representation by ignoring ci.

3.2 RTE, COPA and ReCoRD

Tasks: DiscoEval was specifically designed to eval-
uate model performance on discourse tasks but
there are many other benchmarks that could also
benefit from pretraining for improved discourse co-
herence. We evaluate our model on three such tasks,
Recognizing Textual Entailment (RTE) (Giampic-
colo et al., 2007; Bentivogli et al., 2009), Corpus of
Plausible Alternatives (COPA) (Roemmele et al.,
2011) and Reading Comprehension with Common-
sense Reasoning Dataset (ReCoRD) (Zhang et al.,
2018). We report accuracy on the validation set
provided by each dataset.

Each example in RTE is a pair of sentences. The
model must classify whether or not the second sen-
tence entails the first. Examples in COPA are com-
posed of a single context sentence followed by two
candidate sentences that are either a cause or effect
of the context sentence. The model must select the
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Context Completions
ReCoRD

... Despite its buzz, the odds are stacked against Google’s
Chrome OS becoming a serious rival to Windows... Chrome
OS must face the same challenges as Linux: compatibility
and unfamiliarity. A big stumbling block for Google will be
whether its system supports iTunes.

Google will also be under pressure to ensure
[Chrome OS / iTunes / Linux] works flawlessly with
gadgets such as cameras, printers, smartphones and e-book
readers.

RTE
Rabies virus infects the central nervous system, causing
encephalopathy and ultimately death. Early symptoms of ra-
bies in humans are nonspecific, consisting of fever, headache,
and general malaise.

Rabies is fatal in humans.

COPA
The women met for coffee. They wanted to catch up with each other.

The cafe reopened in a new location.

Table 2: These are examples from ReCoRD, RTE, and COPA that exhibit aspects of discourse coherence. For
ReCoRD, candidate entities are in italics and replaced terms in the completion are underlined. True completions
are bold.

most “plausible” sentence of the two. Lastly, an
example in ReCoRD is a paragraph from a news
article, followed by several bullet points and with
all the entities marked. The model is given a single
sentence from later in the document with a single
entity masked out and must select the entity from
the context that fills the blank. Table 2 shows ex-
amples of each with correct choices in bold.

Baselines: We compare our model against
BERT-Base because this is the closest model in
terms of parameter size and training data. How-
ever, since our model is initialized with BERT-Base
weights, we also report results from BERT-Base
BSO because it was trained on the same number
of text examples as CONPONO. We also compare
against BERT-Large to contrast to a much larger
language model. We provide results from Albert
(Lan et al., 2019) when available to provide a state-
of-the-art baseline that may have used more data,
compute and parameters. The purpose of these
results is not to compare against the current state-
of-the-art but rather to better understand the im-
provements that can be found from adding a dis-
course coherence objective to BERT-Base without
significantly increasing the model size or training
data.

Results: We believe that the coherence and or-
dering aspects of these evaluation tasks are well
fit to demonstrate the how our model can improve
on strong baselines such as BERT-Base. Table 3
shows that our model achieves accuracies on RTE
and COPA comparable to BERT-Large while hav-
ing the same number of parameters as BERT-Base.
Interestingly, we observe improvements over the
baseline with BERT-Base BSO, showing that even

Model RTE COPA
BERT-Base 66.4 62.0

BERT-Base BSO 71.1 67.0
CONPONO 70.0 69.0

BERT-Large 70.4 69.0
ALBERT 86.6 -

Table 3: Our model improves accuracy over BERT-
Base for RTE and COPA benchmarks. Improvements
are comparable to BERT-Large but still lag behind
much larger models trained on more data, such as AL-
BERT. All scores are on the validation set.

simple discourse-level objectives could lead to no-
ticeable downstream effects. Though these im-
provements are modest compared to BERT-Large,
they are meant to highlight that our model does not
only improve on results for artificial sentence order-
ing tasks, but also on aspects of benchmarks used
to generally evaluate pretrained language models
and language understanding.

3.2.1 ReCoRD results and models

Model Accuracy
BERT-Base 61.2
CONPONO 63.2

BERT-Large 69.8 [EM]

Table 4: CONPONO is more effective at classifying the
most plausible sentence from the extended context than
BERT-Base. We report the BERT-Large exact match
score, where the model selects only the target entity
from the context, for reference. All scores are on the
validation set.
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The task for the ReCoRD dataset is to select the
correct entity from those that appear in the context
to fill in the blank in the target. Previous models for
ReCoRD have used a similar structure to SQuAD
(Rajpurkar et al., 2016) where the model outputs a
vector for each token and the model learns the best
start and end position of the answer span based
on the softmax over all the tokens. We, instead,
generate all possible target sentences by filling the
blank with each marked entity and discriminatively
choose the sentence most likely to be the true “plau-
sible” sentence from the context. This modified
task evaluates how our model compares to BERT-
Base choosing the most coherent sentence from a
set of nearly identical sentences. In Table 4 we
show that CONPONO does achieve a boost over
BERT-Base but is still well below BERT-Large ex-
act match score on the harder task of selecting the
entities in context. The strong results from BERT-
Large imply that having a better representation of
the text with a large model is able to subsume any
improvement from learning plausible contexts for
this task.

3.3 Ablations
There are three aspects of our modeling choices that
warrant a deeper understanding of their importance
to the model:

• Window size: We ablate the 4 window sizes
(ie. choices of k). k = 1 is effectively binary
sentence ordering with negative samples.

• Masked Language Model Objective: We re-
move the MLM objective allowing the model
to optimize only the CONPONO objective with-
out maintaining a good token level representa-
tion.

• Model size: We train a smaller model that is
also initialized with pretrained weights.

To measure the effects of each of these design de-
cisions, we report DiscoEval scores for each model
as well as accuracy on the CONPONO classification
task on a held-out set of examples. This is to show
how well the model is optimized as well as how
well it performs on downstream tasks.

Table 5 shows the results on DiscoEval with our
model and several key ablations. We observe that
using a window size for our objective that is larger
than 1 is key to seeing downstream improvements.
We believe that this is due to the objective being

harder for the model because there is more vari-
ation farther from the anchor. At the same time,
increasing the window size beyond 2 seems to re-
sult in similar performance. This may be because
larger distances from the anchor also lead to more
ambiguity. We see this reflected in the held-out
classification accuracy being lower for examples
with larger distance labels in Figure 2.

We also note that keeping the masked language
model objective during pretraining also improves
downstream performance. In Figure 2 we see that
classification accuracy is consistently lower with
the MLM objective compared to without. This
is expected because during inference, many key
terms may be masked out, making the task harder.
However, keeping this objective during pretraining
maintains a good token-level representation that is
necessary for downstream tasks.

Lastly, we try training a smaller version of our
model, with only 2 hidden layers, and a 512 inter-
mediate size. The smaller model is able to train
much faster, allowing us to train on many more
examples and new data. However, we are unable to
achieve similar results despite training on 24 times
more examples, and including CCNews (Liu et al.,
2019), a larger and higher quality data source.

3.4 Qualitative Analysis

To glean some insight into how CONPONO repre-
sentations may differ from BERT-Base representa-
tions, we look at the occurrence of discourse mark-
ers in the BSO-Wikipedia task of DiscoEval. We
choose this task because it is a simple binary classi-
fication task that has only 2 sentences as input and
the domain is similar to the pre-training data. We
look at the usage of discourse markers identified
by Nie et al. (2017); but, when, if, before, because,
while, though, after, so, although, then, also, still.
3

We extract examples from the test set on which
CONPONO output the correct label and BERT-Base
output the incorrect label and visa versa. For each
set of examples, we measure the change in the oc-
currence of discourse markers relative to the train-
ing data counts. Since some markers are much
more common than others, we take the weighted
average of the change in appearance rate, where the
weights are the training data counts of each marker.

3We omit and and as because they are very common in
this corpus but often are not used as connectives between the
two candidate sentences for the BSO task.



4866

Model SP BSO DC SSP PDTB-E PDTB-I RST-DT avg.
k=4 59.84 76.05 73.62 80.65 42.28 44.25 63.00 62.81
k=3 60.47 76.68 72.74 80.30 43.40 44.28 62.56 62.92
k=2 60.67 76.75 72.85 80.38 42.87 44.87 63.13 63.07
k=1 47.56 66.03 72.62 80.15 42.79 43.55 62.31 59.29

- MLM 54.92 75.37 68.35 80.2 41.67 43.88 61.27 60.81
Small 45.41 61.70 67.71 75.58 35.26 36.18 46.58 52.63

Table 5: The ablation analysis shows the effects of different k values (ie. window sizes) in our objective, removing
the MLM objective during pretraining and training with a small transformer encoder.
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Figure 2: We can evaluate the accuracy on the CONPONO objective for each label (ie. distance between anchor
and target sentence) on a set of 5,000 examples held-out from training. We observe that higher accuracy does not
necessarily correlate with better downstream performance on DiscoEval.

We find that in the set of examples that CON-
PONO classified correctly, the rate of discourse
makers was 15% higher than in the training corpus.
This is in contrast to 11% higher among the exam-
ples that BERT classified correctly. The standard
deviation for random samples of the same size was
about 1%. This suggests that both BERT and CON-
PONO are relying heavily on discourse markers to
solve the BSO-Wikipedia task.

While it is expected for shallow discourse mark-
ers to be strong features for sentence ordering, we
expect CONPONO to also incorporate deeper fea-
tures, such as anaphora, due to its pretraining ob-
jective. One indication of CONPONO relying on
alternative features than BERT-Base is that there
was a 12% relative increase in discourse markers in
the CONPONO set when counting markers only in
the first sentence whereas an 8% relative increase
in the BERT set when counting markers only in
the second sentences. The difference in the loca-
tion of the discourse markers in the two sets of
examples suggests that CONPONO and BERT uti-
lize those features differently and that CONPONO

may be less likely to incorrectly classify examples
that use discourse markers in the first sentence of
a BSO example. Manually inspecting a sample of
examples hints that there are often strong corefer-

ences between the two input sentences that indicate
the ordering.

Table 6 shows two examples from the CONPONO

correct set which is drawn from the BSO-Wikipedia
test data. In both examples, the discourse marker
appears in the first sentence but the second sentence
contains anaphora referring to an antecedent in the
first sentence.

4 Related Work

Some of the largest improvements on benchmarks
such as GLUE (Wang et al., 2018) have come from
ELMO’s large scale bi-directional language model-
ing (Peters et al., 2018), BERT’s masked language
models (Devlin et al., 2019), XLNET’s general-
ized autoregressive pretraining (Yang et al., 2019),
RoBERTa’s robust training (Liu et al., 2019) and
ALBERT’s parameter reduction techniques (Lan
et al., 2019). As discussed in Section 2.2, most
language model were limited to NSP or BSO for
inter-sentence representation learning. We showed
that by comparing to BERT, which uses NSP and
BERT-Base BSO which we train with the BSO
objective that our objective is able to improve the
discourse-level representations by training on more
fine-grained sentence ordering, non-contiguous
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In 1941 [1]Vaughn joined the United States National Guard for what had been planned as a one-year assignment , but when
[2]World War II broke out , he was sent abroad until the war ended in 1945 .

[1]He decided to make music a career when he was discharged from the army at the end of [2]the war , and attended Western
Kentucky State College , now known as Western Kentucky University , majoring in music composition .

Although it lasted only twenty-three years ( 1933–1956 ) and enrolled fewer than 1,200 students , Black Mountain College
was one of the most fabled experimental institutions in art education and practice .

It launched a remarkable number of the artists who spearheaded the avant-garde in the America of the 1960s .

Table 6: Two examples from the DiscoEval BSO-Wikipedia test set on which CONPONO made the correct predic-
tion but BERT-base did not. Bold terms are discourse markers, underlined terms are co-referents. In both examples,
the discourse marker appears in the first sentence but the second sentence has anaphora referring to an antecedent
in the first sentence.

neighboring sentences and contrasting against ran-
dom negatives.

Early approaches to sentence representation,
such as Skip-Thought Vectors (Kiros et al., 2015),
mimicked word embedding methods in addition to
left-to-right language modeling to use unlabeled
data to learn sentence level representations. Dis-
Sent (Nie et al., 2019) focused more on collecting
data that could be used to train a supervised clas-
sification model on pairs of sentences. These and
other innovations in sentence representation lead
to the creation of more evaluations for discourse
and coherence representation (Chen et al., 2019;
Xu et al., 2019).

Like other unsupervised representation learning
models, CONPONO is trained to generate a latent
variable that encodes inter-sentence relationship
and discourse coherence. Our objective is inspired
by the Contrastive Predictive Coding (CPC) objec-
tive (van den Oord et al., 2018). CPC was orig-
inally designed to be a “universal unsupervised
learning approach to extract useful representations
from high-dimensional data” and was previously
implemented on the token-level for text models.
We utilize the k-distance predictions of CPC be-
cause it naturally captures discourse and sentence
ordering properties when applied on the sentence-
level. Furthermore, by combining our objective
with a transformer encoder, our model is able to
benefit from cross-attention between the anchor
and the target sentences, which we show outper-
forms encoding the anchor and target separately, as
implemented in CPC. In Section 3.3 we show that
the cross-attention is an important factor in learn-
ing a good representation for downstream tasks and
effectively optimizing our inter-sentence objective.

5 Discussion

In this paper we present a novel approach to encod-
ing discourse and fine-grained sentence ordering in
text with an inter-sentence objective. We achieve a
new state-of-the-art on the DiscoEval benchmark
and outperform BERT-Large with a model that has
the same number of parameters as BERT-Base. We
also observe that, on DiscoEval, our model benefits
the most on ordering tasks rather than discourse re-
lation classification tasks. In future work, we hope
to better understand how a discourse model can
also learn fine-grained relationship types between
sentences from unlabeled data. Our ablation analy-
sis shows that the key architectural aspects of our
model are cross attention, an auxiliary MLM objec-
tive and a window size that is two or greater. Future
work should explore the extent to which our model
could further benefit from initializing with stronger
models and what computational challenges may
arise.

Acknowledgments

We wish to thank the Stanford NLP group for
their feedback. We gratefully acknowledge sup-
port of the DARPA Communicating with Comput-
ers (CwC) program under ARO prime contract no.
W911NF15-1-0462

References
Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo

Giampiccolo, and Bernardo Magnini. 2009. The
fifth PASCAL recognizing textual entailment chal-
lenge.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurovsky. 2001. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Proceedings of the Second SIGdial Workshop on
Discourse and Dialogue.

https://www.aclweb.org/anthology/W01-1605
https://www.aclweb.org/anthology/W01-1605


4868

Mingda Chen, Zewei Chu, and Kevin Gimpel. 2019.
Evaluation benchmarks and learning criteria for
discourse-aware sentence representations. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 649–
662, Hong Kong, China. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9. Association for Com-
putational Linguistics.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Allen Nie, Erin Bennett, and Noah Goodman. 2019.
DisSent: Learning sentence representations from ex-
plicit discourse relations. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4497–4510, Florence,
Italy. Association for Computational Linguistics.

Allen Nie, Erin D Bennett, and Noah D Goodman.
2017. Dissent: Sentence representation learning
from explicit discourse relations. arXiv preprint
arXiv:1710.04334.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
2018. Representation learning with contrastive pre-
dictive coding. arXiv preprint arXiv:1807.03748.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn discourse TreeBank 2.0.
In LREC 2008.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alterna-
tives: An evaluation of commonsense causal reason-
ing. In 2011 AAAI Spring Symposium Series.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Peng Xu, Hamidreza Saghir, Jin Sung Kang, Teng
Long, Avishek Joey Bose, Yanshuai Cao, and Jackie
Chi Kit Cheung. 2019. A cross-domain transfer-
able neural coherence model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 678–687, Florence, Italy.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
ReCoRD: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint 1810.12885.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

https://doi.org/10.18653/v1/D19-1060
https://doi.org/10.18653/v1/D19-1060
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1442
https://doi.org/10.18653/v1/P19-1442
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/P19-1067
https://doi.org/10.18653/v1/P19-1067


4869

A Appendix

We include some fine-grained DiscoEval results
that were reported as averages, as well as imple-
mentation and reproduction details for our experi-
ments.

A.1 SP, BSO and DC breakdown

Table 7 shows the scores for each model per each
dataset domain for the SP, BSO and DC tasks in
DiscoEval.

A.2 CONPONO pretraining details

CONPONO is pretrained on 1.6 million examples
randomly sampled from Wikipedia and BooksCor-
pus. We use the same number of training examples
for all the ablations and training BERT-Base BSO.
On example consists of a single anchor and 32 can-
didate targets, 4 losses (1 for each of the 4 randomly
chosen true targets (ie. k)). We use a 25% warm up
rate and a learning rate of 5e-5. The model is ini-
tialized with BERT-Base weights. We add a square
interaction weight matrix that is the same size as
model output dimensions (ie. 756) that is referred
to as Wk in Section 2. There is one such matrix
for each k. The maximum sequence length of the
input is 512, though do to some preprocessing con-
straints, the maximum input seen by the model is
493.

Our CONPONO small model has a hidden size
of 128, an intermediate size 512, and has 2 hid-
den layers. We train it on 38.4 million examples,
including examples from CCNews. Samples are
drawn from each source proportional to the size
of the source, meaning that about 70% of training
examples come from CCNews. Otherwise, we use
all the same parameters as CONPONO.

A.3 Parameter counts

Table 8 shows the number of parameters in each
model used.

A.4 RTE, COPA and ReCoRD details

RTE is trained for 3240 steps, with checkpoints
every 750 steps and a learning rate of 8e-6. The
warm-up proportion is 10% and the a maximum
sequence length of 512

COPA is trained for 300 steps, with checkpoints
every 50 steps and a learning rate of 1e-5. The
warm-up proportion is 10% and the maximum se-
quence length of 512.

ReCoRD is trained for 8 epochs over the train-
ing data with a learning rate of 2e-5, warm-up pro-
portion of 10% and a maximum sequence length of
512.
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Model Parameters
BERT-Base 110M

RoBERTa-Base 110M
CONPONO [All Variants] 110M

BERT-Large 335M

Table 8

SP BSO DC
Model Wiki arxiv ROC Wiki arxiv ROC Wiki Ubuntu

BERT-Large 50.7 47.3 63.4 70.4 66.8 70.8 65.1 54.2
RoBERTa-Base 38.35 33.73 44.00 60.19 55.16 60.66 62.80 53.89

BERT-Base BSO 49.23 50.92 60.80 74.67 68.56 72.22 88.80 56.41
CONPONO - MLM 50.95 51.90 61.92 77.98 71.45 76.68 86.70 50.00
CONPONO Small 44.90 41.23 50.10 65.03 58.89 61.19 78.10 57.32

CONPONO isolated 49.33 44.60 56.53 59.16 57.48 56.94 71.60 54.71
CONPONO uni-encoder 54.30 58.58 66.75 78.25 71.65 73.99 86.00 57.90

k=4 54.07 58.30 67.15 79.04 72.21 76.89 88.38 58.85
k=3 54.65 59.55 67.22 79.34 73.61 77.08 89.48 56.00
k=2 54.83 58.77 68.40 79.24 74.16 76.84 89.22 56.41
k=1 44.05 40.98 57.65 68.47 62.40 67.24 89.03 56.20

Table 7: SP, BSO and DC are composed of separate datasets. We report the average in the main paper but show
the breakdown here.


