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Abstract

The task of Dialogue Act Classification (DAC)
that purports to capture communicative intent
has been studied extensively. But these stud-
ies limit themselves to text. Non-verbal fea-
tures (change of tone, facial expressions etc.)
can provide cues to identify DAs, thus stress-
ing the benefit of incorporating multi-modal
inputs in the task. Also, the emotional state
of the speaker has a substantial effect on the
choice of the dialogue act, since conversations
are often influenced by emotions. Hence, the
effect of emotion too on automatic identifica-
tion of DAs needs to be studied. In this work,
we address the role of both multi-modality and
emotion recognition (ER) in DAC. DAC and
ER help each other by way of multi-task learn-
ing. One of the major contributions of this
work is a new dataset- multimodal Emotion
aware Dialogue Act dataset called EMOTyDA,
collected from open-sourced dialogue datasets.
To demonstrate the utility of EMOTyDA, we
build an attention based (self, inter-modal,
inter-task) multi-modal, multi-task Deep Neu-
ral Network (DNN) for joint learning of DAs
and emotions. We show empirically that multi-
modality and multi-tasking achieve better per-
formance of DAC compared to uni-modal and
single task DAC variants.

1 Introduction
Dialogue Act Classification (DAC) is concerned
with deciding the type i.e., communicative inten-
tion (question, statement, command etc.) of the
speaker’s utterance. DAC is very important in the
context of discourse structure, which in turn sup-
ports intelligent dialogue systems, conversational
speech transcription and so on. Considerable works
have been done on classical Machine Learning
(ML) based DAC (Jurafsky et al., 1997), (Stolcke
et al., 2000), (Verbree et al., 2006), etc. and Deep
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Learning (DL) based DAC (Kalchbrenner and Blun-
som, 2013), (Papalampidi et al., 2017), (Liu et al.,
2017), (Ribeiro et al., 2019), (Ortega et al., 2019),
(Saha et al., 2019) etc.

Humans are emotional entities. A speaker’s emo-
tional state considerably influences or affects its
intended content or its pragmatic content (Barrett
et al., 1993). An utterance such as “Okay sure” or
“Ya right” (say) can be considered as “agreement”
or- in case of sarcasm- “disagreement”. For expres-
sive DAs such as “greeting”, “thanking”, “apolo-
gizing” etc., the speaker’s feeling or emotion can
assist in recognizing true communicative intent and
vice-versa. Thus, it is important to consider the
speaker’s emotion when deciding on the DA.

There is considerable work on ER (Cowie et al.,
2001), (Jain et al., 2018), (Zhang et al., 2018), etc.
and adapting the Virtual Agents (VAs) to act ac-
cordingly (Huang et al., 2018), (Zhou et al., 2018),
(Fung et al., 2018), etc. But very little research has
been done, that addresses the impact of emotion
while deciding the DA of an utterance (Novielli and
Strapparava, 2013), (Bosma and André, 2004). As
DAs primarily dictate the flow of any dialogue con-
versation (be it human-human or human-computer),
such synergy of ER and DAC is required. Research
too has shown the benefit of utilizing the combina-
tion of text and nonverbal cues (Poria et al., 2017b),
(Poria et al., 2017a) etc., for solving various Nat-
ural Language Processing (NLP) tasks. The main
advantage of integrating other modalities to text is
the usage of behavioral signs present in acoustic
(vocal modulations) and visual (facial expression)
modalities. In addition, the various modalities offer
important signals to better identify the speaker’s
communicative intention and emotional state. This
will in effect help create sturdy and more reliable
DAC models.

In this paper, we study the influence of emotion
on the identification of DAs, by utilizing the com-
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bination of text, vocal modulations and facial ex-
pressions for task-independent conversations. DAC
is our primary task, assisted by Emotion Recogni-
tion (ER) as an auxiliary task. We implement an
attention based multi-modal, multi-tasking DNN
to do joint modeling of DAC and ER. Also, we
introduce a new dataset to help advance research
in multi-modal DAC.

The key contributions of this paper are as fol-
lows: i. We curate a new dataset called EMO-
TyDA for facilitating multi-modal DAC research
with high-quality annotations, including emotion-
ally aided cues and conversational context features.
We believe this dataset will advance research in
multi-modal DAC; ii. We point to different sce-
narios where discrepancy in DAC is evident across
different modalities, thus, showing the importance
of multi-modal approaches to DAC; iii. We show
using various instances, the usefulness of consid-
ering the emotional state of the user while identi-
fying DAs. Consequently, we deduce that EMO-
TyDA will lead to a novel sub-task for future re-
search: emotion aware DAC; iv. We propose an
attention based (self, inter-modal, inter-task) multi-
task, multi-modal DNN for jointly optimizing the
DAC and ER task and show its benefit over single
task DAC variants. Through this, we also establish
that multi-modal DAC performs significantly better
than uni-modal DAC.

2 Related Works

The tasks of ER and DAC are extensively explored.

Dialogue Act Frameworks: DAC has been in-
vestigated since late 90s (Reithinger and Klesen,
1997), (Stolcke et al., 1998) and early 2000’s (Stol-
cke et al., 2000), (Grau et al., 2004). Much of
this research, however, uses chat transcripts with
only the text mode, due partly due to unavailabil-
ity of multi-modal open-source dataset. In (Khan-
pour et al., 2016), authors apply stacked LSTM
to classify speech acts. In (Kumar et al., 2018),
the author developed a Hierarchical Network based
approach using Bi-LSTMs and the CRF. A contex-
tual self-attention system fused with hierarchical
recurrent units was proposed by the authors of (Ra-
heja and Tetreault, 2019) to develop a sequence
label classifier. The authors of (Yu et al., 2019)
proposed a method for the capture of long-range
interactions that span a series of words using a Con-
volutional Network based approach. In (Saha et al.,
2019), authors proposed several ML and DL based

approaches such as Conditional Random Fields,
clustering and word embeddings to identify DAs.
However, all these works identify DAs by utiliz-
ing solely the textual modality without the use of
emotional cues.

Emotion aware DAs. Within a multi-modal set-
ting, little work is available in the literature to study
the impact of emotional state in the evaluation of
DAs. The effect of integrating facial features as
a way of identifying emotion to classify DAs was
examined by authors in (Boyer et al., 2011). They
exhibited their work for tutorial dialogue session
typically task-oriented and applied logistic regres-
sion to identify DAs. But they studied only the
cognitive-affecting states such as confusion and
flow as the emotional categories to learn DAs. In
(Novielli and Strapparava, 2013), authors examined
the impact of affect analysis in DA evaluation for an
unsupervised DAC model. The authors made use
of lexicon based features from WordNet Affect and
SentiWordNet to map them with emotion labels to
model the DAs in a LSA based approach. Authors
of (Ihasz and Kryssanov, 2018), also inspected the
impact of emotions mediated with intention or DAs
for an in-game Japanese dialogue. Their goal was
to construct DA-emotion combinations from the
pre-annotated corpus. However, such stringent as-
sociations or dis-associations amongst DA-emotion
pairs may not truly hold for real life conversations.

3 Dataset

To facilitate and enhance the research in multi-
modal DAC assisted with user emotion, we in-
troduce a new dataset (EMOTyDA) consisting of
short videos of dialogue conversations manually
annotated with its DA along with its pre-annotated
emotions.

3.1 Data Collection

To gather potentially emotion rich conversations to
explore its affect on DAC, we scanned the litera-
ture for existing multi-modal ER dataset. During
our initial search, we obtained several multi-modal
ER datasets which include Youtube (Morency et al.,
2011), MOUD (Pérez-Rosas et al., 2013), IEMO-
CAP (Busso et al., 2008), ICT-MMMO (Wöllmer
et al., 2013), CMU-MOSI (Zadeh et al., 2016),
CMU-MOSEI (Zadeh et al., 2018) and MELD (Po-
ria et al., 2019) etc. However, we zeroed down
on IEMOCAP and MELD datasets for the further
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investigations of our problem statement. The rea-
son behind this choice was that remaining all the
datasets mentioned above were particularly mono-
logues involving opinions and product reviews.
Whereas our research requires task-independent
dyadic or multi-party conversations to analyze its
full potential. Both these available datasets are not
annotated for their corresponding DAs.

Also, benchmark DAC datasets such as Switch-
board (SWBD) (Godfrey et al., 1992), ICSI Meet-
ing Recorder (Shriberg et al., 2004) consist of text
and audio-based conversations whereas TRAINS
(Heeman and Allen, 1995) consist of solely text-
based conversations with no emotional tags. HCRC
Map Task corpus (Anderson et al., 1991) addition-
ally encompasses audio modality with the tran-
scripts but the corpus itself has task-oriented con-
versations and is not annotated for its emotion tags.
It is to be noted that task-oriented conversations
generally restrict the presence of diverse tags which
are commonly encountered in task-independent
conversations.

To the best of our knowledge, at the time of
writing, we were unaware of any sizable and open-
access DA and emotion annotated multi-modal dia-
logue data. Thus, MELD and IEMOCAP datasets
have been manually annotated for the correspond-
ing DAs to encourage and promote novel research
on multi-modal DACs to build a multi-tasking sys-
tem that allows DA and emotion for an utterance
to be learned jointly.

3.2 Data Annotation

Over the years, SWBD-DAMSL tag-set compris-
ing of 42 DAs developed by (Jurafsky, 1997) has
been used widely for the task of DAC for task-
independent dyadic conversation such as SWBD
corpus. Thus, we use SWBD-DAMSL tag-set
as the base for conceiving tag-set for the EMO-
TyDA dataset since both these datasets contain
task-independent conversations. Of the 42 SWBD-
DAMSL tags, 12 most commonly occurring tags
have been used to annotate utterances of the EMO-
TyDA dataset. The choice of 12 tags is because
of the limited length of the EMOTyDA dataset in
comparison to the SWBD corpus. It stems from
the fact that it is highly likely that many of the tags
of the SWBD-DAMSL tag-set will never appear in
the EMOTyDA dataset due to lesser number of ut-
terances and lower diversity of occurrence of such
fine-grained tags. The 12 most commonly occur-

ring chosen tags are Greeting (g), Question (q), An-
swer (ans), Statement-Opinion (o), Statement-Non-
Opinion (s), Apology (ap), Command (c), Agree-
ment (ag), Disagreement (dag), Acknowledge (a),
Backchannel (b) and Others (oth).

For the current work, we have selected a sub-
set of 1039 dialogues from MELD amounting to
9989 utterances and the entire IEMOCAP dataset
of 302 dialogues amounting to 9376 utterances to
curate EMOTyDA dataset. Details of the origi-
nal MELD and IEMOCAP datasets are provided
in the Appendix 6. Three annotators who were
graduate in English linguistics were accredited to
annotate the utterances with the appropriate DAs
out of the 12 chosen tags. They were asked to an-
notate these utterances by only viewing the video
available considering the dialogue history without
the information of the pre-annotated emotion tags.
This was done so as to assure that the dataset does
not get biased by specific DA-emotion pairs. The
inter-annotator score over 80% was considered as
reliable agreement. It was determined based on
the count that for a given utterance more than two
annotators agreed on a particular tag. To remove
the discrepancy in the number of emotion tags for
IEMOCAP and MELD datasets, we mapped the joy
tag of the MELD to the happy tag of the IEMOCAP
to finally settle on 10 tags from the IEMOCAP for
the EMOTyDA dataset.

3.3 Emotion-DA Dataset: EMOTyDA

The EMOTyDA dataset1 now comprises of 1341
dyadic and multi-party conversations resulting in
a total of 19,365 utterances or annotated videos
with the corresponding DA and emotion tags con-
sidering the dialogue history. The dataset contains
approximately 22 hours of recordings. Source dis-
tribution and major speakers statistics of the dataset
are shown in Figures 3a and 3b, respectively. Since
DAC and ER tasks are known to exploit the contex-
tual features, i.e., dialogue history (Yu et al., 2019)
so, utterances in the dataset are accompanied with
their corresponding contextual utterances, which
are typically preceding dialogue turns by the speak-
ers participating in the dialogue. Each of the utter-
ances contains three modalities: video, audio, and
text. All the utterances are even followed by their
speaker identifiers. Table 1 shows few utterances
along with the corresponding DAs and emotion la-

1The dataset with its DA and emotion tags will be made
publicly available to the research community.
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Speaker Utterance DA Emotion
M 4 Adders don’t snap, they sting. dag ang

Rachel Well, I just checked our messages and Joshua didn’t call. s sad
M 1 That’s very amusing indeed. dag ang

Chandler Come on, pick up, pick up c fear

Table 1: Example utterances from the EMOTyDA dataset with its corresponding DA and emotion categories

(a) (b)
Figure 1: Statistics across the datasets : (a) Distribution of DA labels, (b) Distribution of emotion labels.

(a) (b)
Figure 2: (a) Incongruent modalities in DAC, (b) Importance of emotion in DAC.

(a) (b)
Figure 3: Statistics : (a) Source across the dataset, (b)
Overall speaker distribution.

bels from the proposed dataset. Distributions of
DA and emotion labels across the source datasets
are shown in Figure 1a and 1b, respectively.

3.4 Qualitative Aspects

In the current work, we seek to analyze the af-
fect of emotion in classifying DAs. Also, DAC in
text usually involves extra information that can be
benefitted from associated modalities. Below, we
analyze some samples that require emotion aided
and multi-modal reasoning. We exemplify using
few instances from our proposed dataset in order
to support our claim of DA often being expressed
in a multi-modal way along with exploiting the

emotional state of the speaker.

Role of Emotion. In Figure 2b, we present two
instances from the dataset where the emotional
state of the user seems beneficial in deciding the
DA of an utterance. In the first example, the ref-
erence to the sad and dismal state of the speaker
directs it to acknowledge the presence of the hearer.
In the second case, the angry emotional state of
the speaker forces her to disagree with people’s
opinion or suggestion involved in the conversation.
The examples above illustrate the importance of
having emotional information as emotions affect
the communicative intention or DA of the speaker
discussed above. The presence of emotion in our
dataset caters the models with the ability to use
additional information while reasoning about DA.

Role of Multi-modality. Figure 2a shows two
cases where DA is articulated through incongruity
between modalities. In the first instance, the facial
modality implies anger or fury. Whereas the tex-
tual modality lacks any visible sign of displeasure,
on the contrary it indicates an agreement. So, the
textual claims does not validate the facial features.
In the second case, the textual modality hints pure
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agreement. Whereas the audio modality expresses
a sarcastic appeal. In both these cases, there exists
inconsistency between modalities, which acts as
a strong indicator that multi-modal information is
also important in providing additional cues for iden-
tifying DAs. The availability of complementary
information across multiple modalities improves
the model’s ability to learn discriminatory patterns
that are responsible for this complex process.

4 Proposed Methodology

This section describes the proposed multi-task,
multi-modal approach followed by the implemen-
tation details.

4.1 Multi-modal Feature Extraction
Here, we discuss, the process of multi-modal fea-
ture extraction.

Textual Features. The transcriptions available
for each video forms the source of the textual
modality2. To extract textual features, pretrained
GloVe (Pennington et al., 2014) embeddings of
dimension 300 have been used to obtain representa-
tion of words as word vectors. The resultant word
embeddings of each word are concatenated to ob-
tain a final utterance representation. While it is
indeed possible to use more advanced textual en-
coding techniques (for e.g., convolutional or recur-
rent neural network), we decided to use the same
pre-trained extractive strategy as in the case of other
modalities.

Audio Features. To elicit features from the au-
dio, openSMILE (Eyben et al., 2010), an open
source software has been used. The features ob-
tained by openSMILE include maxima dispersion
quotients (Kane and Gobl, 2013), glottal source
parameters (Drugman et al., 2011), several low-
level descriptors (LLD) such as voice intensity,
voice quality (for eg., jitter and shimmer), MFCC,
voiced/unvoiced segmented features (Drugman and
Alwan, 2011), pitch and their statistics (for eg.,
root quadratic mean, mean etc.), 12 Mel-frequency
coefficients etc. All the above features are then con-
catenated together to form a dq = 256 dimensional
representation for each window. The final audio
representation of each utterance (A) is obtained by
concatenating the obtained dq for every window

2Original dataset with its video and transcript
are downloaded from : https://github.com/
SenticNet/MELD, https://sail.usc.edu/
iemocap/iemocap_release.htm

i.e., A ∈ Rw×dq where w represents total window
segments.

Video Features. To elicit visual features for each
of the f frames from the video of an utterance, we
use a pool layer of an ImageNet (Deng et al., 2009),
pretrained ResNet-152 (He et al., 2016) image clas-
sification model. Initially, each of the frames is
preprocessed which includes resizing and normaliz-
ing. So, the visual representation of each utterance
(F ) is obtained by concatenating the obtained df
= 4096 dimensional feature vector for every frame,
i.e., F ∈ Rf×df (Castro et al., 2019), (Illendula
and Sheth, 2019), (Poria et al., 2017b), (Poria et al.,
2017a).

4.2 Network Architecture

The proposed network consists of three main com-
ponents : (i) Modality Enocoders (ME) which pri-
marily takes as input the uni-modal features (ex-
tracted above) and produce as outputs the individ-
ual modality encodings, (ii) Triplet Attention Sub-
network (TAS) that encompasses self, inter-modal
and inter-task attention and (iii) classification layer
that contains outputs of both the tasks (DAC and
ER).

4.2.1 Modality Encoders
In this section, we discuss how different modalities
are encoded in the architectural framework.

Textual Modality. The obtained utterance repre-
sentation (U) from the extracted textual features
(discussed above) is then passed through three dif-
ferent Bi-directional LSTMs (Bi-LSTMs) (Hochre-
iter and Schmidhuber, 1997) to sequentially encode
these representations into hidden states and learn
different semantic dependency based features per-
taining to different task, i.e., DAC and ER. One
Bi-LSTM learns DAC features that are tuned in ac-
cordance with the emotion features. Second learns
features for the ER task regulated by the learning of
DA features. The third Bi-LSTM learns private fea-
tures for the task of DAC which is not influenced
by the features learnt from emotion.

−→
hi = LSTMfd(ui,

−→
h i−1), (1)

←−
hi = LSTMbd(ui,

←−
h i+1). (2)

For each of these word features, its correspond-
ing forward and backward hidden states

−→
hi ,
←−
hi ,

respectively, from the forward LSTMfd and the
backward LSTMbd are concatenated to obtain a

https://github.com/SenticNet/MELD
https://github.com/SenticNet/MELD
https://sail.usc.edu/iemocap/iemocap_release.htm
https://sail.usc.edu/iemocap/iemocap_release.htm
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Figure 4: The architectural diagram of the proposed network. SA, IMA, ITA represent self, inter-modal and
inter-task attentions, respectively.

single hidden state hi. The complete hidden state
matrix is obtained as,

H = [h1, h2, ...., hn], (3)

where H ∈ Rn×2d. d represents the number
of hidden units in each LSTM and n is the se-
quence length. Thus, the obtained three hidden
state matrices correspond to three Bi-LSTMs, i.e.,
H1, H2, H3. These representations are then passed
through three fully connected layers, each of dimen-
sion say dc to learn attention of different variants.

Audio and Video Modalities. The audio and
video features (A and F ) extracted are also passed
through three fully connected layers, each of dimen-
sion say dc, to learn attention of different variants.

4.2.2 Triplet Attention Subnetwork
We use a similar concept as in (Vaswani et al.,
2017), where the authors proposed to compute at-
tention as mapping a query and a set of key-value
pairs to an output. The output is estimated as a
weighted sum of the values, where the weight as-
signed to each value is calculated by a compatibility
function of the query with its corresponding key.
So, the representations obtained from each of the
modality encoders above which are passed through
three fully-connected layers each are termed as
queries and keys of dimension dk = dc and values
of dimension dv = dc. We now have five triplets

of (Q,K, V ) as : (Q1,K1, V1), (Q2,K2, V2),
(Q3,K3, V3), (Qa,Ka, Va), (Qv,Kv, Vv) where
first three triplets are from the textual modality
encoder (one each for DA shared, DA private and
Emotion shared)3 followed by one from audio and
video encoder each. These triplets are then used in
different combinations to compute attention scores
meant for specific purposes that includes self atten-
tion, inter-modal attention and inter-task attention.

Self Attention. We compute self attention (SA)
for all these triplets by computing the matrix mul-
tiplication of all its corresponding queries to its
corresponding keys.

SAi = QiK
T
i (4)

where SA ∈ Rn×n for SA1, SA2, SA3, SA ∈
Rn×w for SAa, SA ∈ Rn×f for SAv.

Inter-modal Attention. We compute inter-
modal attention (IMA) amongst triplets of all the
modalities for the multi-task by computing the
matrix multiplication of combination of queries
and keys of different modalities using Equation
4. In this manner, we obtain five IMA scores as
IMAv1 ∈ Rf×n, IMAv3 ∈ Rf×n, IMAa1 ∈
Rw×n, IMAa3 ∈ Rw×n and IMAva ∈ Rf×w.

3Subscript 1, 2 and 3 represent DA shared, DA private
and Emotion shared representations, respectively.
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This is done in order to identify significant contribu-
tions amongst different modalities to learn optimal
features for an utterance.

Inter-task Attention. We compute inter-task at-
tention (ITA) amongst triplets of different tasks
from the textual modality by computing the matrix
multiplication of combinations of queries and keys
of different tasks using Equation 4. In this manner,
we obtain three ITA scores as ITA12 ∈ Rn×n,
ITA21 ∈ Rn×n and ITA31 ∈ Rn×n. This is done
in order to learn joint features of an utterance for
identification of DAs and emotions.

Fusion of Attentions. We then obtain softmax
of all these computed different attention scores to
squash them in a range of [0,1] so that the ones hav-
ing maximum contribution gets the highest proba-
bility values and vice-versa. We then compute the
matrices of attention outputs for different tasks and
modalities from the different attention scores as:

A = softmax(QiK
T
j )Vi (5)

where A ∈ Rn×dc . So, we obtain 13 differ-
ent attention outputs from its corresponding at-
tention scores which are SA ∈ Rn×dc for SA1,
SA2, SA3, SA ∈ Rw×dc for SAa, SA ∈ Rf×dc

for SAv, IMAv1 ∈ Rf×dc , IMAv3 ∈ Rf×dc ,
IMAa1 ∈ Rw×dc , IMAa3 ∈ Rw×dc , IMAva ∈
Rf×dc , ITA12 ∈ Rn×dc , ITA21 ∈ Rn×dc and
ITA31 ∈ Rn×dc .

Next, we obtain mean of different attention out-
puts in varying combinations to finally obtain rep-
resentations for each of the modalities and tasks as
MDA

1 , MDA
2 , ME , Mv and Ma.

MDA
1 = mean(SA1, IMAva, ITA12) (6)

MDA
2 = mean(SA2, ITA21) (7)

ME = mean(SA3, ITA31) (8)

Mv = mean(SAv, IMAv1, IMAv3) (9)

Ma = mean(SAa, IMAa1, IMAa3) (10)

where M ∈ R1×dc . Next, we focus on learn-
ing appropriate weights to combine these represen-
tations to obtain final sentence representation for
each of the tasks to be optimized jointly.

W1 = MDA
1 ∗MDA

2 (11)

W2 = MDA
1 ∗ME (12)

IEMOCAP MELD
# Utterance # Dialogue # Utterance # Dialogue

Train 7497 242 7489 831
Test 1879 60 2500 208

Table 2: Statistics of the train and test set of the EMO-
TyDA dataset from different sources

where ∗ represents dot product of two vectors.
Finally, we obtain sentence representation (S) for
each of the tasks as follows:

SDA = MDA
1 +W1 ∗MDA

2 +W2 ∗ME (13)

SE = ME ∗Mv ∗Ma (14)

4.2.3 Classification Layer
The output, i.e., sentence representation for each
of the tasks (SDA and SE) from the TAS are con-
nected to a fully-connected layer which in turn
consists of the output neurons for both the tasks
(DAC and ER). The errors computed from each
of these channels are back-propagated jointly to
the successive prior layers of the model in order
to learn the joint features of both the tasks thereby,
allowing them to benefit from the TAS layer. As
the main aim of this study is to learn DA with the
help of emotion, the performance of the DAC task
also banks on the quality of features learned for the
ER task with useful and better features assisting
the collective learning process and vice-versa.

4.3 Implementation
EMOTyDA dataset was divided into two parts of
80% - 20% split for train and test set respectively.
The statistics of the train and test set are shown in
Table 2. For all the experiments conducted, same
train and test sets were employed to allow a fair
distinction between all approaches. For encoding
the textual modality, a Bi-LSTM layer with 200
memory cells was used followed by a dropout rate
of 0.1. Fully-connected layer of dimension 300
was used in all the subsequent layers. The first
and the second channel contain 12 and 10 output
neurons, respectively, for the DA and the emotion
tags. Categorical crossentropy loss function is used
in both the channels. A learning rate of 0.01 was
found to be optimum. Adam optimizer was used in
the final experimental setting. All these values are
selected after a thorough sensitivity analysis of the
parameters.

5 Results and Analysis

EMOTyDA contains dialogues pertaining to dyadic
and multi-party speakers, so, we performed experi-
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Dataset
EMOTyDA:dyadic EMOTyDA:multiparty EMOTyDA

DA DA + ER DA DA + ER DA DA + ER
Modality Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score
Text (T) 63.75 60.67 65.23 62.35 46.20 39.23 48.90 41.10 53.56 49.17 53.02 50.22

Audio (A) 32.06 24.95 35.42 38.92 25.76 19.45 26.58 21.01 27.13 23.09 28.65 24.87
Video (V) 35.94 29.71 36.88 30.34 27.23 20.26 28.12 21.03 30.16 26.85 32.09 27.73

T + A 65.43 60.67 66.98 62.08 47.17 40.30 49.42 41.69 54.12 50.00 56.62 51.99
A + V 38.59 34.98 40.07 36.00 27.91 22.76 28.95 23.89 32.09 28.86 33.76 29.13
T + V 67.12 64.14 70.55 68.12 49.80 41.90 51.00 44.52 57.31 53.20 60.88 57.96

T + A + V 66.35 62.30 69.45 67.00 49.02 41.00 50.65 44.00 56.77 52.09 59.86 56.05
T + V (emotional cue) 65.26 60.20 - - 46.88 39.70 - - 54.31 50.02 - -

Table 3: Results of all the baselines and the proposed models in terms of accuracy and F1-score. All the reported
results are statistically significant

Model EMOTyDA (DA + ER)
Acc. F1-score

Feature level (early fusion) 51.20 48.09
Hidden-state level (late fusion) 53.27 49.80

Hypothesis level 50.93 47.31
T + V (SA) 56.76 49.84

T + V (IMA) 56.62 52.79
T + V (ITA) 56.99 52.23

T + V (SA + IMA) 56.62 51.70
T + V (SA + ITA) 58.48 52.62

T + V (IMA + ITA) 57.74 52.85
T + V 60.88 57.96

Table 4: Results of various baseline models for the
multi-task framework for the EMOTyDA dataset

ments segregating dyadic and multi-party conver-
sations as well in addition to the whole dataset
for the multi-task framework along with different
modalities. Additionally, we also provide results
of the multi-task framework with its varying com-
binations of different attentions applied to provide
analysis on the effectiveness of each attention for
the entire EMOTyDA dataset. Along with this, we
also include results of some simple baselines such
as feature level, hidden state level and hypothesis
level concatenation. It is to be noted that the pur-
pose of the current work is to examine the effect of
emotion while deciding the DA of an utterance from
multiple modalities. We, therefore, do not focus on
enhancements or analysis of the ER task and view
it as an auxiliary task aiding the primary task, i.e.,
DAC. In regards to this, the results and findings are
reported with respect to only the DAC task and its
different combinations.

Table 3 shows the results of all the various mod-
els. As visible, the textual modality provides the
best results amongst the uni-modal variants. The
addition of audio and visual features individually
improves this uni-modal baseline. The combina-
tion of visual and textual features achieves the
best score throughout all the combinations of the
dataset. The tri-modal variant is not able to attain
the best score supposedly because of suboptimal

Figure 5: The visualization of the attention scores for 5 sam-
ple utterances for the tri-modal variant. V, A and T represent
attention scores of video, audio and textual features, respec-
tively. Sample utterance - u1:“I am not in the least bit drunk.”,
u2: “There’s a lot of people looking for jobs.”, u3: “It was
ridiculous. Completely ridiculous.”, u4: “You don’t have to
explain.”, u5: “No, Rachel doesn’t want me to...”

performance of the audio modality. Though it still
improves the performance compared to all the uni-
modal baselines. Figure 5 shows the heatmap vi-
sualization of the tri-modal variant to highlight the
contributions of different modalities.

As is also evident from the results, the multi-task
variant performs consistently well throughout all
the experiments compared to its single task DAC
variant. As a baseline, we also show that using
emotion as a feature in the single task DAC coun-
terpart doesn’t outperform the proposed multi-task
variant. This shows that the joint optimization of
both these tasks boosts the performance of DAC.
Table 4 shows the results of few simple baselines
along with the ablation study of different attentions
used in the proposed framework to highlight the
importance and effectiveness of each of the atten-
tions used for the whole EMOTyDA dataset. As
seen from the table, the combinations of all three at-
tention mechanisms, i.e., SA, IMA and ITA, yields
the best results, thus, stressing the roles of incorpo-
rating across-task and across-modal relationships.

Figure 6 shows the visualization of the learned
weights of different words for a sample utterance
for the single task DAC as well as the multi-task
model to highlight the importance of incorporat-
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Utterance True
Label MT(T+V) ST (T+V)

She is not Larry’s girl dag dag s
I know, it was amazing! I mean, we totally nailed it, it was beautiful. ag ag o

Then why is she still single?,New York is full of men.,Why hasn’t she married?
Probably a hundred people told her she’s foolish, but she’s waited.

o s q

God, I,feel so guilty about Ross. ap ap s
Table 5: Sample utterances with its predicted labels for the best performing multi-task (MT) (T+V) model and its
single task (ST) DAC variants; These examples show that ER as an auxiliary task helps DAC for better performance
in MT.

Figure 6: The visualization of the learned weights for
an utterance - u1: “Oh yes, yes I am, you can’t stop me.”
for the best performing model (T+V), single task DAC
(baseline) and multi-task DAC+ER (proposed) model

ing ER as an auxiliary task. The true DA label
of the utterance in Figure 6 is disagreement with
emotion as anger. With the multi-task approach,
the attention is laid on appropriate disagreement
bearing words whereas with single task, attention
is learnt on agreement words such as yes which
here has just been used in a sarcastic way to dis-
agree. It is also observed that the experiments with
dyadic conversations attain better results as com-
pared to multi-party conversations. This is sup-
posedly due to the constant change of speakers in
multi-party conversations that misleads the classi-
fier to learn suboptimal features, thus, stressing on
the role of using speaker information as valuable
cues for DAC.

Error Analysis. Plausible reasons behind the
faults in the DA prediction are as follows : (i)
Skewed dataset : The occurence of most of the
tags in the proposed dataset is very less, i.e., the
dataset is skewed as shown in Figure 1a. This con-
sistently conforms with real time task-independent
conversations where some tags occur less fre-
quently as compared to others; (ii) Composite and
longer length utterance: Most of the utterances
in the dataset are longer in length and is also com-
posite in nature encompassing diversified inten-
tions in a single utterance. In such cases, it be-
comes difficult to learn features for discrete DAs;
(iii) Mis-classification of emotion labels: Mis-
classification of the DAs can be attributed to the
mis-classification of the emotions for that partic-

ular utterance. Some examples for the same are
shown in Table 5.

6 Conclusion and Future Work
In this paper, we investigate the role of emotion
and multi-modality in determining DAs of an ut-
terance. To enable research with these aspects,
we create a novel dataset, EMOTyDA, that con-
tains emotion-rich videos of dialogues collected
from various open-source datasets manually anno-
tated with DAs. Consequently, we also propose
an attention based (self, inter-modal, inter-task)
multi-modal, multi-task framework for joint opti-
mization of DAs and emotions. Results show that
multi-modality and multi-tasking boosted the per-
formance of DA identification compared to its uni-
modal and single task DAC variants. In future, con-
versation history, speaker information, fine-grained
modality encodings can be incorporated to predict
DA with more accuracy and precision.
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MELD : Multi-modal EmotionLines Dataset is
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