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Abstract

Cross-domain sentiment classification aims to
address the lack of massive amounts of la-
beled data. It demands to predict sentiment
polarity on a target domain utilizing a clas-
sifier learned from a source domain. In this
paper, we investigate how to efficiently apply
the pre-training language model BERT on the
unsupervised domain adaptation. Due to the
pre-training task and corpus, BERT is task-
agnostic, which lacks domain awareness and
can not distinguish the characteristic of source
and target domain when transferring knowl-
edge. To tackle these problems, we design
a post-training procedure, which contains the
target domain masked language model task
and a novel domain-distinguish pre-training
task. The post-training procedure will encour-
age BERT to be domain-aware and distill the
domain-specific features in a self-supervised
way. Based on this, we could then con-
duct the adversarial training to derive the en-
hanced domain-invariant features. Extensive
experiments on Amazon dataset show that our
model outperforms state-of-the-art methods by
a large margin. The ablation study demon-
strates that the remarkable improvement is not
only from BERT but also from our method.

1 Introduction

Sentiment analysis aims to automatically identify
the sentiment polarity of the textual data. It is an
essential task in natural language processing with
widespread applications, such as movie reviews
and product recommendations. Recently, deep net-
works have significantly improved the state-of-the-
art in sentiment analysis. However, training deep
networks is highly depended on a large amount of
labeled training data which is time-consuming and
requires expensive manual labeling. Thus, there
is a strong need to leverage or reuse rich labeled
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data from a different but related source domain.
Cross-domain sentiment analysis, which transfers
the knowledge learned from source domain to a
new target domain, becomes a promising direction.

The main challenge of cross-domain sentiment
analysis is domain discrepancy due to different
expression of the user’s emotion across domains.
To address the problem, a wide-used approach
is designed to extract domain invariant features,
which means that the distributions of features from
the source domain and target domain are simi-
lar (Zellinger et al., 2017; Persello and Bruzzone,
2016; Ganin et al., 2016; Yu and Jiang, 2016a). One
effective way to obtain domain-invariant features
is adversarial training(Ganin et al., 2016; Li et al.,
2017; Zheng et al., 2019). Specifically, A domain
discriminator is learned by minimizing the classifi-
cation error of distinguishing the source from the
target domains, while a deep classification model
learns transferable representations that are indistin-
guishable by the domain discriminator.

Very recently, pre-trained language models have
shown to be effective for improving many language
tasks (Peters et al., 2018). Bidirectional Encoder
Representations from Transformers (BERT) real-
ized a breakthrough, which pre-trains its encoder
using language modeling and by discriminating
surrounding sentences in a document from random
ones (Devlin et al., 2019). Pre-training in this man-
ner can construct bidirectional contextual repre-
sentation, and the large-scale pre-training enables
BERT powerful ability in language understanding.
We only need to add one output layer and fine-tune
BERT to get the state-of-the-art results in senti-
ment analysis. Theoretically, BERT can enhance
the performance in cross-domain sentiment anal-
ysis. However, some important problems remain
when directly fine-tuning BERT in the task of cross-
domain sentiment analysis:

Firstly, there is no labeled data in the target do-
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main which brings many difficulties to the fine-tune
procedure. If we fine-tune BERT only by the source
labeled data, the shift between training and test dis-
tributions will degrade the BERT’s performance.
Secondly, BERT is task-agnostic and has almost
no understanding of opinion text. BERT is pre-
trained by the universal language Wikipedia, leav-
ing the domain challenges unresolved (Xu et al.,
2019). For example, in the pre-training procedure,
BERT may learn to guess the [MASK] in “The
[MASK] is bright” as “sun”. But in a laptop sen-
timent analysis, it is more likely to be “screen”.
Especially, in the cross-domain sentiment analysis
scenario, the labeled data is limited, which is in-
sufficient to fine-tune BERT to ensure full domain-
awareness. Thirdly, cross-domain sentiment anal-
ysis also arises a new challenge for BERT to dis-
tinguish the characteristic of source and target do-
main to keep the transferable features and abandon
domain-specific information.

To address above problems, we design a novel
pre-training task to make BERT domain-aware
and then improve the BERT’s fine-tuning proce-
dure by adversarial training. Specifically, a novel
post-training procedure is implemented that adapts
BERT with unlabeled data from different domains
to enhance the domain-awareness. Apart from the
target domain masked language model task, we in-
troduce the domain-distinguish pre-training task.
BERT will be pre-trained to distinguish whether
the two sentences come from the same domain.
The domain-distinguish pre-training task will en-
courage BERT to distill syntactic and semantic
domain-specific features, so as to be domain-aware.
The proposed post-training procedure gives us a
new way to fully utilize language knowledge from
the target domain and link the source and target
in a self-supervised way. Based on this, we could
then conduct the adversarial training to derive the
enhanced domain-invariant features.

Experiments on Amazon reviews benchmark
dataset show that our model gets the average result
90.12% in accuracy, 4.22% absolute improvement
compared with state-of-the-art methods. The abla-
tion study shows that the remarkable improvement
is not only from BERT but also from our method.
The contributions of this paper can be summarized
as follows:

• We apply BERT to cross-domain sentiment
analysis task and leverage the post-training
method to inject the target domain knowledge

to BERT.
• A novel domain-distinguish pre-training task

is proposed for the BERT post-training. This
design encourages BERT to be domain-aware
and distill the domain-specific features in a
self-supervised way.

2 Related Work

2.1 Cross-Domain Sentiment Analysis

Cross-domain sentiment analysis aims to general-
ize a classifier that is trained on a source domain,
for which typically plenty of labeled data is avail-
able, to a target domain, for which labeled data
is scarce. There are many pivot-based methods
(Blitzer et al., 2007a; Yu and Jiang, 2016b; Ziser
and Reichart, 2018; Peng et al., 2018), which fo-
cus on inducing a low-dimensional feature repre-
sentation shared across domains based on the co-
occurrence between pivots and non-pivots. How-
ever, selecting pivot words is very tedious, and
the pivot words are manually selected, which may
not be accurate. Recently, some adversarial learn-
ing methods (Ganin et al., 2016; Li et al., 2017;
Zheng et al., 2019) propose to train the feature
generator to minimize the classification loss and
simultaneously deceive the discriminator, which is
end-to-end without manually selecting pivots.

2.2 Language Model Pre-training

Pre-trained language representations with self-
supervised objectives have become standard in a
wide range of NLP tasks. Previous work can be
divided into two main categories: feature-based
approaches and fine-tuning approaches.

The recent proposed feature-based approaches
mainly focus on learning contextualized word rep-
resentations such as CoVe (McCann et al., 2017)
and ELMo (Peters et al., 2018). As with tradi-
tional word embeddings, these learned representa-
tions are also typically used as features in a down-
stream model. On the other hand, fine-tuning ap-
proaches mainly pre-train a language model on a
large corpus with an unsupervised objective and
then fine-tune the model with in-domain labeled
data for downstream applications. The advantage
of these approaches is that few parameters need
to be learned from scratch. Specifically, Howard
and Ruder (2018) propose ULMFiT, which uses a
different learning rate for each layer with learning
warmup and gradual unfreezing. GPT (Radford
et al., 2018) uses a transformer encoder (Vaswani
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et al., 2017) instead of an LSTM and jointly fine-
tunes with the language modeling objective. More-
over, BERT (Devlin et al., 2019) is a large-scale
language model consisting of multiple layers of
transformer, which further incorporates bidirec-
tional representations. BERT is the state-of-art
pre-training language model. However, in the cross-
domain sentiment analysis scenario, BERT is task-
agnostic and can not distinguish the characteristic
of source and target domain.

3 Model

In this section, we introduce the proposed model
for cross-domain sentiment analysis in detail. We
begin by giving the problem definition and nota-
tions. Then BERT and post-training method are
formally presented in the second subsection. Fi-
nally, the adversarial training process is introduced.
We also give a theoretical analysis of our model.

3.1 Problem Definition and Notations

In the task of cross-domain sentiment analysis,
we are given two domains Ds and Dt which de-
note a source domain and a target domain, respec-
tively. In the source domain, Dl

s = {xis, yis}
N l

s
i=1

are N l
s labeled source domain examples, where

xis means a sentence and yis is the correspond-
ing polarity label. There are also Nu

s unlabeled
data Du

s = {xis}
N l

s+Nu
s

i=1+N l
s

in the source domain. In
the target domain, there is a set of unlabeled data
Dt = {xit}

Nt
i=1, where Nt is the number of unla-

beled data. Cross-domain sentiment analysis de-
mands us to learn a robust classifier trained on
labeled source domain data to predict the polarity
of unlabeled sentences from the target domain.

3.2 Background of BERT

BERT (Devlin et al., 2019) builds on the Trans-
former networks (Vaswani et al., 2017), which re-
lies purely on attention mechanism and allows mod-
eling of dependencies without regard to their dis-
tance in the input sequences. BERT is pre-trained
by predicting randomly masked words in the input
(MLM task) and classifying whether the sentences
are continuous or not (NSP task). The MLM task
allows the word representation to fuse the left and
the right context, and the NSP task enables BERT
to infer the sentences’ relationship. The pre-trained
BERT can be easily fine-tuned by one softmax out-
put layer for classification task.

3.3 BERT Post-training

Despite the success, BERT suffers from the do-
main challenge. BERT is pre-trained by Wikipedia,
leading to task-agnostic and little understanding
of opinion text. Especially in the cross-domain
sentiment analysis scenario, the lack of abundant
labeled data limits the fine-tune procedure, which
degrades BERT due to the domain shift. This task
also demands BERT to distinguish the character-
istic of source and target domain for better knowl-
edge transfer. Therefore, we propose BERT post-
training which takes BERT’s pre-trained weights
as the initialization for basic language understand-
ing and adapts BERT by novel self-supervised pre-
trained tasks: domain-distinguish task and target
domain masked language model.

3.3.1 Domain-distinguish Task
The next sentence prediction (NSP) task encour-
ages BERT to model the relationship between
sentences beyond word-level, which benefits the
task of Question Answering and Natural Lan-
guage Inference. However, cross-domain senti-
ment analysis operates on a single text sentence
and does not require the inference ability. Instead,
the ability to distinguish domains plays an im-
portant role. Therefore, during the post-training
procedure, we replace the NSP task by domain-
distinguish task (DDT). Specifically, we construct
the sentence-pair input: [CLS] sentence A
[SEP] sentence B [SEP], where [CLS]
and [SEP] are special embeddings for classifi-
cation and separating sentences. 50% of time
sentence A and sentence B are all ran-
domly sampled from target domain reviews, we
label it TargetDomain. And 50% of time
sentence A and sentence B come from tar-
get domain and another domain, whose label is
MixDomain. We do not fix the collocation, in an-
other word, we only ensure that the two sentences
come from different domains but the order is ran-
dom. For example:

Input = [CLS] The mouse is smooth and great 
[SEP] The screen is plain [SEP]

Label =  TargetDomain

Input = [CLS] This book is boring [SEP] The 
system of the laptop is stable [SEP]

Label =  MixDomain

The domain-distinguish pre-training is a classifi-
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cation task. We add one output layer on the pooled
representation and maximize the likelihood of the
right label. The domain-distinguish pre-training
enables BERT to distill the specific features for
different domains, which enhances the downstream
adversarial training and benefits the cross-domain
sentiment analysis.

3.3.2 Target Domain MLM

To inject the target domain knowledge, we lever-
age the masked language model (MLM) (Devlin
et al., 2019). It requires to predict the randomly
masked words in the sentence, which encourages
BERT to construct a deep bidirectional representa-
tion. In the cross-domain sentiment analysis, there
are no labeled data but plenty of unlabeled data
in the target domain to post-train BERT by MLM.
Specifically, we replace 15% of tokens by [MASK]
at random. The final hidden vectors corresponding
to the mask tokens are fed into an output softmax
over the vocabulary. We maximize the likelihood
of the masked token id.

Post-training by unlabeled review data in target
domain will effectively alleviate the shift of domain
knowledge. For example, if the masked word is
an opinion word in “This movie is [MASK]”, this
objective challenges BERT to learn the representa-
tion for fine-grained opinion words in movie review
domain, such as “touchable” or “disturbing”.

One problem is that the DDT task mixes sen-
tences from other domains in the sentence pair.
The sentence from other domains will be the noise
which brings domain bias. Therefore, we only
mask the tokens in target domain sentences if the
domain-distinguish task label is MixDomain.

The total loss of the post-training procedure
is the sum of losses of target domain MLM and
domain-distinguish task. The adaptation takes
about 5 hours to complete on one single NVIDIA
P100 GPU.

3.4 Adversarial Training

The post-training procedure injects target domain
knowledge and brings domain-awareness to BERT.
Based on the post-trained BERT, we now could
utilize the adversarial training to abandon the dis-
tilled domain-specific features to derive the domain-
invariant features. Specifically, a sentiment clas-
sifier and a domain discriminator is designed op-
erating on the hidden state h[CLS] of the special
classification embedding [CLS].

3.4.1 Sentiment Classifier
The sentiment classifier is simply a fully-connected
layer and outputs the probabilities through a soft-
max layer:

ys = softmax(Wsh[CLS] + bs). (1)

The classifier is trained by the labeled data in
the source domain and the loss function is cross-
entropy:

Lsen = − 1

N l
s

N l
s∑

i=1

K∑
j=1

ŷis(j)logyis(j), (2)

where ŷis ∈ {0, 1} is the ground truth label in the
source domain, and K denotes the number of dif-
ferent polarities.

3.4.2 Domain Discriminator
The domain discriminator aims to predict domain
labels of samples, i.e., coming from the source or
target domain. The parameters of BERT are opti-
mized to maximize the loss of the domain discrimi-
nator. This target will encourage BERT to fool the
domain discriminator to generate domain-invariant
features.

Specifically, before feeding h[CLS] to the domain
discriminator, the hidden state of classification em-
bedding [CLS] h[CLS] goes through the gradient
reversal layer (GRL) (Ganin et al., 2016). Dur-
ing the forward propagation, the GRL acts as an
identity function but during the backpropagation,
the GRL reverses the gradient by multiplying it
by a negative scalar λ. GRL can be formulated as
a ‘pseudo-function’ Qλ(x) by two equations be-
low in order to describe its forward- and backward-
behaviors:

Qλ(x) = x, (3)

∂Qλ(x)

∂x
= −λI. (4)

We denote the hidden state h[CLS] through the
GRL as Qλ(h[CLS]) = ĥ[CLS] and then feed it to
the domain discriminator as:

d = softmax(Wdĥ[CLS] + bd). (5)

The target is to minimize the cross-entropy for
all data from the source and target domains:

Ldom = − 1

Ns +Nt

Ns+Nt∑
i

K∑
j

d̂i(j)logdi(j),

(6)
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where d̂i ∈ {0, 1} is the ground truth domain label.
Due to the GRL, the parameters for domain dis-
criminator θdd are optimized to increase the ability
to predict domain labels, however, the parameters
for BERT θBERT are optimized to fool the domain
discriminator, leading to domain-invariant features.

3.4.3 Joint Learning

The sentiment classifier and the domain discrimi-
nator are jointly trained, and the total loss is:

Ltotal = Lsen + Ldom. (7)

The post-training procedure and our proposed
domain-distinguish pre-training task will enhance
the adversarial training to obtain lower classifica-
tion error in the target domain, we will analyze it
in Sec 3.5.

3.5 Theoretical Analysis

In this section, we provide a theoretical analysis
of our approach. First, we provide an insight into
existing theory, then we introduce an expansion of
the theory related to our method and explain how
the post-training and adversarial training cooperate
to obtain a remarkably better result than state-of-
the-art methods.

For each domain, there is a labeling function on
inputs X , defined as f : X → [0, 1]. The ideal
label functions for source and target domain are
denoted as: fs and ft, respectively. We define a
hypothesis label function h: X → [0, 1] and a
disagreement function:

ε(h1, h2) = E[|h1(x)− h2(x)|]. (8)

Then the expected error on the source samples of
h is defined as: εs(h) = εs(h, fs). For the target
domain, we have: εt(h) = εt(h, ft).

The divergence between source and target do-
main could thus be measured by H∆H-distance,
which is defined as follows:

dH∆H(Ds, Dt) = 2 sup
h,h′∈H

|εs(h, h′)− εt(h, h′)|

(9)
This distance is firstly proposed in (Ben-David
et al., 2010) and frequently used to measure the
adaptability between different domains (Shen et al.,
2018; Chen et al., 2019).

3.5.1 Theorem 1.

Let H be the hypothesis class. Given two different
domains Ds, Dt, we have:

∀h ∈ H, εt(h) ≤ εs(h) +
1

2
dH∆H(Ds, Dt) + C

(10)
This theorem means that the expected error on the
target domain is upper bounded by three terms: (1)
the expected error on the source domain; (2) the
divergence between the distributions Ds and Dt;
(3) the error of the ideal joint hypothesis. Normally,
C is disregarded because it is considered to be
negligibly small. Therefore, the first and second
terms are important quantitatively in computing the
target error.

For the first term, the error rate of source domain
εs, it is easy to minimize with source labeled train-
ing data. Moreover, we adopt BERT, which brings
powerful contextual representation for lower error
rate. The second item in Eq. 10 demands us to
generate similar features among different domains.
Our proposed domain-distinguish pre-training task
and post-training for BERT enable the model to
identify the specific features for different domains.
This ability will enhance the domain discriminator,
which will help to find more complicated domain
specific features and get abandoned by adversarial
training. Therefore, we further decrease the diver-
gence between the domains, which is quantitatively
measured by A-distance in Sec 4.6.

4 Experiments

In this section, we empirically evaluate the perfor-
mance of our proposed methods.

4.1 Datasets and Experimental Setting

We conduct the experiments on the widely-used
Amazon reviews benchmark datasets collected by
(Blitzer et al., 2007b). It contains reviews from four
different domains: Books (B), DVDs (D), Elec-
tronics (E) and Kitchen appliances (K). For each
domain, there are 2,000 labeled reviews and ap-
proximately 4000 unlabeled reviews. Following
the convention of previous works (Ziser and Re-
ichart, 2018; Ganin et al., 2016; Qu et al., 2019), we
construct 12 cross-domain sentiment analysis tasks.
For each task, we employ a 5-fold cross-validation
protocol, that is, in each fold, 1600 balanced sam-
ples are randomly selected from the labeled data
for training and the rest 400 for validation.
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S→ T
Previous Models BERT

DANN PBLM HATN ACAN IATN BERT HATN-BERT BERT-AT BERT-DA BERT-DAAT
D→ B 81.70 82.50 86.30 82.35 87.00 89.40 89.81 89.55 90.40 90.86
E→ B 78.55 71.40 81.00 79.75 81.80 86.50 87.10 87.15 88.31 88.91
K→ B 79.25 74.20 83.30 80.80 84.70 87.55 87.88 87.65 87.90 87.98
B→ D 82.30 84.20 86.10 83.45 86.80 88.96 89.36 89.70 89.75 89.70
E→ D 79.70 75.00 84.00 81.75 84.10 87.95 88.81 88.20 89.03 90.13
K→ D 80.45 79.80 84.50 82.10 84.10 87.30 87.89 87.72 88.35 88.81
B→ E 77.60 77.60 85.70 81.20 86.50 86.15 87.21 87.30 88.11 89.57
D→ E 79.70 79.60 85.60 82.80 86.90 86.55 86.99 86.05 88.15 89.30
K→ E 86.65 87.10 87.00 86.60 87.60 90.45 90.31 90.25 90.59 91.72
B→ K 76.10 82.50 85.20 83.05 85.90 89.05 89.41 89.55 90.65 90.75
D→ K 77.35 83.20 86.20 78.60 85.80 87.53 87.59 87.69 88.55 90.50
E→ K 83.95 87.80 87.90 83.35 88.70 91.60 92.01 91.91 92.75 93.18
Average 80.29 80.40 85.10 82.15 85.90 88.25 88.69 88.56 89.37 90.12

Table 1: Accuracy of domain adaptation on Amazon benchmark.

4.2 Implementation Details

We adopt BERTbase(uncased) as the basis for all
experiments. When generating the post-training
data, each sentence in the target domain gets dupli-
cated 10 times with different masks and sentences
pair. We limit the maximum sequence length is
256. During the post-training, we train with batch
size of 16 for 10000 steps. The optimizer is Adam
with learning rate 2e-5, β1 = 0.9, β2 = 0.999,
L2 weight decay of 0.01. During the adversarial
training, The weights in sentiment classifier and do-
main discriminator are initialized from a truncated
normal distribution with mean 0.0 and stddev 0.02.
In the gradient reversal layer (GRL), we define the
training progress as p = t

T , where t and T are cur-
rent training step and the maximum training step,
respectively, and the adaptation rate λ is increased
as λ = 2

1+exp(−10p) − 1.

4.3 Compared Methods

We compare our method with 5 state-of-the-art
methods: DANN (Ganin et al., 2016), PBLM
(Ziser and Reichart, 2018), HATN (Li et al., 2018),
ACAN (Qu et al., 2019), IATN (Zhang et al., 2019).
We also design several variants of BERT as base-
lines:

• BERT: Fine-tuning vanilla BERT by the
source domain labeled data.
• HATN-BERT: HATN (Li et al., 2018) model

based on BERT.
• BERT-AT: This method conducts the adver-

sarial training operating on vanilla BERT.

• BERT-DA: Fine-tuning domain-aware BERT
by the source domain labeled data. The
domain-aware BERT is obtained by post-
training.
• BERT-DAAT: Our proposed method intro-

duced in Sec 3.

4.4 Experimental Results

Table 2 shows the classification accuracy of differ-
ent methods. We can observe that the proposed
BERT-DAAT outperforms all other methods.

For the previous models, they mostly base on
the word2vec (Mikolov et al., 2013) or glove (Pen-
nington et al., 2014). Compared to BERT’s con-
textual word representation, they can not model
complex characteristics of word use and how these
uses vary across linguistic contexts, resulting in rel-
atively worse overall performance. We can see that
the vanilla BERT, which is fine-tuned only by the
source domain labeled data without utilizing target
domain data, can still outperform all the previous
methods. For fair comparison, we reproduce the
experiment of HATN model (Li et al., 2018) that
incorporates BERT as the base model. As shown
in Table 2, HATN-BERT achieves a comparable
result with BERT-AT.

For the BERT variants, we did not see a remark-
able improvement in the results of BERT-AT, which
conducts adversarial training on BERT. It demon-
strates that, in the task of cross-domain sentiment
analysis, the bottleneck of BERT is the lack of
domain-awareness and can not be tackled purely
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Figure 1: The effect of post-training and adversarial training on the distribution of the extracted features. The
figure shows t-SNE visualization of the BERT’s hidden state for the B→ E task. The red, blue, green and black
points denote the source negative, source positive, target negative and target positive examples, respectively.

by adversarial training. On the contrary, the post-
training procedure could improve the result by
1.12% on average. It verifies the effectiveness of
our proposed post-training methods that could in-
ject the domain knowledge to BERT. As expected,
BERT-DAAT performs best among the variants of
BERT, 0.75% absolute improvement to BERT-DA
and 1.87% absolute improvement to BERT, show-
ing that the post-training procedure could further
enhance the adversarial training.

4.5 Visualization of Features

To intuitively assess the effects of the post-training
and adversarial training on BERT, we further per-
form a visualization of the feature representations
of the variants of BERT for the training data in the
source domain and the testing data in the target do-
main for the B→ E task. As shown in Figure 1, the
graphs are obtained by applying t-SNE on the set of
all representation of source and target data points.
Every sample is mapped into a 768-dimensional
feature space through BERT and projected back
into a two-dimensional plane by the t-SNE.

In the vanilla BERT representation (first sub-
graph in Figure 1), we could observe that data
points of different polarities in source domain are
well separated. While for the target domain, some
data points are mixed together. It shows that
only utilizing source domain labeled data is not
enough for the target domain classification. For the
post-trained BERT (subgraph for BERT-DA), data
points belong to four clusters, indicating that do-
mains and sentiment polarities are both well classi-
fied. It verifies that our post-training strategy brings
domain-awareness to BERT. Moreover, compared
to the first subgraph, the boundary for sentiment
polarity classification is more clear, showing that
injecting domain knowledge by post-training is ben-
eficial to sentiment classification.

The latter two subgraphs in Figure 1 are the fea-
ture distributions obtained by adversarial training.
One common characteristic is that data samples
from different domains are very close to each other
through adversarial training. However, the bound-
ary for sentiment polarity classification is not very
clear in BERT-AT’s feature representation, result-
ing in degraded performance. For our proposed
BERT-DAAT, the post-training enables the domain-
awareness and help to distill more complicated do-
main specific features. The adversarial training is
thus enhanced to get more domain-invariant fea-
tures. We can find that target points are homoge-
neously spread out among source points, which
decreases the divergence between the domains. Ac-
cording to Theorem 10, it can lower the upper
boundary of the target error.

4.6 A-distance

Theorem 10 shows that the divergence between
domains dH∆H(Ds, Dt) plays an important role.
To quantitatively measure it, we compare the A-
distance, which is usually used to measure domain
discrepancy (Ben-David et al., 2010). The defini-
tion of A-distance is: dA = 2(1− 2ε), where ε is
the generalization error of a classifier trained with
the binary classification task of discriminating the
source domain and target domain. More precisely,
to obtain A-distance, we firstly split source and
target domain data into two subsets of equal size
and get the feature representation. We then train
a linear SVM on the first subset to predict which
domain the sample comes from. The error rate ε
could be calculated on the second subset through
the trained SVM, and A-distance is obtained by
dA = 2(1− 2ε).

We compare the A-distance of BERT, BERT-
AT, and BERT-DAAT. Results are shown in Figure
2. For each cross-domain sentiment analysis task,
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Figure 2: Comparison of A-distance of different mod-
els.

the A-distance of BERT is highest. It is easy to
conclude that applying adversarial training can ef-
fectively decrease the A-distance. Overall, the A-
distance of BERT-DAAT is lower than BERT-AT,
verifying that the post-training could enhance the
adversarial training to decrease the domain discrep-
ancy.

4.7 Ablation Studies
To analyze the effect of different components in-
cluding post-training steps and post-training tasks,
we conduct the ablation experiments.

4.7.1 Effects of Post-Training Steps
In this subsection, we study the effect of post-
training steps. Figure 3 presents the accuracy on the
task of E→K based on the checkpoint that has been
post-trained for k steps. The results for BERT-DA
are obtained by fine-tuning source domain labeled
data, BERT-DAAT is adversarial training by source
labeled data and target unlabeled data.

We find that, with limited post-training steps
(fewer than 5000 steps), BERT-DA and BERT-
DAAT perform similarly with BERT and BERT-AT,
respectively. However, given post-training steps
more than 5000, both the results of BERT-DA and
BERT-DAAT see an increase. Especially, after
post-training more than 5000 steps, BERT-DAAT
shows remarkable strengths compared to BERT-
DA. This shows that plenty of post-training steps is
necessary to inject domain knowledge and domain-
awareness.

4.7.2 Effects of Post-training Tasks
The post-training tasks in our work include tar-
get domain masked language model (MLM) and
our proposed domain-distinguish task (DDT). We
design two models which ablate MLM and DDT

A
cc
ur
ac
y(
%
)

Post-training steps

 BERT-DA
 BERT-DAAT

Figure 3: Ablation study on the number of post-training
steps. The x-axis is the value of post-training steps k.
The y-axis is the accuracy on the task of E→ K.

Model D→B E→B K→B

BERT 89.40 86.50 87.55

BERT-DAAT 90.86 88.91 87.98
-w/o MLM 89.91 87.39 87.80
-w/o DDT 90.02 88.01 87.63

Table 2: Ablation study over post-training tasks. w/o
means without.

separately and compare them with BERT-DAAT
on the tasks of D→B, E→B, and K→B. Results in
Table 2 indicate that: the target domain masked lan-
guage model task (MLM) and domain-distinguish
task(DDT) are both beneficial to cross-domain sen-
timent analysis.

5 Conclusion and Future Work

In this paper, we propose the BERT-DAAT model
for cross-domain sentiment analysis. Our purpose
is to inject the target domain knowledge to BERT
and encourage BERT to be domain-aware. Specif-
ically, we conduct post-training and adversarial
training. A novel domain-distinguish pre-training
task is designed to distill the domain-specific fea-
tures in a self-supervised. Experimental results on
Amazon dataset demonstrate the effectiveness of
our model, which remarkably outperforms state-of-
the-art methods.

The proposed post-training procedure could also
be applied to other domain adaptation scenarios
such as named entity recognition, question answer-
ing, and reading comprehension. In the future, we
would like to investigate the application of our the-
ory in these domain adaptation tasks.
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