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Abstract

We propose a general framework to study
language emergence through signaling games
with neural agents. Using a continuous la-
tent space, we are able to (i) train using back-
propagation, (ii) show that discrete messages
nonetheless naturally emerge. We explore
whether categorical perception effects follow
and show that the messages are not composi-
tional.

1 Introduction

In a signaling game, artificial agents learn to com-
municate to achieve a common goal: a sender sees
some piece of information and produces a mes-
sage, which is then sent to a receiver that must take
some action (Lewis, 1969; Skyrms, 2010). If the
action is coherent with the sender’s initial piece
of information, the choice of the message and its
interpretation is reinforced. For instance, in a refer-
ential game, sender and receiver see a set of objects,
and the sender knows which of these the receiver
must pick; the sender then sends a message to the
receiver, who must interpret it to pick up the right
object (Lazaridou et al., 2017, 2018; Havrylov and
Titov, 2017; Chaabouni et al., 2019).

This setting has been used to study the factors
influencing the emergence of various fundamen-
tal properties of natural language, such as com-
positionality (Kirby et al., 2015; Franke, 2016;
Steinert-Threlkeld, 2016; Mordatch and Abbeel,
2018; Lazaridou et al., 2018; Choi et al., 2018). In
this paper, we add focus on two other so-called ‘de-
sign features’ of natural language (Hockett, 1960):
discreteness (i.e. words form clusters in acoustic
space), and displacement (i.e. efficient communica-
tion can occur about objects and facts beyond the
immediate context of the conversation).

From an implementation point of view, we fol-
low the recent literature which has shown that a sig-

naling game is essentially an autoencoder setting,
with the encoder playing the role of the sender, and
the decoder the role of the receiver (see Fig. 1). In
this literature, however, the discreteness of the com-
munication protocol is assumed, since the networks
then traditionally use a (normally sequential and)
discrete latent space (Havrylov and Titov, 2017;
Chaabouni et al., 2019; Kharitonov et al., 2019).

Our main contribution is a generalization of the
current implementation of signaling games as au-
toencoders. Our implementation covers a broader
variety of signaling games, and it crucially incor-
porates the possibility of displacement and makes
no a priori assumption of discreteness. Our main
result is that under appropriate conditions, discrete-
ness emerges spontaneously: if the latent space is
thought about as a continuous acoustic space, then
trained messages form coherent clusters, just like
regular words do. We also show that the messages
are not compositional.

In addition to contributing to our understanding
of the emergence of communication protocols with
features like natural language, our results have tech-
nical significance: by using a continuous commu-
nication protocol, with discreteness spontaneously
emerging, we can train end-to-end using standard
backpropagation, instead of reinforcement learning
algorithms like REINFORCE and its refinements
(Williams, 1992; Schulman et al., 2015; Mnih et al.,
2016), which are difficult to use in practice.

2 Related Work

A related line of work attempts to avoid the dif-
ficulties of reinforcement learning—used when
there are stochastic nodes in a computation graph—
by reparameterization and/or non-stochastic es-
timators (Bengio et al., 2013; Schulman et al.,
2015). In the emergent communication case, where
the stochastic nodes are discrete (e.g. sampling a
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message from a sender distribution), the Gumbel-
Softmax estimator has become increasingly popu-
lar (Jang et al., 2017; Maddison et al., 2017).

That work enables standard backpropagation to
be used for training by optimizing approximations
to the true reinforcement learning signal. By con-
trast, we do not approximate the discrete RL learn-
ing signal, but rather ask under what conditions
discreteness will emerge.

Several earlier papers explore similar topics in
the emergence of discrete symbols. Nowak et al.
(1999) show that the division of the acoustic space
is an emergent property of language use under
noise. It assumes that speakers have a fixed lan-
guage and asks which such ones are stable. In
our setting, the language itself is changing as the
result of reinforcement from communication and
transmission itself is not noisy.

De Boer (2000) simulates the emergence of
vowel systems in artificial agents modeled after
phonetic production and perception in humans, re-
sulting in a self-discretizing acoustic space and a
vowel system that resembles human ones. This
makes the agents much closer to what we know
about humans, but also limits its scope. Results
about emergent communication can tell us both
about the emergence of human language, but also
about communication protocols in general, that
may be used by very different agents, e.g. au-
tonomous ones, or animals (Steinert-Threlkeld
et al., 2020).

3 Function Games

We here introduce a general communication game
setting, which we call Function Games. Our games
contain three basic components: (i) a set of contexts
C, (ii) a set of actions A, (iii) a family of functions
F , from contexts to actions. One play of a Function
Game game runs as follows:

1. Nature chooses f ∈ F and a context c ∈ C.
2. Sender sees the context c and f .
3. Sender sends a message m to Receiver.
4. Receiver sees a possibly different context c′

and the message m and chooses an action a′.
5. Both are ‘rewarded’ iff a′ = f(c′).

Abstractly, the function f represents some piece
of knowledge available primarily for Sender, and
which determines what action is appropriate in any
given context. Two concrete interpretations will
help illustrate the variety of communication proto-
cols and goals that this framework encompasses.

Generalized referential games. A reference
game is one in which Sender tries to get Receiver
to pick the correct object out of a given set (Skyrms,
2010; Lazaridou et al., 2017, 2018; Havrylov and
Titov, 2017; Chaabouni et al., 2019). Here, con-
texts are sets of objects (i.e. an m × n matrix,
with m objects represented by n features). Nor-
mally (though we will drop this assumption later),
c′ = shuffled(c): Sender and Receiver see the
same objects, but in a different arrangement. Ac-
tions are the objects, and the functions f ∈ F are
choice functions: f(c) ∈ c for every context c.
Belief update games. We will mostly focus on the
previous interpretation, but illustrate the generality
of the setting with another interpretation here. Con-
texts can represent the (possibly different) belief
states of the agents. ‘Actions’ can represent up-
dated belief states (A = C), the different functions
in F then representing how to update an agent’s
beliefs in the light of learning a particular piece of
information (passed directly to Sender, and only
through the message to Receiver).

4 Experiment

Because we are interested in the simultaneous emer-
gence both of discrete and of compositional sig-
nals, we use a Function Game called the Extremity
Game designed to incentivize and test rich com-
positionality (Steinert-Threlkeld, 2018, 2020). In
this game, one may think of the n dimensions of
the objects as gradable properties, e.g. size and
darkness, so that a 2D object is determined by a
given size and shade of gray. For the functions,
we set F = {argmini, argmaxi : 0 ≤ i < n}.
An emerging language may contain compositional
messages like ‘MOST + BIG’, ‘LEAST + DARK’.

4.1 Model

Our model (Figure 1) resembles an encoder-
decoder architecture, with Sender encoding the
context/target pair into a message, and Receiver
decoding the message (together with its context
c′) into an action. Both the encoder and decoder
are multi-layer perceptrons with two hidden layers
of 64 ReLU units (Nair and Hinton, 2010; Glorot
et al., 2011). A smaller, intermediate layer with-
out an activation function bridges the encoder and
decoder and represents the transformation of the
input information to messages.
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Figure 1: Our model architecture, mixing terminology
from the autoencoder and signaling game traditions.

4.2 Game Parameters
We manipulate the following parameters:
• Context identity. In the shared setting, Re-

ceiver sees a shuffled version of Sender’s con-
text (c′ = shuffled(c)). In the non-shared
setting, Receiver’s context c′ is entirely dis-
tinct from Sender’s. This forces displacement
and may incentivize compositional messages,
since Sender cannot rely on the raw properties
of the target object in communication.
• Context strictness. In strict contexts, there is

a one-to-one (and onto) correspondence be-
tween F and A (as in the original Extremity
Game from Steinert-Threlkeld, 2018, 2020).
In non-strict contexts, an object may be the
argmax or argmin of several dimensions, or
of no dimension.

In all experiments, the latent space (message) di-
mension is always 2, and objects have 5 dimensions.
Strict contexts therefore contain 10 objects, while
non-strict contexts contain 5, 10, or 15 objects.

4.3 Training Details
We use the Adam optimizer (Kingma and Ba, 2015)
with learning rate 0.001, β1 = 0.9, and β2 = 0.999.
The model is trained for 5,000 steps by feeding the
network mini-batches of 64 contexts concatenated
with one-hot function selectors. The network’s loss
is taken as the MSE between the target object f(c′)
and the object generated by the Receiver. For each
setting of the above parameters, we run 20 trials
with different random seeds.1

5 Results

5.1 Communicative success
We measure the communicative success of the net-
work by calculating the accuracy of recovering the
correct object from c′. Receiver’s prediction is con-
sidered correct if its output is closer to f(c′) than

1The project’s code for extension and reproduction is avail-
able at https://github.com/0xnurl/signaling-auto-encoder.

Shared Non-shared

Strict
10 objects 63.78%± 1.63 60.22%± 1.56
Non-strict
5 objects 49.37%± 1.67 43.55%± 1.69
10 objects 33.06%± 1.47 31.89%± 1.63
15 objects 27.58%± 1.30 27.95%± 1.24

Table 1: Communicative success, as measured by ob-
ject recovery accuracy.

(a) Before training (b) After training

Figure 2: Sampled messages for contexts of 10 objects
of size 5 for (a) an untrained and (b) a trained network.
Colors represent the fi ∈ F input part of the Sender.

to all other objects in c′. Accuracy of the different
settings is reported in Table 1. While the network
handles displacement well (non-shared contexts),
the model struggles with non-strict contexts. Note
that although accuracy is not 100%, it is still well
above chance, since e.g. for a context of 10 ob-
jects random guessing yields an expected accuracy
of 10% (which we observe in our model before
training).

5.2 Discrete signals

Figure 2 depicts message vectors sampled from the
latent space layer, before and after training. It is
apparent that discrete messages emerge from the
imposed learning regime. We measure cluster ten-
dency more quantitatively through two measures,
one considering Sender’s production, and the other
Receiver’s perception.

First, we sample 100 contexts, and collect the
output of the trained encoder for each of these con-
texts combined with each possible function f . We
apply an unsupervized clustering algorithm to this
set of produced messages (DBSCAN, Ester et al.,
1996, with ε = 0.5). A label is assigned to each
cluster using the ground truth: the label of a clus-
ter is the function f that was most often at the
source of a point in this cluster. This allows us
to compute F1-scores, which are reported in Ta-
ble 2. The model reached near-optimal clusteriza-

https://github.com/0xnurl/signaling-auto-encoder
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Shared Non-shared

Strict
10 objects 1.00± 0.00 0.90± 0.09
Non-strict
5 objects 0.99± 0.02 0.54± 0.15
10 objects 1.00± 0.00 0.99± 0.01
15 objects 1.00± 0.00 1.00± 0.00

Table 2: Discreteness in production, as measured by F1
scores for automatically clusterized messages.

Shared Non-shared

Strict
10 objects 63.39%± 1.45 55.37%± 3.43
Non-strict
5 objects 46.94%± 1.70 29.40%± 5.59
10 objects 32.63%± 1.43 31.51%± 1.62
15 objects 28.24%± 1.11 27.94%± 1.20

Table 3: Discreteness in perception, as measured by
object recovery accuracy from artificial messages.

tion measures in 7 out of 8 parameter settings, with
the Non-strict, Non-shared context with 5 objects
being the exception.

The second approach is akin to studying percep-
tion. Given the clusterization of the message space,
we sample new messages from each cluster, and
test Receiver’s perception of these ‘artificial’ mes-
sages, which have never been produced by Sender.
To sample artificial messages, we take the aver-
age of 10 messages from a (now labelled) cluster.
These artificial messages are fed to Receiver for
100 different contexts. The output object accuracy
for these artificial messages is shown in Table 3.
The model achieves recovery accuracy similar to
when interpreting actual messages.

In sum, we can identify discrete, abstract regions
of the latent space corresponding to different func-
tions in the input, just like words form clusters in
acoustic space.

5.3 Compositionality

Our agents are capable of communicating in ab-
stract situations, namely some in which their con-
texts are different in the first place. This generaliz-
ability suggests that the messages may be ‘compo-
sitional’. We here probe for a candidate composi-
tional structure to the latent space, by asking how
the messages relate to the structure of the family of

functions F .
First, the pioneering Mikolov et al., 2013

looks for compositionality at the level of word
embeddings (WE) through addition, most classi-
cally asking whether WE(queen)=WE(king)-
WE(man)+WE(woman). In the current
Game, we can ask whether the messages
are related as follows, for any dimensions
i and j: M(c, argmaxi)=M(c, argmaxj)-
M(c, argminj)+M(c, argmini). For each
such pair of object dimensions we calculate the
right-hand side of the equation above for 100
contexts, feed it to Receiver, compare Receiver’s
output to the output that would have been obtained
if M(c, argmaxi) (the left-hand side) had been
sent in the first place. This leads to important
degradation of average communicative success:
a drop of at least 24 percentage points across
parameter combinations, to around chance level.
Full results are in the left column of Table 4.

Second, we note as others that the composition-
as-addition assumption is disputable, both in gen-
eral and in the original application case (Linzen,
2016; Chen et al., 2017). To abstract away from this
issue, we train a ‘composition network’ (an MLP
with 2 hidden layers of 64 ReLU units) on the task
of predicting M(c, argmaxi) from M(c, argmaxj),
M(c, argminj) and M(c, argmini), therefore let-
ting it discover any function for mixing values,
and not involving addition a priori. We leave
out one dimension i0 from training, and feed Re-
ceiver with the message predicted by the ‘composi-
tion network’ from M(c, argmaxj), M(c, argminj)
and M(c, argmini0). If the language was composi-
tional, this predicted message should behave like
M(c, argmaxi0), but we found that, as in the case
of addition, the average communication accuracy
for all taken-out parameters dropped dramatically
(again, at least 24 percentage points drop). Full
results are in the right column of Table 4.

5.4 Categorical perception

Above we essentially propose an analysis of dis-
creteness both in production and perception. This
can lead to more psycholinguistic-like queries
about these emergent languages. For instance, one
may ask whether classical ‘Categorical Perception’
(CP) effects obtain, whereby two messages at a
short distance in the latent space may be discrimi-
nated easily if (and only if) they are on two sides of
a categorical boundary for interpretation purposes
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Compositionality by Addition Composition Network

Shared Non-shared Shared Non-shared

Strict
10 objects 7.82%± 2.40 11.94%± 2.13 13.70%± 6.85 10.18%± 6.15
Non-strict
5 objects 16.86%± 3.23 17.14%± 3.54 15.10%± 2.05 14.35%± 2.74
10 objects 5.82%± 2.37 6.46%± 1.79 5.00%± 2.62 5.92%± 2.12
15 objects 3.72%± 1.42 4.00%± 1.54 1.59%± 1.31 2.48%± 1.05

Table 4: Communicative success using messages ‘inferred’ by assuming a systemic relation within
argmini/argmaxi message pairs. The ‘compositionality by addition’ method assumes that M(c, argmaxi) =
M(c, argmaxj) - M(c, argminj) + M(c, argmini). The ‘compositional network’ is an MLP trained to predict
M(c, argmaxi) from the other three messages. Table values are object recovery accuracies averaged for all i.

(see Liberman et al., 1957, and Damper and Har-
nad, 2000 for early discussions in the context of
neural architectures).

As an initial foray, we can investigate the sharp-
ness of the boundaries of our discrete messages (i.e.
distribution in latent space). For representation
purposes, we sample pairs of messages, call them
M−1 and M+1 generated by Sender for two choice
functions F−1 and F+1. We explore a continuous
spectrum of messages in the dimension connecting
these two messages (Mt = (1−t)M−1+(1+t)M+1

2 ,
continuously shifting from M−1 to M+1 as the
continuous variable t moves from −1 to +1). The
messages Mt are fed to Receiver together with con-
texts C ′, and for each function F−1 and F+1 in
turn, we calculate object recovery accuracy. This is
plotted in Figure 3 for an Extremity Game model
trained in a strict, non-shared context setting with
object size 5. The model shows that clusters have
relatively sharp boundaries, especially in the direc-
tion of a message belonging to another cluster (the
area where x is between −1 and +1 in Fig. 3).

Figure 3: Categorical perception effect, demonstrated
by accuracy of object recovery using messages shifted
between two ‘meanings’.

We can thus identify a boundary around a clus-
ter, and its width, providing the necessary setup to
investigate CP effects: whether pairs of messages
crossing such a boundary behave differently (e.g.,
are easier to discriminate) than a pair of equally
distant messages both on one side of this boundary.

6 Conclusion

We propose a general signaling game framework
in which fewer a priori assumptions are imposed
on the conversational situations. We use both pro-
duction and perception analyses, and find that un-
der appropriate conditions, which are met by most
studies involving neural signaling games, messages
become discrete without the analyst having to force
this property into the language (and having to
deal with non-differentiability issues). We find
no evidence of compositional structure using vec-
tor analogies and a generalization thereof but do
find sharp boundaries between the discrete message
clusters. Future work will explore other measures
and alternative game settings for the emergence of
compositionality, as well as more subtle psycholog-
ical effects (Categeorical Perception) of continu-
ous biological systems exhibiting discrete structure,
like the auditory system.
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