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Abstract
Recent evidence reveals that Neural Machine
Translation (NMT) models with deeper neu-
ral networks can be more effective but are
difficult to train. In this paper, we present
a MultiScale Collaborative (MSC) framework
to ease the training of NMT models that are
substantially deeper than those used previ-
ously. We explicitly boost the gradient back-
propagation from top to bottom levels by in-
troducing a block-scale collaboration mecha-
nism into deep NMT models. Then, instead of
forcing the whole encoder stack directly learns
a desired representation, we let each encoder
block learns a fine-grained representation and
enhance it by encoding spatial dependencies
using a context-scale collaboration. We pro-
vide empirical evidence showing that the MSC
nets are easy to optimize and can obtain im-
provements of translation quality from con-
siderably increased depth. On IWSLT trans-
lation tasks with three translation directions,
our extremely deep models (with 72-layer en-
coders) surpass strong baselines by +2.2∼+3.1
BLEU points. In addition, our deep MSC
achieves a BLEU score of 30.56 on WMT14
English→German task that significantly out-
performs state-of-the-art deep NMT models.

1 Introduction

Neural machine translation (NMT) directly models
the entire translation process using a large neu-
ral network and has gained rapid progress in re-
cent years (Sutskever et al., 2014; Sennrich et al.,
2016). The structure of NMT models has evolved
quickly, such as RNN-based (Wu et al., 2016),
CNN-based (Gehring et al., 2017) and attention-
based (Vaswani et al., 2017) systems. All of
these models follow the encoder-decoder frame-
work with attention (Cho et al., 2014; Bahdanau
et al., 2015; Luong et al., 2015) paradigm.

∗Work done at Alibaba Group.
†Corresponding Author.

Deep neural networks have revolutionized the
state-of-the-art in various communities, from com-
puter vision to natural language processing. How-
ever, training deep neural networks has been al-
ways a challenging problem. To encourage gra-
dient flow and error propagation, researchers in
the field of computer vision have proposed vari-
ous approaches, such as residual connections (He
et al., 2016), densely connected networks (Huang
et al., 2017) and deep layer aggregation (Yu et al.,
2018). In natural language processing, construct-
ing deep architectures has shown effectiveness in
language modeling, question answering, text clas-
sification and natural language inference (Peters
et al., 2018; Radford et al., 2018; Al-Rfou et al.,
2019; Devlin et al., 2019). However, among ex-
isting NMT models, most of them are generally
equipped with 4-8 encoder and decoder layers (Wu
et al., 2016; Vaswani et al., 2017). Deep neural
network has been explored relatively little in NMT.

Recent evidence (Bapna et al., 2018; Wang et al.,
2019a) shows that model depth is indeed of im-
portance to NMT, but a degradation problem has
been exposed: by simply stacking more layers,
the translation quality gets saturated and then de-
grades rapidly. To address this problem, Bapna
et al. (2018) proposed a transparent attention mech-
anism to ease the optimization of the models with
deeper encoders. Wang et al. (2019a) continued
this line of research but construct a much deeper
encoder for Transformer by adopting the pre-norm
method that establishes a direct way to propagate
error gradients from the top layer to bottom levels,
and passing the combination of previous layers to
the next. While notable gains have been reported
over shallow models, the improvements of trans-
lation quality are limited when the model depth is
beyond 20. In addition, degeneration of translation
quality is still observed when the depth is beyond
30. As a result, two questions arise naturally: How
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to break the limitation of depth in NMT models?
and How to fully utilize the deeper structure to
further improve the translation quality?

In this paper, we address the degradation prob-
lem by proposing a MultiScale Collaborative
(MSC) framework for constructing NMT models
with very deep encoders.1 In particular, the en-
coder and decoder of our model have the same
number of blocks, each consisting of one or several
stacked layers. Instead of relying on the whole
encoder stack directly learns a desired representa-
tion, we let each encoder block learn a fine-grained
representation and enhance it by encoding spatial
dependences using a bottom-up network. For co-
ordination, we attend each block of the decoder
to both the corresponding representation of the en-
coder and the contextual representation with spatial
dependences. This not only shortens the path of er-
ror propagation, but also helps to prevent the lower
level information from being forgotten or diluted.

We conduct extensive experiments on WMT and
IWSLT translation tasks, covering three translation
directions with varying data conditions. On IWSLT
translation tasks, we show that:

• While models with traditional stacking archi-
tecture exhibit worse performance on both
training and validation data when depth in-
creases, our framework is easy to optimize.

• The deep MSC nets (with 72-layer encoders)
bring great improvements on translation qual-
ity from increased depth, producing results
that substantially better than existing systems.

On the WMT14 English→German task, we ob-
tain improved results by deep MSC networks with a
depth of 48 layers, outperforming strong baselines
by +2.5 BLEU points, and also defeat state-of-the-
art deep NMT models (Wu et al., 2019; Zhang et al.,
2019a) with identical or less parameters.2

2 Background

Given a bilingual sentence pair (x,y), an NMT
model learns a set of parameters Θ by maximizing
the log-likelihood P (y|x; Θ), which is typically

1In our scenario, we mainly study the depth of encoders.
The reason is similar in (Wang et al., 2019a): 1) encoders have
a greater impact on performance than decoders; 2) increas-
ing the depth of the decoder will significantly increase the
complexity of inference.

2MSC not only performs well on NMT but also is general-
izable to other sequence-to-sequence generation tasks, such as
abstractive summarization that is introduced in Appendix A.

decomposed into the product of the conditional
probability of each target word: P (y|x; Θ) =∏Ty

t=1 P (yt|y<t,x; Θ), where Ty is the length
of sentence y, y<t is the partial translation that
contains the target tokens before position t. An
encoder-decoder framework is commonly adopted
to model the conditional probability P (y|x; Θ),
in which the encoder and decoder can be imple-
mented as RNN (Wu et al., 2016), CNN (Gehring
et al., 2017), or Self-Attention network (Vaswani
et al., 2017). Despite variant types of NMT ar-
chitectures, multiple-layer encoder and decoder
are generally employed to perform the translation
task, and residual connections (He et al., 2016)
are naturally introduced among layers, as Hl =
LAYER(Hl−1; Θl) + Hl−1, where Hl is the output
of the l-th layer, LAYER(·) is the layer function and
Θl be the parameters.

We take the state-of-the-art Transformer as our
baseline model. Specifically, the encoder consists
of a stack of L identical layers, each of which com-
prises two subcomponents: a self-attention mecha-
nism followed by a feed-forward network. Layer
normalization (Ba et al., 2016) is applied to the
input of each subcomponent (i.e., pre-norm) and
a residual skip connection (He et al., 2016) adds
each subcomponent’s input to its output. Formally,

Ol
e = ATTN(Ql

e,K
l
e,V

l
e; Θ

l
e) + Hl−1

e ,

Hl
e = FNN(LN(Ol

e); Θ
l
e) + Ol
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(1)

where LN(·), ATTN(·) and FFN(·) are layer nor-
malization, attention mechanism, and feed-forward
networks with ReLU activation in between, re-
spectively. {Ql

e,K
l
e,V

l
e} are query, key and value

vectors that are transformed from the normalized
(l − 1)-th encoder layer LN(Hl−1

e ).
The decoder is similar in structure to the encoder

except that it includes a standard attention mech-
anism after each self-attention network, which at-
tends to the output of the encoder stack HL

e :
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where {Ql
d,K

l
d,V

l
d} are transformed from the nor-

malized (l − 1)-th decoder layer LN(Hl−1
d ) and

{KL
e ,V

L
e } are transformed from the top layer of

the encoder. The top layer of the decoder HL
d is

used to generate the final output sequence. In the
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(b) Detailed illustration of the n-th block.

Figure 1: Illustration of Multiscale Collaborative Deep NMT Model. N is the number of encoder and decoder
blocks. The n-th block of the encoder consists of Mn layers, while each decoder block only contains one layer.

following sections, we simplify the equations as

Hl
e = F(Hl−1

e ; Θl
e) + Hl−1

e ,

Hl
d = G(Hl−1

d ,HL
e ; Θl

d) + Hl−1
d ,

(3)

for the encoder and decoder, respectively.
As discussed by Wang et al. (2019a), applying

layer normalization to the input of each subcom-
ponent is the key to learning deep encoders, as it
establishes a direct way to pass gradient from the
top-most layer to bottom layers:

∂L
∂Hl

e

=
∂L
∂HL

e

× (1 +

L−1∑
j=l

∂F(Hj
e; Θ

j+1
e )

∂Hl
e

), (4)

where L is the cross entropy loss. However, as
pointed out by Wang et al. (2019a) that it can be
difficult to deepen the encoder for better translation
quality. We argue that as the right-most term in
Eq. (4) approaches 0 for the lower levels of the
encoder, the parameters of which cannot be suffi-
ciently trained using the error gradient ∂L

∂HL
e

only.
To solve this problem, we propose a novel approach
to shorten the path of error propagation from L to
bottom layers of the encoder.

3 Multiscale Collaborative Deep Model

In this section, we introduce the details of the pro-
posed approach, a MultiScale Collaborative (MSC)
framework for constructing extremely deep NMT
models. The framework of our method consists of

two main components shown in Figure 1(a). First,
a block-scale collaboration mechanism establishes
shortcut connections from the lower levels of the
encoder to the decoder (as described in 3.1), which
is the key to training very deep NMT models. We
give explanation by seeing the gradient propagation
process. Second, we further enhance source repre-
sentations with spatial dependencies by contextual
collaboration, which is discussed in Section 3.2.

3.1 Block-Scale Collaboration
An intuitive extension of naive stacking of layers
is to group few stacked layers into a block. We
suppose that the encoder and decoder of our model
have the same number of blocks (i.e., N ). Each
block of the encoder has Mn (n ∈ {1, 2, ..., N})
identical layers, while each decoder block contains
one layer. Thus, we can adjust the value of each
Mn flexibly to increase the depth of the encoder.
Formally, for the n-th block of the encoder:

Bn
e = BLOCKe(B

n−1
e ), (5)

where BLOCKe(·) is the block function, in which
the layer function F(·) is iterated Mn times, i.e.

Bn
e = Hn,Mn

e ,

Hn,l
e = F(Hn,l−1

e ; Θn,l
e ) + Hn,l−1

e ,

Hn,0
e = Bn−1

e ,

(6)

where l ∈ {1, 2, ...,Mn}, Hn,l
e and Θn,l

e are the
representation and parameters of the l-th layer in
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the n-th block, respectively. The decoder works in
a similar way but the layer function G(·) is iterated
only once in each block,

Bn
d = BLOCKd(Bn−1

d ,Bn
e )

= G(Bn−1
d ,Bn

e ; Θn
d ) + Bn−1

d .
(7)

Each block of the decoder attends to the corre-
sponding encoder block. He et al. (2018) proposed
a model that learns the hidden representations in
two corresponding encoder and decoder layers as
the same semantic level through layer-wise coordi-
nation and parameter sharing. Inspired by this, we
focus on efficiently training extremely deep NMT
models through directly attending decoder to the
lower-level layers of the encoder, rather than only
to the final representation of the encoder stack.

The proposed block-scale collaboration (BSC)
mechanism can effectively boost gradient propa-
gation from prediction loss to lower level encoder
layers. For explaining this, see again Eq. (4), which
explains the error back-propagation of pre-norm
Transformer. Formally, we let L be the prediction
loss. The differential of L with respect to the l-th
layer in the n-th block Hn,l

e can be calculated as:3
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,

(8)

where term (a) is equal to Eq. (4). In addition to
the straightforward path ∂L

∂BN
e

for parameter update
from the top-most layer to lower ones, Eq. (8)
also provides a complementary way to directly pass
error gradient ∂L

∂Bn
e

from top to bottom in the current
block. Another benefit is that BSC shortens the
length of gradient pass chain (i.e., Mn � L).

3.2 Contextual Collaboration
To model long-term spatial dependencies and reuse
global representations, we define a GRU (Cho et al.,

3For a detailed derivation, we refer the reader to Ap-
pendix B.

2014) cell Q(c, x̄), which maps a hidden state c
and an additional input x̄ into a new hidden state:

Cn = Q(Cn−1,Bn
e ), n ∈ [1, N ]

C0 = Ee,
(9)

where Ee is the embedding matrix of the source
input x. The new state Cn can be fused with each
layer of the subsequent blocks in both the encoder
and the decoder. Formally, Bn

e in Eq.(5) can be
re-calculated in the following way:

Bn
e = Hn,Mn

e ,

Hn,l
e = F(Hn,l−1

e ,Cn−1; Θn,l
e ) + Hn,l−1

e ,

Hn,0
e = Bn−1
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(10)

Similarly, for decoder, we have

Bn
d = BLOCKd(Bn−1

d ,Bn
e )

= G(Bn−1
d ,Bn

e ,C
n; Θn

d ) + Bn−1
d .

(11)

The above design is inspired by multiscale RNNs
(MRNN) (Schmidhuber, 1992; El Hihi and Bengio,
1996; Koutnik et al., 2014; Chung et al., 2016),
which encode temporal dependencies with different
timescales. Unlike MRNN, our MSC enables each
decoder block to attend to multi-granular source in-
formation with different space-scales, which helps
to prevent the lower level information from being
forgotten or diluted.

Feature Fusion: We fuse the contextual repre-
sentation with each layer of the encoder and de-
coder through attention. A detailed illustration of
our algorithm is shown in Figure 1(b). In particular,
the l-th layer of the n-th encoder block F(·; Θn,l

e ),
l ∈ [1,Mn] and n ∈ [1, N ],

On,l
e

= ge � ATTNh(Hn,l−1
e ,Hn,l−1

e ,Hn,l−1
e ; Θn,l

e )

+ (1− ge)� ATTNc(H
n,l−1
e ,Cn−1,Cn−1; Θn,l

e )

+ Hn,l−1
e ,

ge = σ(W1ATTNh(·) +W2ATTNc(·) + b),

(12)

where ge is a gate unit, ATTNh(·) and ATTNc(·)
are attention models (see Eq. (1)) with different
parameters. On,l

e is further processed by FFN(·) to
output the representation Hn,l

e . Symmetrically, in
the decoder, Sn

d in Eq. (2) can be calculated as

Sn
d = gd � ATTNh(On

d ,B
n
e ,B

n
e ; Θn

d )

+ (1− gd)� ATTNc(O
n
d ,C

n,Cn; Θn
d )

+ Ol
d

(13)
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where On
d is the output of the self-attention sub-

layer defined in Eq. (2). gd is another gate unit.

4 Experiments

We first evaluate the proposed method on
IWSLT14 English↔German (En↔De) and
IWSLT17 English→French (En→Fr) benchmarks.
To make the results more convincing, we also
experiment on a larger WMT14 English→German
(En→De) dataset.

4.1 Settings

Dataset. The dataset for IWSLT14 En↔De are
as in Ranzato et al. (2016), with 160k sentence
pairs for training and 7584 sentence pairs for
validation. The concatenated validation sets are
used as the test set (dev2010, dev2012, tst2010,
tst2011, tst2012). For En→Fr, there are 236k
sentence pairs for training and 10263 for valida-
tion. The concatenated validation sets are used
as the test set (dev2010, tst2010, tst2011, tst2012,
tst2013, tst2014, tst2015). For all IWSLT trans-
lation tasks, we use a joint source and target
vocabulary with 10k byte-pair-encoding (BPE)
types (Sennrich et al., 2016). For the WMT14
En→De task, the training corpus is identical to
previous work (Vaswani et al., 2017; Wang et al.,
2019a), which consists of about 4.5 million sen-
tence pairs. All the data are tokenized using the
script tokenizer.pl of Moses (Koehn et al.,
2007) and segmented into subword symbols using
jointly BPE with 32k merge operations. The shared
source-target vocabulary contains about 37k BPE
tokens. We use newstest2013 as the development
set and newstest2014 as the test set. Following
previous work, we evaluate IWSLT tasks with tok-
enized case-insensitive BLEU and report tokenized
case-sensitive BLEU (Papineni et al., 2002) for
WMT14 En→De.

Model Settings. For IWSLT, the model configu-
ration is transformer iwslt, representing a
small model with embedding size 256 and FFN
layer dimension 512. We train all models using the
Adam optimizer (β1/β2 = 0.9/0.98) with adap-
tive learning rate schedule (warm-up step with
4K for shallow models, 8K for deep models) as
in (Vaswani et al., 2017) and label smoothing of 0.1.
Sentence pairs containing 16K∼32K tokens are
grouped into one batch. Unless otherwise stated,
we train small models with 15K maximum steps,

Depth 36-layer 54-layer 72-layer
dec. (N ) 6 6 6
enc. (N×M ) 6×6 6×9 6×12

Table 1: Deep architectures of MSC on IWSLT tasks.
We simply set M1 = · · · = MN = M .

and decode sentences using beam search with a
beam size of 5 and length penalty of 1.0.

For WMT14 En→De, the model configuration
is transformer base/big, with a embedding
size of 512/1024 and a FFN layer dimension of
2048/4096. Experiments on WMT are conducted
on 8 P100 GPUs. Following Ott et al. (2018), we
accumulate the gradient 8 iterations and then up-
date to simulate a 64-GPU environment with a
batch-size of 65K tokens per step. The Adam op-
timizer (β1/β2 = 0.9/0.98 for base, β1/β2 =
0.9/0.998) for big) and the warm-up strategy
(8K steps for base, 16K steps for big) are also
adopted. We use relatively larger batch size and
dropout rate for deeper and bigger models for better
convergence. The transformer base/big is
updated for 100K/300K steps. For evaluation, we
average the last 5/20 checkpoints for base/big,
each of which is saved at the end of an epoch. Beam
search is adopted with a width of 4 and a length
penalty of 0.6. We use multi-bleu.perl to
evaluate both IWSLT and WMT tasks for fair com-
parison with previous work.

4.2 Results

We first evaluate 36-layer, 54-layer and 72-layer
MSC nets on IWSLT tasks. Table 1 summarizes the
architecture. As shown in Table 2, applying MSC

to the vanilla Transformer with 6 layers slightly in-
creases translation quality by +0.26∼+0.37 BLEU
( 1©→ 2©). When the depth is increasing to 36,
we use relatively larger dropout rate of 0.3 and
achieve substantially improvements (+1.4∼+1.8
BLEU) over its shallow counterparts ( 3© v.s. 2©).
After that, we continue deepening the encoders in
order, however, our extremely deep models (72 lay-
ers, 5©) suffer from overfitting issue on the small
IWSLT corpora, which cannot be solved by simply
enlarging the dropout rate. We seek to solve this
issue by applying L2 regularization to the weights
of encoders with greatly increased depth. Results
show that this works for deeper encoders ( 6©).

We also report the inference speed in Table 2
(the last column). As expected, the speed decreases
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# Model Param. En→De De→En En→Fr ∆Train/∆Dec
1 small, 6 layers, dpa = dpr = 0.1 10.5M 27.23 32.73 41.19 17/1800
2 w/ MSC 15.6M 27.49 33.10 41.53 17/1736
3 MSC, 36 layers, dpa = dpr = 0.3 43.3M 29.04 34.86 42.90 23/1498
4 w/ 54 layers 60.0M 29.32 35.16 43.62 27/1412
5 w/ 72 layers 76.6M - - - -
6 w/ 72 layers, λl2 = 10−5 76.6M 29.67 35.81 44.15 30/1340

Table 2: BLEU scores [%] of IWSLT translation tasks. ∆Train/∆Dec: training time (hours)/decoding time (tokens
per second) with a batch size of 32 and a beam size of 5. Dropout is applied to the residual connection (dpr) and
attention weights (dpa). We apply L2 regularization to the weights of deeper encoders with λl2 = 10−5, which is
only applied to the IWSLT tasks as the corpora are smaller and thus more regularization is required.

Model (small, 36 layers) BLEU
Bapna et al. (2018) 28.09
Wang et al. (2019a) 28.63
MSC 29.04
Model (small, 72 layers)
Bapna et al. (2018) failed
Wang et al. (2019a) 28.34
MSC 29.67

Table 3: Comparison with existing methods on
IWSLT14 En→De translation. For a fair comparison,
we implemented all methods on the same Transformer
backbone as well as model settings.

with the depth of MSC increasing, which is con-
sistent with observation of Wang et al. (2019a).
Compared to the baseline, MSC (72 layers) reduces
decoding speed by 26%. We leave further investi-
gation on this issue to future work.

For fair comparisons, we implement existing
methods (Bapna et al., 2018; Wang et al., 2019a)
on the same vanilla Transformer backbone. We
separately list the results of 36-layer and 72-layer
encoders on the IWSLT14 En→De task in Table 3.
The method of Bapna et al. (2018) fail to train a
very deep architecture while the method of Wang
et al. (2019a) is exposed a degradation phenomenon
(28.63→28.34). In contrast, MSC in both 36-layer
and 72-layer cases outperform these methods. This
suggests that our extremely deep models can eas-
ily bring improvements on translation quality from
greatly increased depth, producing results substan-
tially better than existing systems.

Table 4 lists the results on the WMT14 En→De
translation task and the comparison with the current
state-of-the-art systems. The architectures (N×M )
of the 18-layer, 36-layer and 48-layer encoders

Model Param. BLEU
Vaswani et al. (2017) 213M 28.4
Bapna et al. (2018) 137M 28.0
Dou et al. (2018) 356M 29.2
He et al. (2018) ‡210M 29.0
Wang et al. (2019a) 137M 29.3
Zhang et al. (2019a) 560M 29.62
Wu et al. (2019) ‡268M 29.9
TRANSFORMER (base) 63M 27.44
MSC, 6 layers (base) 73M 27.68
MSC, 36 layers (base) 215M 29.71
MSC, 48 layers (base) 272M 30.19
TRANSFORMER (big) 211M 28.86
MSC, 6 layers (big) 286M 29.17
MSC, 18 layers (big) 512M 30.56

Table 4: BLEU scores [%] on WMT14 En→De trans-
lation. ‡ denotes an estimate value.

are set as 6×3, 6×6 and 6×8 respectively. We
can see that incorporating our MSC into the shal-
low base/big contributes to +0.24/+0.31 BLEU
(27.44→27.68/28.86→29.17) improvements un-
der the same depth. When the depth grows,
MSC demonstrates promising improvements of
+1.39∼+2.51 BLEU points over its shallow coun-
terparts. It is worth noting that deep MSC with the
base setting significantly outperforms the shallow
one with the big setting (29.17→30.19), though
both of them have around the same number of pa-
rameters. Compared to existing models, our MSC

outperforms the transparent model (Bapna et al.,
2018) (+2.2 BLEU) and the DLCL model (+0.9
BLEU) (Wang et al., 2019a), two recent approaches
for deep encoding. Compared to both the depth
scaled model (Zhang et al., 2019a) and the current
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(a) Plain Network (b) MSC Network

Figure 2: Illustration of the degradation problem on
IWSLT14 En→De task. We randomly select 3K sen-
tence pairs from our training data for evaluation. For
a fair comparison, we implemented all models on the
same Transformer backbone as well as model settings.

SOTA (Wu et al., 2019), our MSC achieves better
performance with identical or less parameters.

4.3 Analysis
Analysis of Degradation. We examine 36-layer
and 72-layer plain and MSC nets, respectively. For
plain networks, we simply stack dozens of layers.
As we can see from Figure 2(a), the plain nets
suffer from the degradation problem, which is not
caused by overfitting, as they exhibit lower train-
ing BLEU. In contrast, the 72-layer MSC exhibits
higher training BLEU than the 36-layer counterpart
and is generalizable to the validation data. This in-
dicates that our MSC can be more easily optimized
with greatly increased depth.

Analysis of Handling Complicated Semantics.
Although our MSC can enjoy improvements of
BLEU score from increased depth, what does the
models benefit from which is still implicit. To bet-
ter understand this, we show the performance of
deep MSC nets in handling sentences with com-
plicated semantics. We assume that complicated
sentences are difficult to fit with high prediction
losses. Then we propose to use the modified pre-
diction losses to identify these sentences:

s(x,y) =E
[
− logP (y|x; Θ)

]
+ Std

[
− logP (y|x; Θ)

]
,

(14)

where E
[
− logP (y|x; Θ)

]
is approximated by:

E
[
− logP (y|x; Θ)

]
≈ 1

K

K∑
k=1

− logP (y|x; Θ(k)),
(15)

where {Θ(k)}Kk=1 indicates model parameters for
the last K (K = 20) checkpoints. Std[·] is the
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Figure 3: Comparison between plain nets and MSC nets
on fine-grained test sets with increasing translation dif-
ficulty from “Simple” to “Challenging”. Improvements
(BLEU [%]) of translation quality over the 6-layer plain
net. Higher is better. The results of this baseline are en-
closed in the parentheses.
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Figure 4: Visualization of the attention weights from
the top-most layer of the decoder for both shallow and
deep MSC nets.

standard deviation of prediction loss of sentence
y given sentence x, and the introduction of which
aims to prevent training oscillations from affecting
complicated sentences identification.

We adopt a shallow plain net (small, 6 layers)
to assign the prediction loss s(x,y) to each sen-
tence pair. Further, we split the IWSLT En→De
test set into 4 equal parts according to the predic-
tion losses, which are pre-defined to have “Simple”,
“Ordinary”, “Difficult” and “Challenging” transla-
tion difficulties, respectively.4 Results on these
fine-grained test sets are shown in Figure 3. First
of all, all methods yield minor BLEU improve-
ments over the baseline on the first sub-set that
containing sentences with little difficulties to be
translated. However, when the translation difficulty
increases, the improvements of the deep MSC nets
are expanded to around 2 BLEU. These results indi-
cate that our MSC framework deals with sentences
which are difficult to be translated well.

4The fine-grained test sets are publicly available at
https://github.com/pemywei/MSC-NMT/tree/
master/IWSLT_En2De_Split_Test.

https://github.com/pemywei/MSC-NMT/tree/master/IWSLT_En2De_Split_Test
https://github.com/pemywei/MSC-NMT/tree/master/IWSLT_En2De_Split_Test
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Figure 5: Gradient norm (y-axis) of each encoder layer
in 72-layer MSC over the fist 10k training steps. “Li”
denotes the i-th encoder layer. The MSC framework
helps balance the gradient norm between top and bot-
tom layers during training

We also visualize the attention weights from
the top-most layer of the decoder of both shallow
and deep MSC nets in Figure 4. As shown in Fig-
ure 4(a), when generating the next token of “tun”,
the shallow MSC attends to diverse tokens, such as
“to”, “that”, “.” and “eos”, which causes the gener-
ation of “eos” and the phrase “be able to” is mis-
takenly untranslated. Remarkably, the deep MSC

(Figure 4(b)) mostly focuses on the source tokens
“be”, “able” and “to”, and translates this compli-
cated sentence successfully. More cases can be
found in Appendix C. This kind of cases show the
advantages of constructing extremely deep models
for translating semantic-complicated sentences.

Analysis of Error Propagation. To understand
the propagation process of training signals, we col-
lect the gradient norm of each encoder layer during
training. Results in Figure 5 show that with the
MSC framework each layer enjoys a certain value
of gradient for parameter update, and the error sig-
nals traverse along the depth of the model without
hindrance. MSC helps balance the gradient norm
between top and bottom layers in deep models.

Ablation Study. We conduct ablation study to
investigate the performance of each component of
our model. The results are reported in Table 5:
(1) We use simple element-wise addition for fea-
ture fusion instead of using a gated combination as
introduced in Section 3.2. This method achieves
a 29.45 BLEU, which is lower than the best re-
sult. We additionally modify the implementation
of the contextual collaboration cell Q(·) as FFN(·),
which shows that the performance is reduced by
0.5 BLEU. (2) Removing CXT-ENC ATTENTION

and/or contextual collaboration makes the BLEU
score drop by ∼0.7, which suggests that multiscale

Model BELU
MSC, 72 layers 29.67
- feature fusion with addition 29.45
- implement Q(·) in Eq. (9) as FFN(·) 29.17
- remove CXT-ENC ATTENTION 28.99
- remove contextual collaboration 28.94
MSC, 18 layers (emb=512, ffn=1024) 29.08
MSC, 36 layers (emb=512, ffn=1024) 29.41

Table 5: Ablation study on IWSLT14 En→De task.

collaboration helps in constructing extremely deep
models. (3) Considering that the deep MSC intro-
duces more parameters, we also train another two
MSC models with about the same or double num-
ber of parameters: with 18/36 layers, embedding
size 512 and FFN layer dimension 1024. These
models underperform the deeper 72-layer model,
which shows that the number of parameters is not
the key to the improvement.

5 Related Work

Researchers have constructed deep NMT models
that use linear connections to reduce the gradient
propagation length inside the topology (Zhou et al.,
2016; Wang et al., 2017; Zhang et al., 2018b) or
read-write operations on stacked layers of mem-
ories (Meng et al., 2015). Such work has been
conducted on the basis of the conventional RNN
architectures and may not be fully applicable to the
advanced Transformer.

Recently, Bapna et al. (2018) introduced a trans-
parent network into NMT models to ease the op-
timization of models with deeper encoders. To
improve gradient flow they let each decoder layer
find an unique weighted combination of all encoder
layer outputs, instead of just the top encoder layer.
Wang et al. (2019a) found that adopting the proper
use of layer normalization helps to learn deep en-
coders. A method was further proposed to combine
layers and encourage gradient flow by simple short-
cut connections. Zhang et al. (2019a) introduced a
depth-scaled initialization to improve norm preser-
vation and proposed a merged attention sublayer
to avoid the computational overhead for deep mod-
els. Researchers have also explored growing NMT
models in two stages (Wu et al., 2019), in which
shallow encoders and decoders are trained in the
first stage and subsequently held constant, when an-
other set of shallow layers are stacked on the top. In
concurrent work, Xu et al. (2019) studied the effect
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of the computation order of residual connection
and layer normalization, and proposed an parame-
ter initialization method with Lipschitz restrictions
to ensure the convergence of deep Transformers.
Our method significantly differs from these meth-
ods, solving the problem by associating the decoder
with the encoder with multi-granular dependencies
in different space-scales.

Exploiting deep representations have been stud-
ied to strengthen feature propagation and encour-
age feature reuse in NMT (Shen et al., 2018; Dou
et al., 2018, 2019; Wang et al., 2019b). All of these
works mainly attend the decoder to the final out-
put of the encoder stack, we instead coordinate the
encoder and the decoder at earlier stage.

6 Conclusion and Future Work

In this paper, we propose a multisacle collabora-
tive framework to ease the training of extremely
deep NMT models. Specifically, instead of the
top-most representation of the encoder stack, we
attend the decoder to multi-granular source infor-
mation with different space-scales. We have shown
that the proposed approach boosts the training of
very deep models and can bring improvements on
translation quality from greatly increased depth.
Experiments on various language pairs show that
the MSC achieves prominent improvements over
strong baselines as well as previous deep models.

In the future, we would like to extend our model
to extremely large datasets, such as WMT’14
English-to-French with about 36M sentence-pairs.
And the deeper MSC model results in high compu-
tational overhead, to address this issue, we would
like to apply the average attention network (Zhang
et al., 2018a) to our deep MSC models.
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Model R-1 R-2 R-L
Extractive Summarization

Lead3 40.38 17.61 36.59
HIBERTM 42.37 19.95 38.83
Liu (2019) 43.25 20.24 39.63

Abstractive Summarization
PGNet 39.53 17.28 36.38
Bottom-Up 41.22 18.68 38.34
S2S-ELMo 41.56 18.94 38.47
TRANSFORMER 40.28 17.87 37.25
HIERTRANS (36 L) 41.22 18.97 38.45
MSC (36 L) 41.96 19.50 39.07

Table 6: Results on CNNDM summarization using
ROUGE-1 (R-1), ROUGE-2 (R-2), and ROUGE-L (R-
L). “36L” is short for “36-layer encoder”.

non-anonymized version of the CNN/DailyMail
(CNNDM) dataset (See et al., 2017) for evalua-
tion. We preprocessed the dataset using the scripts
from the authors of See et al. (2017),5 and the re-
sulting dataset contains 287,226 documents with
summaries for training, 13,368 for validation and
11,490 for test.

We still adopt the Transformer (Vaswani et al.,
2017) as our backbone, with a embedding size
of 512 and FFN layer dimension of 1024. We
train our model on the training set for 30 epochs,
and also use label smoothing with rate of 0.1. We
set batch size to 32, and maximum length to 768.
During decoding, we use beam search with beam
size of 5. The input document is truncated to the
first 640 tokens. We remove duplicated trigrams
in beam search, and tweak the maximum summary
length on the development set (Paulus et al., 2018;
Edunov et al., 2019). We use the F1 version of
ROUGE (Lin, 2004) as the evaluation metric.

In Table 6, we compare MSC (36 layers) against
the baseline and several state-of-the-art models on
CNN/DailyMail, with extractive models in the top
block and abstractive models in the bottom block.
Lead3 is a baseline which simply selects the first
three sentences as the summary. HIBERTM (Zhang
et al., 2019b) adds the large open-domain unla-
beled data to pre-train hierarchical transformer
encoders and fine-tune on the extractive summa-
rization task. We also include in Table 6 the
best reported extractive summarization result taken

5https://github.com/abisee/
cnn-dailymail

from (Liu, 2019) on the dataset. PGNet (See et al.,
2017), Bottom-Up (Gehrmann et al., 2018) and
S2S-ELMo (Edunov et al., 2019) are all sequence
to sequence learning based models with copy and
coverage modeling, bottom-up content selecting
and pre-trained ELMo representations augmenting.
We also implemented two baselines. One is the
standard 6-layer Transformer model. We can see
that the deep MSC leads to a +1.8 ROUGE improve-
ment over TRANSFORMER. The other baseline is
the hierarchical transformer summarization model
(HIERTRANS), which involevs both a sentence-
level and a document-level transformer encoders,
as well as a standard transformer decoder. Note
the settings for both encoders are the same (each
of them have L=18, emb=512, ffn=1024, head=8).
The deep MSC outperforms HIERTRANS by 0.5 to
0.7 ROUGE with the same depth of encoders.

B Derivations of Block-Scale
Collaboration

In pre-norm Transformer, a general transformation
can be formulated as:

Hl = F(Hl−1; Θl) + Hl−1, (16)

where Hl−1 and Hl are the input and output of
the l-th layer. For the Block-Scale Collaboration
framework, there are two channels for passing er-
ror gradients from the prediction loss L to encoder
layers, which are from the top-most layers of the
whole encoder stack HN,MN

e (identical to BN
e ) and

the current bock Hn,Mn
e (identical to Bn

e ), respec-
tively. From the chain rule of back propagation we
can obtain:

∂L
∂Hn,l

e

=
∂L
∂BN

e

× ∂BN
e

∂Hn,l
e

+
∂L
∂Bn

e

× ∂Bn
e

∂Hn,l
e

. (17)

We can recursively use Eq. (16) to formulate that

BN
e =HN,MN

e

=Hn,l
e +

Mn∑
k=l+1

F(Hn,k−1
e ; Θn,k

e )

+
N∑

i=n+1

Mi∑
j=1

F(Hi,j−1
e ; Θi,j

e ),

(18)

and

BN
e =Hn,Mn

e

=Hn,l
e +

Mn∑
k=l+1

F(Hn,k−1
e ; Θn,k

e ),
(19)

https://github.com/abisee/cnn-dailymail
https://github.com/abisee/cnn-dailymail
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respectively. In this way, the derivations of BN
e and

Bn
e with respect to Hn,l

e can be calculated as:

∂BN
e

∂Hn,l
e

= 1 +

Mn∑
k=l+1

∂F(Hn,k−1
e ; Θn,k

e )

∂Hn,l
e

+
N∑

i=n+1

Mi∑
j=1

∂F(Hi,j−1
e ; Θi,j

e )

∂Hn,l
e

,

∂Bn
e

∂Hn,l
e

= 1 +

Mn∑
k=l+1

∂F(Hn,k−1
e ; Θn,k

e )

∂Hn,l
e

.

(20)

Finally, we can put Eq. (20) into Eq. (17) and
obtain:

∂L
∂Hn,l

e

=
∂L
∂BN

e

× ∂BN
e

∂Hn,l
e

+
∂L
∂Bn

e

× ∂Bn
e

∂Hn,l
e

=
∂L
∂BN

e

×(1+

Mn∑
k=l+1

∂Hn,k
e

∂Hn,l
e

+
N∑

i=n+1

Mi∑
j=1

∂Hi,j
e

∂Hn,l
e

)︸ ︷︷ ︸
(a)

+
∂L
∂Bn

e

×(1+

Mn∑
k=l+1

∂Hn,k
e

∂Hn,l
e

)︸ ︷︷ ︸
(b)

.

(21)


