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Abstract

Language models keep track of complex lin-
guistic information about the preceding con-
text – including, e.g., syntactic relations in a
sentence. We investigate whether they also
capture information beneficial for resolving
pronominal anaphora in English. We analyze
two state of the art models with LSTM and
Transformer architectures, respectively, using
probe tasks on a coreference annotated corpus.

Our hypothesis is that language models will
capture grammatical properties of anaphora
(such as agreement between a pronoun and
its antecedent), but not semantico-referential
information (the fact that pronoun and an-
tecedent refer to the same entity). Instead, we
find evidence that models capture referential
aspects to some extent –though they are still
much better at grammar. The Transformer out-
performs the LSTM in all analyses, and ex-
hibits in particular better semantico-referential
abilities.

1 Introduction

Neural network-based language models (LMs)
have been shown to learn relevant properties of
language without being explicitly trained for them.
In particular, recent work suggests that they are
able to capture syntactic relations to a large ex-
tent (Gulordava et al., 2018; Kuncoro et al., 2018;
Wilcox et al., 2018).

In this paper, we extend this line of research
to analyze whether they are able to capture refer-
ential aspects of language, focusing on anaphoric
relations (pronoun-antecedent relations, as in she-
Yeping Wang in Figure 1).

Previous work, such as Ji et al. (2017), Yang
et al. (2017) and Cheng and Erk (2019), showed
that augmenting language models with a compo-
nent that uses an objective based on entity or coref-
erence information improves their performance at

. . . he1 was elected to be president of the Peo-
ple’s Republic of China, and chairman of the2
Central2 Military2 Commission2. Yeping3
Wang3 was born in Shanghai in 1926. She3
studied in Shanghai Foreign Language Col-
lege, and started working in 1949. For a long
time, she3. . .

Figure 1: Example from OntoNotes with a window
of 60 tokens (as used in our first probe task). Both
occurrences of she refer to the same entity as Yeping
Wang. Note that not all entity mentions are annotated
in OntoNotes –only those that enter into coreference
relationships in the document.

language modeling. Intuitively, in the example in
Figure 1, understanding that the first she refers to
Yeping Wang makes words related to studying or
working more likely to follow than other kinds of
words. That is, referential information helps lan-
guage models do their task.

The cited work includes explicit coreference
guidance; however, since referential information
is useful for language modeling, we expect lan-
guage models to learn referential information even
without explicit supervision. Here we analyze to
what extent this is the case.

We carry out our analysis using probe tasks,
or tasks that check whether certain information
is encoded in a model (Adi et al., 2016; Linzen
et al., 2016; Conneau et al., 2018; Giulianelli et al.,
2018). The reasoning is as follows: Even if a lin-
guistic property is encoded in the network, it is not
necessarily directly accessible through the model
output; therefore, we train a probe model to pre-
dict a feature of interest, in this case anaphoric
coreference, given the model’s hidden representa-
tions as input.

We focus on the two main linguistic levels that
are relevant for coreference: morphosyntax, with
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grammatical constraints such as the fact that pro-
nouns agree in number and gender with their an-
tecedents, and semantics – in particular reference,
such as the fact that a pronoun refers to the same
entity as its antecedent.

Our hypothesis is that language models will
capture grammatical properties, but not seman-
tic information. This hypothesis is based on the
observation that morphosyntax is a formal prop-
erty of language that is easier to induce from co-
occurrence patterns. The fact that language refers
to entities is not obvious from language alone
(Harnad, 1990), and LMs use only textual input.

Instead, what we find is that, while it is true
that language models are much better at gram-
mar, they do show evidence of learning semantico-
referential information to some extent. Our expla-
nation for this unexpected, partially positive result
is that, because the same entity underlies all its
mentions, the contexts in which the mentions ap-
pear are coherent and distinct from those of men-
tions of other entities. For instance, in Figure 1,
the second she mention gives additional informa-
tion about Yeping Wang that is consistent with the
information given in the previous sentence.

This paper has two main contributions. The first
is an analysis methodology to probe for referen-
tial information encoded in language models, on
two linguistic levels (morphosyntax, semantics)
and two kinds of context: local (around one para-
graph of context), and global (document context).
This methodology can be applied to any architec-
ture. The second contribution is a deeper under-
standing of the referential capabilities of current
language models, and of the differences between
Transformers and LSTMs. The Transformer out-
performs the LSTM in all the analyses. For mor-
phosyntax, the Transformer and the LSTM have
the same behavior with a performance difference;
instead, they show different behavior with regard
to semantico-referential information.

2 Related work

Coreference and anaphora resolution (Mitkov,
2002; Poesio et al., 2016) are among the old-
est topics in computational linguistics and have
continued to receive a lot of attention in the
last decade, as manifested by several shared
tasks (Pradhan et al., 2011, 2012; Poesio et al.,
2018). In our analysis we use the OntoNotes
dataset (Hovy et al., 2006; Pradhan et al., 2012),

developed within the coreference resolution com-
munity. Our probe tasks are related to corefer-
ence resolution; however, our goal is not to train
a coreference system but to analyse whether lan-
guage models extract features relevant for refer-
ence without explicit supervision.

A recent line of work has focused on demon-
strating that neural networks trained on language
modeling, without any linguistic annotation, learn
syntactic properties and relations such as agree-
ment or filler-gap dependencies (Linzen et al.,
2016; Gulordava et al., 2018; Kuncoro et al., 2018;
Wilcox et al., 2018; Futrell et al., 2018). This
is typically done by analysing the predictions of
LMs on controlled sets of data. Part of this re-
search uses probe models (also known as diagnos-
tic models) to analyse the information contained
in their hidden representations (Adi et al., 2016;
Conneau et al., 2018; Hupkes et al., 2018; Lakretz
et al., 2019; Giulianelli et al., 2018), as we do here
—applying it to referential information.

There is less work on referential information
than on syntactic properties such as subject-verb
agreement. As for anaphoric reference, Peters
et al. (2018) include a limited test using 904 sen-
tences from OntoNotes. Their results suggest that
LMs are able to do unsupervised coreference res-
olution to a certain extent; our first probe task can
be seen as an extended version of their task obtain-
ing more specific insights. Jumelet et al. (2019)
analyze the kind of information that LSTM-based
LMs use to make decisions in within-sentence
anaphora. They find a strong male bias encoded
in the network’s weights, while the information in
the input word embeddings only plays a role in the
case of feminine pronouns. We analyze anaphora
in longer spans (60 tokens / whole document) and
include also a Transformer.

The above work suggests that LMs capture mor-
phosyntactic facts about anaphora to a large ex-
tent. There is much less evidence that LMs can
capture a notion of entity, as that which nominal
elements refer to, and that they are able to track
entities across a discourse. Parvez et al. (2018)
show that LSTM-based models have poor results
on texts with a high presence of entities; Paperno
(2014) that they cannot predict the last word of text
fragments that require a context of a whole pas-
sage (as opposed to the last sentence only), with
data that mostly contain nominal elements. Sev-
eral models (Henaff et al., 2019; Yang et al., 2017;
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Ji et al., 2017) were developed as an augmentation
of RNN LMs to deal better with entities, with the
implicit assumption that standard models do that
poorly. Aina et al. (2019) achieved good results
on an entity-linking task, but showed that the net-
work was not acquiring entity representations.

As for Transformer-based architectures, recent
research suggests that they give same or better
contextualized representations in comparison with
LSTM language models, and that they better en-
capsulate syntactic information (Goldberg, 2019;
Wolf, 2019). On the other hand, van Schijndel
et al. (2019) show that big Transformer model rep-
resentations perform on par or even poorer than
smaller LSTMs on tasks such as number agree-
ment or coordination, and that, like LSTMs, they
have the problem that agreement accuracy de-
creases as the subject becomes more distant from
its verb. Most recent work on analysis of linguis-
tic phenomena in NNs focuses on BERT (Ten-
ney et al., 2019; Clark et al., 2019; Reif et al.,
2019; Broscheit, 2019). In this paper we chose
to use TransformerXL (Dai et al., 2019) as our
Transformer model, and not BERT, for compara-
bility: We wanted to compare the two most stan-
dard architectures for LMs on as equal ground
as possible, and the two chosen models, Trans-
formerXL and AWD-LSTM (Merity et al., 2017),
share the same training objective and are trained
on the same data, with comparable vocabularies.

3 Morphosyntactic factors

To shed light into which morphosyntactic infor-
mation LMs encode that is useful for coreference,
we train a simple anaphora resolution probe model
using the hidden layers of LMs as input. By the
logic of probe tasks, if the probe model is success-
ful then that means that the relevant information
is encoded in the hidden states, and error analysis
can provide insight into which kinds of informa-
tion are available.

3.1 Experimental Setup

Data We train our probe models on data from
OntoNotes 5.0 (Weischedel et al., 2013). We use
the annotated coreference chains, as well as the
provided part-of-speech tags (the latter only for
analysis purposes).

We take all pronouns that have at least one an-
tecedent in a 60-token context window; the task of

Tokens Datapoints

Train 191,830 4,949
Dev 275,201 4,556
Test 2,026,565 45,665

Table 1: Dataset statistics for first probe task. We re-
verse the original train and test partitions (see text).

the probe model is to identify their antecedent.1

An example datapoint is provided in Figure 1
above (note that a window of 60 tokens allows
us to check anaphora beyond the sentence). For
simplicity, antecedents are tokens, but typically
there is more than one possible token antecedent
for a given pronoun: A mention can span several
tokens (Yeping Wang), and the window can con-
tain several mentions from the same coreference
chain (Yeping Wang and the first She in Figure 1);
we consider any of the tokens a correct answer.
Note that we are not training the model to explic-
itly identify mentions, their spans or the complete
coreference chains, but to identify the tokens that
are antecedents of the target pronoun.

To obtain enough data for analysis, especially
for low-frequency phenomena, we follow Linzen
et al. (2016) in reversing the original partitions of
the corpus, using the original test set for training
and the original training set for testing.2 In addi-
tion, we focus on the OntoNotes documents that
belong to narrative text sections because the dia-
logue data does not come with turn segmentation.3

Resulting data statistics for our task are provided
in Table 1.

Language models The base language models
we use are AWD-LSTM (Merity et al., 2017) and
TransformerXL (Dai et al., 2019), two state-of-
the art models with the most standard architec-

1We also experimented with windows 20 and 200, obtain-
ing a similar picture.

2Using little training data has also been shown to lessen
the possibility of confounds in the probe model results; in
particular, it makes it more difficult for the probe model to
exploit regularities in the training data rather than capturing
the analyzed model’s ability to capture a phenomenon (He-
witt and Liang, 2019). See Voita and Titov (2020) for a theo-
retical justification from a information-theoretic perspective.

Results on the original split confirm that the conclusions
of the paper are robust: we see an increase in performance
of around 3% overall, as could be expected because we use
more data, but the same behavior patterns (on the data that
can be compared).

3We keep newswire (NW), broadcast news (BN), mag-
azine (MZ), web data (WB), and pivot text (PT), removing
broadcast conversation (BC), telephone conversation (TC).
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tures for language modeling as of 2020 (LSTM,
Transformer). We chose these models for compar-
ison because they are trained on the same dataset
(Wiki103; Merity et al., 2016), they have a com-
parable vocabulary, and they are both very strong
language models, with perplexities of 24 for
TransformerXL and 33 for AWD-LSTM. Trans-
formerXL is a bit larger than AWD-LSTM, though
(151 million parameters compared to 126), which
should be kept in mind when assessing results.4

Probe model For each word xi in the window
of size m preceding the target pronoun xt, we ob-
tain its contextualized representation hi from the
last hidden layer of the language model (Eq. 1).
The probe model takes this representation as in-
put and is trained to map it onto a vector oi us-
ing a non-linear transformation (Eq. 2). The tar-
get pronoun representation is transformed in the
same way. The dot products between these trans-
formed representations of target and context word
vectors give the attention weights refi (Eq. 3) rep-
resenting the similarity between two representa-
tions. The weights are transformed into probabil-
ities using the softmax function (Eq. 4). Like this
we obtain a probability distribution pi over context
tokens.

During training, the probe model’s objective is
to assign higher probabilities (and thus attention
weights) to correct antecedents, and lower prob-
abilities to incorrect ones, through the use of the
Kullback-Leibler divergence loss (Eq. 5). We use
the KL loss because we frame the task in terms of
a probability distribution over mentions in the con-
text. For the reasons discussed above, there can be
k > 1 correct predictions out of m tokens in the
window. We assume that gold probability distribu-
tion is uniform over k correct tokens, that is, each
of these tokens has a probability p∗i = 1

k and all
other tokens have a probability of 0.5

4We also trained an in-house LSTM on data that are more
similar to those of OntoNotes and a smaller vocabulary. The
results for this model (not reported) follow the same pat-
terns as those found for the AWD-LSTM and TransformerXL
models, although the performance on this probe task is much
higher than that of AWD-LSTM.

5Note however that minimizing KL divergence and
minimizing cross-entropy gives the same results, because
KLdiv(p||q) = CrossEntropy(p, q) − entropy(p), and
entropy(p) is constant. Technically, in PyTorch the cross-
entropy loss is only implemented for classification task tar-
gets, while the more general KL loss is available for predict-
ing probability distributions.

Model Accuracy

closest gold entity 56.1
closest same-form token 61.3

unsup. sup.
LSTM 41.7 64.8
Transformer 48.5 75.9

Table 2: Probe model results on anaphora resolution.

hi = LSTM(xi) (1)

oi = ReLU(W ∗ hi + b) (2)

refi = oi � ot,∀i ∈ [t−m, t− 1] (3)

pi = softmax(refi),∀i ∈ [t−m, t− 1] (4)

L = KL(pi, p
∗
i ) (5)

As mentioned above, we fix m = 60. We train
the probe model for 50 epochs with a learning rate
of 1e-5 and ADAM as optimizer. The transformed
vectors oi have a dimensionality of 650 in the case
of both models in comparison with hi which is 400
for the AWD-LSTM and 1024 for TransformerXL.

Baselines We report two rule-based baselines
that give relatively good performance in anaphora
resolution: Referring to the previous entity (given
by the oracle gold annotation; in Figure 1, she
would refer to the previous She), and always point-
ing to the token in the window that has the same
form as the target pronoun (that is, in Figure 1, she
→ She —we ignore capitalization). In addition,
to compare the result of the probe model with the
input representations, we also report an unsuper-
vised baseline: Referring to the token in the win-
dow that has the highest similarity cos(hi, ht) to
the target pronoun, i.e., relying on the similarity
between the non-transformed hidden representa-
tions.

3.2 Results
Table 2 summarizes the results of the pronominal
anaphora probe task. The probe model trained on
top of the LSTM improves a bit over the strongest
baseline, and that of the Transformer does so sub-
stantially (75.9 vs. 61.3; the LSTM obtains 64.8).
This performance suggests that the LMs use more
information than simple heuristics like referring to
a token with the same form.

The unsupervised similarity baseline performs
worse than the rule-based baselines. This is to
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be expected: The “raw” similarity between hidden
states is based on many more aspects than those
related to reference, given that hidden states are re-
sponsible for capturing all the contextual features
that are relevant for word prediction. This is why
a probe model is needed to distill the reference-
related information from the hidden layers.

A single non-linear layer trained on only 5K
datapoints improves performance by 23-28 abso-
lute accuracy points (supervised vs. unsupervised
results), which suggests that the referential infor-
mation in the hidden layers is easy to extract.
Behaviorally, the unsupervised hidden layers are
quite similar to the baselines. First, they are biased
towards tokens of the same form: in 27.1% of the
cases, the LSTM layer of the pronoun presents the
highest similarity to a token with the same form;
29.1% in the case of the Transformer. Second,
they prefer close antecedents, although the LSTM
presents this recency bias to a much higher de-
gree: in 27.8% of the cases, the LSTM layer of the
pronoun has the highest similarity to the previous
token (16.4% in the Transformer). The attention
mechanism of the Transformer gives access to a
broader context and allows it to overcome the re-
cency bias to some degree.

The great difference in performance between
AWD-LSTM and TransformerXL could suggest
that the latter is using different strategies com-
pared to the former. Instead, except for the recency
bias, what we find are exactly the same patterns
in behavior, with a systematic 10% accuracy gap.
For this reason, although we provide results for
both models everywhere to show that this obser-
vation indeed holds, in this section we will mostly
focus on the Transformer when commenting re-
sults.

3.3 Analysis: Morphosyntactic Factors

The models clearly learn grammatical constraints
related to anaphora that are well-studied in the lit-
erature and are relied upon by traditional anaphora
resolution models (Sukthanker et al., 2018). First,
as shown in Table 3, the Transformer identi-
fies mentions (elements inside some coreference
chain) in 92.6% of the cases. Moreover, it cor-
rectly learns that pronouns typically refer to nom-
inal elements (almost 95% identified antecedents
are pronouns, proper nouns, and elements within a
noun phrase headed by a common noun). Note
that pronouns can also have non-nominal an-

LSTM Transformer
in chain 90.2% 92.6%

POS Perc. Acc Perc. Acc
Noun phrase 15.5 50.9 17.0 62.3
Proper noun 20.2 64.3 20.0 74.9
Pronoun 59.0 71.5 59.0 82.6
Other 5.3 67.3 3.0 81.6

Table 3: Statistics on types of mentions that the probe
models refer to, for predictions that are in a coreference
chain. ‘Noun phrase’ stands for elements that are typi-
cally within a noun phrase (note that our system points
to individual tokens): Determiners, nouns, and adjec-
tives.

tecedents, although these are the minority of the
annotations in OntoNotes (cf. example 4 in Fig-
ure 3, where it refers to an event). Even in the
cases in which the Transformer points to elements
outside of a chain (7.4%), it points to nominal
elements 87% of the time (not shown in the ta-
ble). The model is most accurate when referring
to pronouns (82.6% accuracy), while noun phrases
are the hardest category (62.3%). This is consis-
tent with the strategies that the model learns, since
it largely relies on pronominal agreement, as de-
scribed below.

Second, not only do the models mostly point to
nominal elements, but they also identify the mor-
phosyntactic properties of pronouns and learn that
they should agree with their antecedents in gen-
der and number. Figure 2 shows the distribution
of pronoun antecedents that the Transformer pre-
dicts, for the six most frequent target pronouns
(see the Supplementary material for the corre-
sponding LSTM figure). Its preferred type of an-
tecedent are pronouns of the same form, but it
is also able to point to other pronouns agreeing
in number and gender. For instance, pronoun he
points to 3rd person, masculine, singular pronouns
(mostly he, but also his, him) —a pattern consis-
tent across all pronouns.

Figure 2 is restricted to pronouns; Table 4 shows
that the model also largely follows number agree-
ment when predicting antecedents within noun
phrases (the table collapses common noun and
proper noun antecedents). Given a singular pro-
noun, the model chooses a singular antecedent
98% of the time; given a plural pronoun, it identi-
fies a plural antecedent in 73% of the cases.

Note that in cases of plural pronouns such as
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Figure 2: Pronominal agreement with Transformer
probe model: Proportion of cases in which elements
in the rows corefer with elements in the columns.

LSTM Transformer

Pron-ant. Perc. Acc Perc. Acc

sg-sg 97.7 66.3 98.7 76.0
sg-pl 2.3 20.5 1.3 36.7

pl-sg 35.5 40.8 27.5 53.1
pl-pl 64.5 67.7 72.5 72.3

Table 4: The types of noun phrase antecedents the mod-
els choose, by number agreement (e.g., ‘sg-pl’ means
‘anaphoric pronoun is singular, antecedent plural’).

they it is common that the referent be a singular
noun (e.g., the audience in example 3, Figure 3),
reflected by the reasonable accuracy of the Trans-
former in pl-sg cases (53.1%).

4 Semantic (referential) factors

The language model clearly captures morphosyn-
tactic (grammatical) properties that constrain
anaphora resolution; in this section, we show that
it struggles more with is the semantic (referential)
aspect, but it still captures it to some extent.

4.1 Sensitivity to distractors

If the model were able to model entities, it should
be robust to distractors, that is, mentions in the
context that are not antecedents –in Figure 1, he
and the Central Military Commission. Figure 4
shows that the accuracy for the Transformer de-
creases as does the proportion of gold mentions.
We compute this proportion as the number of gold
mentions in the 60-token window divided by the
total number of mentions in the same window.
When there are no distractors (gold proportion =
1), accuracy is very high, which is to be expected
given that the model learnt to identify mentions
in the first place (cf. previous section). The more

distractors (i.e., the lower the proportion of gold
mentions), the lower the accuracy; however, accu-
racy decreases rather gracefully. Even when there
are only 10% gold mentions in the window, ac-
curacy for most pronoun types is still around 60-
80%. The exception is it, which is the most diffi-
cult pronoun for the model, presumably because it
can refer to many kinds of antecedents.6

Figure 4 thus paints a nuanced picture: distrac-
tors confuse the model, but they do not fool it com-
pletely. Given the results in the previous section,
we expect that distractors sharing morphosyntactic
features will be particularly challenging. Table 5
confirms this, zooming in into pronominal distrac-
tors. We consider a datapoint having a pronominal
distractor if one of the antecedents is a pronoun
pointing to another entity.

When there are no pronominal distractors
(25.9% of the test set), the accuracy of the Trans-
former is 81.8%; with at least one distractor, it
goes down to 73.8% —clearly worse but not dra-
matically so. However, in cases where anaphoric
pronoun and antecedent have the same gender,
number, or are the same pronoun, we get much
lower accuracies (48.6, 65.3, and 49.1, respec-
tively). This suggests that that the model overly re-
lies on morphosyntactic features and recency (see
previous section).7

However, accuracy in these cases goes down
but is still decent, compared to a reasonable base-
line (last column in the table). For each target
anaphoric pronoun, we calculate baseline accu-
racy as the percentage of gold pronouns in the win-
dow (pronouns that are in the same chain as the
target), that is, number of gold pronouns divided

6While most personal pronouns refer to people, which are
relatively homogeneous kinds of referents, it refers to very
varied kinds of referents. Qualitative analysis suggests that
the model is quite successful when it refers to concrete en-
tities (province, peanut), but much less when it refers to ab-
stract objects like propositions or events, as in example 4 of
Figure 3 (where it refers to the event of trying to improperly
influence a witness). A quantitative check confirms this hy-
pothesis: Cases in which the model fails have around 18%
of verbal references, compared to less than 2% for cases in
which the model is right.

7Among the hardest cases are those where two corefer-
ence chains in the window have the same pronoun (e.g. he)
or gender (e.g. he-his). Most of these cases appear when the
text includes reported speech (see Figure 3, example 1). Oth-
erwise, there are few cases of such local ambiguity, which is
presumably avoided by language speakers. However, quali-
tative analysis suggests that the presence of distractors is also
problematic in the case of nouns, as illustrated in example 2
of Figure 3, where the model is presumably confused by a
noun of the same gender and number as the pronoun (priest
vs. Peter-him).
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1. Why had Mr. Korotich been called? “I told my driver,” he said, “that he
2. While Peter was still in the yard, a servant girl of the high priest came there. She saw him

warming himself by the fire. She looked closely at him
3. The performance by more than 40 members of the Rome Philharmonic Orchestra intoxicated

the audience and the musical fountain, hi-fi sound effect, fountain screen and stereographic
projection brough them

4. Mr. Gonzalez expressed concern over a report that the two had been summoned to Washington
by Mr. Wall last week to discuss their testimony in advance. “I think he is trying to improperly
influence a witness, and by God I ’m not going to tolerate it

Figure 3: Difficult cases of anaphora. The target pronoun and its antecedent are in bold; the prediction of the
model is in italic.

Figure 4: Transformer probe model: Accuracy as a
function of the proportion of mentions that are an-
tecedents (vs. distractors) in the window.

by the total number of pronouns in the window.
Then we calculate the average of this accuracy
over the respective subset (no distractors / distrac-
tors / same gender, etc.). The baseline when there
are no distractors is by definition 100%; when
there are distractors, it ranges between 15.7 and
32%. All model accuracies are well above this
baseline.

The results thus suggest that the models are
able to distinguish mentions of different entities
to some extent, although they are far worse at this
than at capturing morphosyntactic features. In the
following subsection, we provide further support
for this interpretation.

4.2 Distinguishing entities

Our last piece of analysis looks at whole docu-
ments. We aim at testing whether the hidden rep-
resentations of the language models contain infor-
mation that can help distinguish mentions of the
same entity from mentions of some other entity,

L T Base
Type Perc. Acc. Acc. Acc.

No distractor 25.9 74.9 81.8 100

Distractor(s) 74.1 61.3 73.8 32.0
= gender∗ 4.8 40.9 48.6 15.7
= number 37.2 55.7 65.3 26.6
= pron. 10.3 39.7 49.1 20.3

Table 5: Percentage of datapoints with/without
pronominal distractors and accuracy of the models
(LSTM - L, Transformer - T) and baseline (last col-
umn). ∗Excludes cases with no marked gender (like I,
you).

even if they are of the same form; for instance, a
pronoun she referring to two different women. We
use coreference chains to identify the tokens refer-
ring to the same entity, and train a probe model
to determine when two pronouns are referring to
the same entity, that is, whether they are part of
the same coreference chain in a document. In the
previous probe task, where the model was trained
to find a correct local antecedent, the model could
use cues such as linear distance and syntactic rela-
tions; here it should rely on more persistent entity-
related features in the hidden representations.

Experimental Setup. We focus on pronouns be-
cause they cannot be disambiguated on the basis of
lexical features. We use the same train/test parti-
tion as in the first probe task. For each datapoint,
we have two pronouns: x and y, which can either
come from the same chain, or not. Again, we take
each pronoun to be represented by the last hidden
layer representation of the language model (Eq.
(1)): hx and hy. We call this representation un-
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supervised, and will compare it to the supervised
one, obtained as follows.

Similarly to the previous probe task, the embed-
dings are transformed through a learnt linear trans-
formation to a 400-dimensional vector to extract
features relevant for the entity identification task
(Eqs. (6) and (7)). We take the cosine between the
transformed representations as the similarity be-
tween the two pronouns.

We take as positive datapoints contain two pro-
nouns belonging to the same chain, as nega-
tive datapoints two pronouns from two different
chains. During training, for each document, we
extract all positive pairs and then randomly select
the same number of negative pairs. The model
optimises max-margin loss on these datapoints
(Eq. (8), where x and y belong to the same chain
and x′ and y′ belong to two different chains).

ox = W ∗ hx + b (6)

oy = W ∗ hy + b (7)

L = 1− cos(ox, oy) + cos(ox′ , oy′) (8)

Results Figure 5 plots the similarities between
positive and negative pairs (solid and dashed lines,
respectively) for the two analyzed language mod-
els, compared to linear distance in the text. The
left graph corresponds to unsupervised similari-
ties, the right graph to supervised similarities. To
control for token form effect, we only include data
with the same pronoun pairs in this graph. Three
results stand out. First, despite training with a
global objective, with no linear information, sim-
ilarities are negatively correlated with linear dis-
tance in text. This is consistent with the tendency
of the unsupervised cosine baseline of pointing to
the closest token (see Section 3).

The second result is that, crucially, after con-
trolling both for distance and for pronoun form,
similarities are systematically higher for corefer-
ring pronoun pairs than for non-coreferring ones.
Thus, some properties make their way into the
hidden representations (and the probe model) that
make coreferring mentions distinct from non-
correferring mentions —modulo distance: If we
attempt to globally distinguish chains, we instead
obtain null results (see Supplementary Materials).
This is because, with linear distance, the simi-
larity in the entity-centered representation space
shrinks very fast; same-chain mentions that are

further away have lower average similarities than
different-chain mentions that are nearby.

Finally, the third main result is that the super-
vised model is able to extract discriminating in-
formation from the hidden layers to a much larger
extent in the Transformer than in the LSTM (cf.
distance between blue and red lines, respectively).
We interpret this to mean that such information is
encoded to a larger extent in the Transformer. Also
note that the supervised LSTM model is more
sensitive to linear distance than any of the other
representations (cf. the steeper curves between 0-
100 token distances). As we signaled in the pre-
vious section, LSTM is more prone to recency
biases, and it looks like global representations
contain less entity-related information than in the
case of the Transformer, such that the supervised
model defaults to recency. We conclude from
this that the Transformer accounts for semantico-
referential aspects better than the LSTM.

Overall, the results suggest that token form and
proximity in text remain the main properties en-
coded in the hidden states of entity mentions, but
other properties that discriminate between corefer-
ring and non-corefering mentions are present to
some extent, allowing for partial discrimination.

5 Conclusion

Previous work has provided robust evidence that
language models capture grammatical information
without being explicitly trained to do so (Linzen
et al., 2016; Gulordava et al., 2018). In this
paper, we have analyzed to what extent they
learn referential aspects of language, focusing on
anaphora. We have tested two models represen-
tative of the prevailing architectures (Transformer,
LSTM), and our methodology can be extended to
any other architecture.

We find that the two models behave similarly,
but the Transformer performs consistently better
(around 10% higher accuracy in the probe tasks).8

Future work should test other architectures, like
CNN-based LMs and LSTMs with attention, to
provide additional insights into the linguistic ca-
pabilities of language models.

As expected, our results show that lan-
guage models capture morphosyntactic facts about
anaphora: Based on the information in the hidden
layers, a simple linear transformation learns to link

8With the caveat that the model we tested is slightly big-
ger than its LSTM counterpart.
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Figure 5: Linear distance in the discourse vs. cosine distance, for all the mention pairs with the same token pronoun.
Distances averaged within bins of 20 tokens. Left: unsupervised, right: supervised.

pronouns to other pronouns or noun phrases, and
to do so largely respecting agreement constraints
in gender and number.

Although it is much harder for models to in-
duce a more global notion of entity (what we
have called semantico-referential aspects), mod-
els seem to encode entity-specific information to
some extent. Models get confused when there
are other mentions in the context, especially if
they match in some morphosyntactic feature, but
less than could be expected; and they show some
limited ability to distinguish mentions that have
the same form but are in different coreference
chains, though hampered by their heavy recency
bias. The recency bias affects LSTMs more, but is
also found in Transformers, consistent with previ-
ous work on syntax (van Schijndel et al., 2019).

Our results thus suggest that language models
are more successful at learning grammatical con-
straints than they are at learning truly referential
information, in the sense of capturing the fact that
we use language to refer to entities in the world;
however, they still do surprisingly well at refer-
ential aspects, given that they are trained on text
alone. Future work should investigate where these
primitive referential abilities stem from and how
they can be fostered in future architectures and
training setups for language modeling, and neural
models more generally.
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Word Translation Without Parallel Data. In ICLR
2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988.

Richard Futrell, Ethan Wilcox, Takashi Morita, and
Roger Levy. 2018. RNNs as psycholinguistic sub-
jects: Syntactic state and grammatical dependency.
arXiv preprint arXiv:1809.01329.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to in-
vestigate and improve how language models track
agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 240–
248.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. arXiv preprint arXiv:1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1-3):335–
346.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2019. Tracking the world
state with recurrent entity networks. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57–60,
New York City, USA. Association for Computa-
tional Linguistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and’diagnostic classi-
fiers’ reveal how recurrent and recursive neural net-
works process hierarchical structure. Journal of Ar-
tificial Intelligence Research, 61:907–926.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity rep-
resentations in neural language models. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1830–1839.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes.
2019. Analysing neural language models: Con-
textual decomposition reveals default reasoning in
number and gender assignment. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 1–11.

Leonard Kaufman and Peter J Rousseeuw. 1990. Find-
ing groups in data: an introduction to cluster analy-
sis. John Wiley, New York.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Yair Lakretz, Germán Kruszewski, Théo Desbordes,
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former), suggesting that they do not rely on a sim-
ple recency bias either (although both models do
exhibit a recency bias, as we show in the main
paper). This observation is confirmed when look-
ing at the distribution of predicted antecedents and
gold antecedents (Figures 6 and 7).

Figure 8 presents a heatmap of pronominal
agreement for AWD-LSTM. Similar to the Trans-
formerXL heatmap from the main paper, we can
observe that in the majority of cases, the model
predicts same form tokens with some variation ei-
ther at the gender level or at the number level.
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Figure 6: The distances between the pronoun and its
gold and predicted antecedents for TransformerXL.

Figure 7: The distances between the pronoun and its
gold and predicted antecedents for AWD-LSTM.

Figure 9 presents the performance of AWD-
LSTM relative to the number of distractors in the
window. While the tendencies seem to be the
same as the ones for TransformerXL, the curves
are steeper, the model being more confused with a
higher number of distractors.

B Additional results for second probe
task (global context)

In the main text, we say that, if we attempt to
globally distinguish chains, we obtain null results.
Here we show the results of the experiment that
leads to these null results.

Figure 8: Pronominal agreement: Proportion of cases
in which elements in the rows refer to elements in the
columns for AWD-LSTM

Figure 9: The accuracy of reference with respect to
the ratio of correct versus confounding mentions in the
window for AWD-LSTM

Method To evaluate the distance metric learnt
by the model we use the silhouette coefficient
(Rousseeuw, 1987), which is commonly used for
intrinsic clustering evaluation. The silhouette co-
efficient for each pronoun x is defined as in Eq. (9),
where a is the mean distance between x and all
other items in the same chain, and b is the mean
distance between x and all other items in the clos-
est chain (measured in the learnt space, not in
terms of linear distance). Its range is [−1, 1], with
1 corresponding to the pronoun being much closer
to the other pronouns in its chain, 0 being border-
line (equally close to the two compared chains),
and -1 being much closer to the pronouns in the
other chain. The average silhouette coefficient is
used as an overall measure of clustering quality.
A score below 0.25 is usually deemed a null re-
sult (Kaufman and Rousseeuw, 1990).

s =
b− a

max(a, b)
(9)

The probe model is trained for 50 epochs, keep-
ing the model at the best validation epoch, i.e.,
where the silhouette score over the validation data
is highest.

In addition to the trained probe model, we pro-
vide the results on global entity discrimination for
the unsupervised baseline which computes the co-
sine similarity between the non-transformed hid-
den representations of the language models, simi-
larly to the first probe task.

Results and Discussion All the obtained values
are well below 0.25. Table 6 contains the results
for all the datapoints as well as divided into easy
and difficult documents. In easy documents, all
the chains have different pronouns, so they can
be distinguished by the token form only. Diffi-
cult documents contain confusable chains, that is,
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there are at least two different chains which share
the same pronoun. Coefficients are a bit higher for
easy documents, but still very low, and, for com-
plex documents, they are virtually zero. Moreover,
the supervised models performs marginally better
than the cosine baselines, but clearly do not learn
any reliable information.

LSTM Transformer

N unsup sup unsup sup

all 1142 -0.09 0.02 -0.08 0.03
easy 194 0.12 0.14 0.13 0.16
diff 948 -0.13 -0.007 -0.13 0.01

Table 6: Results for the second probe task (average sil-
houette coefficient).

Indeed, the average distances within and across
chains seem to confirm these results. If mod-
els were capturing global entity-related properties
in their mention representations, we would ex-
pect pronouns with the same form but in different
chains to be further away than pronouns (of any
form) that belong to the same chain; instead, they
are at the same distance (average cosines of 0.75
/ 0.76 for Transformer, 0.74 / 0.73 for LSTM, re-
spectively).

We conclude that the models’ sensitivity to
whether two identical pronouns belong to the same
chain or not only shows if linear distance is fac-
tored out (as in the main text). If it is not, as in the
current experiment, the models fail completely at
distinguishing entities.


