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Abstract

The Transformer translation model employs
residual connection and layer normalization to
ease the optimization difficulties caused by its
multi-layer encoder/decoder structure. Previ-
ous research shows that even with residual con-
nection and layer normalization, deep Trans-
formers still have difficulty in training, and par-
ticularly Transformer models with more than
12 encoder/decoder layers fail to converge. In
this paper, we first empirically demonstrate
that a simple modification made in the offi-
cial implementation, which changes the com-
putation order of residual connection and layer
normalization, can significantly ease the opti-
mization of deep Transformers. We then com-
pare the subtle differences in computation or-
der in considerable detail, and present a pa-
rameter initialization method that leverages
the Lipschitz constraint on the initialization
of Transformer parameters that effectively en-
sures training convergence. In contrast to find-
ings in previous research we further demon-
strate that with Lipschitz parameter initializa-
tion, deep Transformers with the original com-
putation order can converge, and obtain signifi-
cant BLEU improvements with up to 24 layers.
In contrast to previous research which focuses
on deep encoders, our approach additionally
enables Transformers to also benefit from deep
decoders.

1 Introduction

Neural machine translation has achieved great suc-
cess in the last few years (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017). The
Transformer (Vaswani et al., 2017), which has out-
performed previous RNN/CNN based translation
models (Bahdanau et al., 2015; Gehring et al.,
2017), is based on multi-layer self-attention net-
works and can be trained very efficiently. The
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multi-layer structure allows the Transformer to
model complicated functions. Increasing the depth
of models can increase their capacity but may
also cause optimization difficulties (Mhaskar et al.,
2017; Telgarsky, 2016; Eldan and Shamir, 2016;
He et al., 2016; Bapna et al., 2018). In order to
ease optimization, the Transformer employs resid-
ual connection and layer normalization techniques
which have been proven useful in reducing opti-
mization difficulties of deep neural networks for
various tasks (He et al., 2016; Ba et al., 2016).

However, even with residual connections and
layer normalization, deep Transformers are still
hard to train: the original Transformer (Vaswani
et al., 2017) only contains 6 encoder/decoder layers.
Bapna et al. (2018) show that Transformer models
with more than 12 encoder layers fail to converge,
and propose the Transparent Attention (TA) mecha-
nism which combines outputs of all encoder layers
into a weighted encoded representation. Wang et al.
(2019) find that deep Transformers with proper use
of layer normalization are able to converge and
propose to aggregate previous layers’ outputs for
each layer. Wu et al. (2019) explore incremen-
tally increasing the depth of the Transformer Big
by freezing pre-trained shallow layers. Concur-
rent work closest to ours is Zhang et al. (2019).
They address the same issue, but propose a differ-
ent layer-wise initialization approach to reduce the
standard deviation.

Our contributions are as follows:

• We empirically demonstrate that a simple
modification made in the Transformer’s of-
ficial implementation (Vaswani et al., 2018)
which changes the computation order of resid-
ual connection and layer normalization can
effectively ease its optimization;

• We deeply analyze how the subtle difference
of computation order affects convergence in
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Figure 1: Two Computation Sequences of Transformer Translation Models: (a) the one used in the original paper,
(b) the official implementation. We suggest to regard the output of layer normalization (outLN/res) as the output
of residual connection rather than the addition of inres and inmodel for (a), because it (outLN/res) is the input
(inres) of the next residual connection computation.

deep Transformers, and propose to initialize
deep Transformers under the Lipschitz con-
straint;

• In contrast to previous works, we empirically
show that with proper parameter initialization,
deep Transformers with the original computa-
tion order can converge;

• Our simple approach effectively ensures the
convergence of deep Transformers with up
to 24 layers, and achieves +1.50 and +0.92
BLEU improvements over the baseline on the
WMT 14 English to German task and the
WMT 15 Czech to English task;

• We further investigate deep decoders for the
Transformer in addition to the deep encoders
studied in previous works, and show that deep
decoders can also benefit the Transformer.

2 Convergence of Different Computation
Orders

In this paper we focus on the convergence of the
training of deep transformers. To alleviate the train-
ing problem for the standard Transformer model,
Layer Normalization (Ba et al., 2016) and Residual
Connection (He et al., 2016) are adopted.

2.1 Empirical Study of the Convergence Issue

The official implementation (Vaswani et al., 2018)
of the Transformer uses a different computation or-
der (Figure 1 b) compared to the published version
(Vaswani et al., 2017) (Figure 1 a), since it (Fig-

ure 1 b) seems better for harder-to-learn models.1

Even though several studies (Chen et al., 2018;
Domhan, 2018) have mentioned this change and
although Wang et al. (2019) analyze the difference
between the two computation orders during back-
propagation, and Zhang et al. (2019) point out the
effects of normalization in their work, how this
modification impacts on the performance of the
Transformer, especially for deep Transformers, has
not been deeply studied before. Here we present
both empirical convergence experiments (Table 1)
and a theoretical analysis of the effect of the in-
teraction between layer normalization and residual
connection (Table 2).

In order to compare with Bapna et al. (2018), we
used the same datasets from the WMT 14 English
to German task and the WMT 15 Czech to English
task for our experiments. We applied joint Byte-
Pair Encoding (BPE) (Sennrich et al., 2016) with
32k merge operations. We used the same setting as
the Transformer base (Vaswani et al., 2017) except
the number of warm-up steps was set to 8k.

Parameters were initialized with Glorot Initial-
ization2 (Glorot and Bengio, 2010) like in many
other Transformer implementations (Klein et al.,
2017; Hieber et al., 2017; Vaswani et al., 2018). We
conducted experiments based on the Neutron imple-
mentation (Xu and Liu, 2019) of the Transformer
translation model. Our experiments run on 2 GTX

1https://github.com/tensorflow/
tensor2tensor/blob/v1.6.5/tensor2tensor/
layers/common_hparams.py#L110-L112.

2Uniformly initialize matrices between

[−
√

6
(isize+osize)

,+
√

6
(isize+osize)

], where isize and

osize are two dimensions of the matrix.

https://github.com/tensorflow/tensor2tensor/blob/v1.6.5/tensor2tensor/layers/common_hparams.py#L110-L112
https://github.com/tensorflow/tensor2tensor/blob/v1.6.5/tensor2tensor/layers/common_hparams.py#L110-L112
https://github.com/tensorflow/tensor2tensor/blob/v1.6.5/tensor2tensor/layers/common_hparams.py#L110-L112
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Models
Layers En-De Cs-En

Encoder Decoder v1 v2 v1 v2
Bapna et al. (2018)∗ 16 6 28.39 None 29.36 None
Wang et al. (2019) 30 6 29.3

NoneWu et al. (2019) 8 29.92
Zhang et al. (2019) 20 28.67

Transformer∗

6 27.77‡ 27.31 28.62 28.40
12 ¬ 28.12 ¬ 29.38
18 ¬ 28.60 ¬ 29.61
24 ¬ 29.02 ¬ 29.73

Table 1: Results of Different Computation Orders. “¬” means fail to converge, “None” means not reported in
original works, “*” indicates our implementation of their approach. † and ‡ mean p < 0.01 and p < 0.05 while
comparing between v1 (the official publication) and v2 (the official implementation) with the same number of
layers in the significance test. Wu et al. (2019) use the Transformer Big setting, while the others are based on the
Transformer Base Setting. Zhang et al. (2019) use merged attention decoder layers with a 50k batchsize.

v1 v2
µ = mean(inmodel + inres)

σ = std(inmodel + inres)

outLN = (inmodel+inres−µ)
σ ∗ w + b

outv1res = outLN = w
σ ∗ out

v2
res − w

σ ∗µ+ b outv2res = inres + inmodel

Table 2: Computation with Layer Normalization and Residual Connection. v1 and v2 stand for the computation
order of the original Transformer paper and that of the official implementation respectively. “mean” and “std” are
the computation of mean value and standard deviation. inmodel and inres stand for output of current layer and
accumulated outputs from previous layers respectively. w and b are weight and bias of layer normalization which
are initialized with a vector full of 1s and another vector full of 0s. outLN is the computation result of the layer
normalization. outv1res and outv2res are results of residual connections of v1 and v2.

1080 Ti GPUs, and a batch size of 25k target tokens
is achieved through gradient accumulation of small
batches.

We used a beam size of 4 for decoding, and
evaluated tokenized case-sensitive BLEU with the
averaged model of the last 5 checkpoints saved
with an interval of 1,500 training steps.

Results of the two different computation orders
are shown in Table 1, which shows that deep Trans-
formers with the computation order of the official
implementation (v2) have no convergence issue.

2.2 Theoretical Analysis
Since the subtle change of computation order re-
sults in large differences in convergence, we further
analyze the differences between the computation
orders to investigate how they affect convergence.

We conjecture that the convergence issue of deep
Transformers is perhaps due to the fact that layer
normalization over residual connections in Figure
1 (a) effectively reduces the impact of residual con-
nections due to subsequent layer normalization, in
order to avoid a potential explosion of combined

layer outputs (Chen et al., 2018), which is also stud-
ied by Wang et al. (2019); Zhang et al. (2019). We
therefore investigate how the layer normalization
and the residual connection are computed in the
two computation orders, shown in Table 2.

Table 2 shows that the computation of residual
connection in v1 is weighted by w

σ compared to v2,
and the residual connection of previous layers will
be shrunk if wσ < 1.0, which makes it difficult for
deep Transformers to converge.

3 Lipschitz Constrained Parameter
Initialization

Since the diminished residual connections (Table
2) may cause the convergence issue of deep v1
Transformers, is it possible to constrain w

σ ≥ 1.0?
Given that w is initialized with 1, we suggest that
the standard deviation of inmodel + inres should
be constrained as follows:

0.0 < σ = std(inmodel + inres) ≤ 1.0 (1)
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in which case w
σ will be greater than or at least

equal to 1.0, and the residual connection of v1 will
not be shrunk anymore. To achieve this goal, we
can constrain elements of inmodel + inres to be
in [a, b] and ensure that their standard deviation is
smaller than 1.0.

Let’s define P (x) as any probability distribution
of x between [a, b]:

b∫
a

P (x)dx = 1.0 (2)

then the standard deviation of x is:

σ(P (x), x) =

√√√√√ b∫
a

P (x)
(
x−

b∫
a

P (x)xdx
)2
dx

(3)

Given that (x−
b∫
a
P (x)xdx) < (b− a) for x ∈

[a, b] as P (x) is constrained by Equation 2, we
reformulate Equation 3 as follows:

σ(P (x), x) <

√√√√√ b∫
a

P (x)(b− a)2dx (4)

From Equation 4 we obtain:

σ(P (x), x) < (b− a)

√√√√√ b∫
a

P (x)dx (5)

After applying Equation 2 in Equation 5, we find
that:

σ(P (x), x) < b− a (6)

Thus, as long as b−a ≤ 1 (the range of elements
of the representation x), the requirements for the
corresponding σ described in Equation 1 can be
satisfied.

To achieve this goal, we can simply constrain
the range of elements of x to be smaller than 1 and
initialize the sub-model before layer normalization
to be a k-Lipschitz function, where k ≤ 1. Because
if the function F of the sub-layer is a k-Lipschitz
function, for inputs x, y ∈ [a,b], |F (x)−F (y)| <
k|x− y| holds. Given that |x− y| ≤ b− a, we can
get |F (x) − F (y)| < k(b − a), the range of the
output of that sub-layer is constrained by making it
a k-Lipschitz function with constrained input.

Layers
En-De Cs-En

v1-L v2-L v1-L v2-L
6 27.96† 27.38 28.78‡ 28.39

12 28.67† 28.13 29.17 29.45
18 29.05‡ 28.67 29.55 29.63
24 29.46 29.20 29.70 29.88

Table 3: Results with Lipschitz Constrained Parameter
Initialization.

The k-Lipschitz constraint can be satisfied effec-
tively through weight clipping,3 and we empirically
find that deep Transformers are only hard to train
at the beginning and only applying a constraint to
parameter initialization is sufficient, which is more
efficient and can avoid a potential risk of weight
clipping on performance. Zhang et al. (2019) also
show that decreasing parameter variance at the ini-
tialization stage is sufficient for ensuring the con-
vergence of deep Transformers, which is consistent
with our observation.

4 Experiments

We use the training data described in Section 2 to
examine the effectiveness of the proposed Lipschitz
constrained parameter initialization approach.

In practice, we initialize embedding matrices
and weights of linear transformations with uniform
distributions of [−e,+e] and [−l,+l] respectively.
We use

√
2

esize+vsize as e and
√

1
isize as l where

esize, vsize and isize stand for the size of embed-
ding, vocabulary size and the input dimension of
the linear transformation respectively.4

Results for two computation orders with the new
parameter initialization method are shown in Table
3. v1-L indicates v1 with Lipschitz constrained
parameter initialization, the same for v2-L.

Table 3 shows that deep v1-L models do not
suffer from convergence problems anymore with
our new parameter initialization approach. It is also
worth noting that unlike Zhang et al. (2019), our
parameter initialization approach does not degrade
the translation quality of the 6-layer Transformer,
and the 12-layer Transformer with our approach
already achieves performance comparable to the
20-layer Transformer in Zhang et al. (2019) (shown
in Table 1).

3Note that the weight of the layer normalization cannot be
clipped, otherwise residual connections will be more heavily
shrunk.

4To preserve the magnitude of the variance of the weights
in the forward pass.
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Encoder Decoder En-De Cs-En
6 27.96 28.78

24 6 28.76 29.20
6 24 28.63 29.36

24 29.46 29.70

Table 4: Effects of Encoder and Decoder Depth with
Lipschitz Constrained Parameter Initialization.

While previous approaches (Bapna et al., 2018;
Wang et al., 2019) only increase the depth of the
encoder, we suggest that deep decoders should also
be helpful. We analyzed the influence of deep
encoders and decoders separately and results are
shown in Table 4.

Table 4 shows that the deep decoder can indeed
benefit performance in addition to the deep encoder,
especially on the Czech to English task.

5 Conclusion

In contrast to previous works (Bapna et al., 2018;
Wang et al., 2019; Wu et al., 2019) which show that
deep Transformers with the computation order as
in Vaswani et al. (2017) have difficulty in conver-
gence, we show that deep Transformers with the
original computation order can converge as long as
proper parameter initialization is performed.

We first investigate convergence differences be-
tween the published Transformer (Vaswani et al.,
2017) and its official implementation (Vaswani
et al., 2018), and compare the differences of com-
putation orders between them. We conjecture that
the convergence issue of deep Transformers is be-
cause layer normalization sometimes shrinks resid-
ual connections, we support our conjecture with a
theoretical analysis (Table 2), and propose a Lips-
chitz constrained parameter initialization approach
for solving this problem.

Our experiments show the effectiveness of our
simple approach on the convergence of deep Trans-
formers, which achieves significant improvements
on the WMT 14 English to German and the WMT
15 Czech to English news translation tasks. We
also study the effects of deep decoders in addition
to deep encoders extending previous works.
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