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Abstract

This paper presents the first unsupervised ap-
proach to lexical semantic change that makes
use of contextualised word representations.
We propose a novel method that exploits the
BERT neural language model to obtain repre-
sentations of word usages, clusters these rep-
resentations into usage types, and measures
change along time with three proposed metrics.
We create a new evaluation dataset and show
that the model representations and the detected
semantic shifts are positively correlated with
human judgements. Our extensive qualitative
analysis demonstrates that our method cap-
tures a variety of synchronic and diachronic
linguistic phenomena. We expect our work to
inspire further research in this direction.

1 Introduction

In the fourteenth century the words boy and girl
referred respectively to a male servant and a young
person of either sex (Oxford English Dictionary).
By the fifteenth century a narrower usage had
emerged for girl, designating exclusively female in-
dividuals, whereas by the sixteenth century boy had
lost its servile connotation and was more broadly
used to refer to any male child, becoming the mas-
culine counterpart of girl (Bybee, 2015). Word
meaning is indeed in constant mutation and, since
correct understanding of the meaning of individual
words underpins general machine reading compre-
hension, it has become increasingly relevant for
computational linguists to detect and characterise
lexical semantic change—e.g., in the form of laws
of semantic change (Dubossarsky et al., 2015; Xu
and Kemp, 2015; Hamilton et al., 2016)—with the
aid of quantitative and reproducible evaluation pro-
cedures (Schlechtweg et al., 2018).

Most recent studies have focused on shift de-
tection, the task of deciding whether and to what
extent the concept evoked by a word has changed

between time periods (e.g., Gulordava and Ba-
roni, 2011; Kim et al., 2014; Kulkarni et al., 2015;
Del Tredici et al., 2019; Hamilton et al., 2016; Bam-
ler and Mandt, 2017; Rosenfeld and Erk, 2018).
This line of work relies mainly on distributional
semantic models, which produce one abstract repre-
sentation for every word form. However, aggregat-
ing all senses of a word into a single representation
is particularly problematic for semantic change as
word meaning hardly ever shifts directly from one
sense to another, but rather typically goes through
polysemous stages (Hopper et al., 1991). This limi-
tation has motivated recent work on word sense in-
duction across time periods (Lau et al., 2012; Cook
et al., 2014; Mitra et al., 2014; Frermann and Lap-
ata, 2016; Rudolph and Blei, 2018; Hu et al., 2019).
Word senses, however, have shortcomings them-
selves as they are a discretisation of word meaning,
which is continuous in nature and modulated by
context to convey ad-hoc interpretations (Brugman,
1988; Kilgarriff, 1997; Paradis, 2011).

In this work, we propose a usage-based approach
to lexical semantic change, where sentential con-
text modulates lexical meaning “on the fly” (Lud-
low, 2014). We present a novel method that (1) ex-
ploits a pre-trained neural language model (BERT;
Devlin et al., 2019) to obtain contextualised rep-
resentations for every occurrence of a word of in-
terest, (2) clusters these representations into usage
types, and (3) measures change along time. More
concretely, we make the following contributions:

• We present the first unsupervised approach to
lexical semantic change that makes use of state-
of-the-art contextualised word representations.

• We propose several metrics to measure seman-
tic change with this type of representation.
Our code is available at https://github.com/
glnmario/cwr4lsc.

• We create a new evaluation dataset of human sim-

https://github.com/glnmario/cwr4lsc
https://github.com/glnmario/cwr4lsc
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ilarity judgements on more than 3K word usage
pairs across different time periods, available at
https://doi.org/10.5281/zenodo.3773250.

• We show that both the model representations
and the detected semantic shifts are positively
correlated with human intuitions.

• Through in-depth qualitative analysis, we show
that the proposed approach captures synchronic
phenomena such as word senses and syntactic
functions, literal and metaphorical usage, as well
as diachronic linguistic processes related to nar-
rowing and broadening of meaning across time.

Overall, our study demonstrates the potential of
using contextualised word representations for mod-
elling and analysing lexical semantic change and
opens the door to further work in this direction.

2 Related Work

Semantic change modelling Lexical semantic
change models build on the assumption that mean-
ing change results in the modification of a word’s
linguistic distribution. In particular, with the excep-
tion of a few methods based on word frequencies
and parts of speech (Michel et al., 2011; Kulkarni
et al., 2015), lexical semantic change detection has
been addressed following two main approaches:
form-based and sense-based (for an overview, see
Kutuzov et al., 2018; Tang, 2018).

In form-based approaches independent models
are trained on the time intervals of a diachronic
corpus and the distance between representations
of the same word in different intervals is used as
a semantic change score (Gulordava and Baroni,
2011; Kulkarni et al., 2015). Representational co-
herence between word vectors across different pe-
riods can be guaranteed by incremental training
procedures (Kim et al., 2014) as well as by post
hoc alignment of semantic spaces (Hamilton et al.,
2016). More recent methods capture diachronic
word usage by learning dynamic word embeddings
that vary as a function of time (Bamler and Mandt,
2017; Rosenfeld and Erk, 2018; Rudolph and Blei,
2018). Form-based models depend on a strong sim-
plification: that a single representation is sufficient
to model the different usages of a word.

Time-dependent representations are also created
in sense-based approaches: in this case word mean-
ing is encoded as a distribution over word senses.
Several Bayesian models of sense change have
been proposed (Wijaya and Yeniterzi, 2011; Lau

et al., 2012, 2014; Cook et al., 2014). Among these
is the recent SCAN model (Frermann and Lapata,
2016), which represents (1) the meaning of a word
in a time interval as a multinomial distribution over
word senses and (2) word senses as probability
distributions over the vocabulary. The main limi-
tation of sense-based models is that they rely on
a bag-of-words representation of context. Further-
more, many of these models keep the number of
senses constant across time intervals and require
this number to be manually set in advance.

Unsupervised approaches have been proposed
that do not rely on a fixed number of senses. For
example, the method for novel sense identification
by Mitra et al. (2015) represents senses as clus-
ters of short dependency-labelled contexts. Like
ours, this method analyses word forms within the
grammatical structures they appear. However, it re-
quires syntactically parsed diachronic corpora and
focuses exclusively on nouns. None of these restric-
tions limit our proposed approach, which leverages
neural contextualised word representations.

Contextualised word representations Several
approaches to context-sensitive word representa-
tions have been proposed in the past. Schütze
(1998) introduced a clustering-based disambigua-
tion algorithm for word usage vectors, Erk and
Padó (2008) proposed creating multiple vectors
for the same word and Erk and Padó (2010) pro-
posed to directly learn usage-specific representa-
tions based on the set of exemplary contexts within
which the target word occurs.

Recently, neural contextualised word representa-
tions have gained widespread use in NLP, thanks to
deep learning models which learn usage-dependent
representations while optimising tasks such as ma-
chine translation (CoVe; McCann et al., 2017) and
language modelling (Dai and Le, 2015, ULMFiT;
Howard and Ruder, 2018, ELMo; Peters et al.,
2018, GPT; Radford et al., 2018, 2019, BERT; De-
vlin et al., 2019). State-of-the-art language mod-
els typically use stacked attention layers (Vaswani
et al., 2017), they are pre-trained on a very large
amount of textual data, and they can be fine-tuned
for specific downstream tasks (Howard and Ruder,
2018; Radford et al., 2019; Devlin et al., 2019).

Contextualised representations have been shown
to encode lexical meaning dynamically, reaching
high accuracy on, e.g., the binary usage similar-
ity judgements of the WiC evaluation set (Pilehvar
and Camacho-Collados, 2019), performing on a

https://doi.org/10.5281/zenodo.3773250
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par with state-of-the-art word sense disambigua-
tion models (Wiedemann et al., 2019), and proving
useful for the supervised derivation of time-specific
sense representation (Hu et al., 2019). In this work,
we investigate the potential of contextualised word
representations to detect and analyse lexical seman-
tic change, without any lexicographic supervision.

3 Method: A Usage-based Approach to
Lexical Semantic Change

We introduce a usage-based approach to lexical
semantic change analysis which relies on contextu-
alised representations of unique word occurrences
(usage representations). First, given a diachronic
corpus and a list of words of interest, we use the
BERT language model (Devlin et al., 2019) to com-
pute usage representations for each occurrence of
these words. Then, we cluster all the usage repre-
sentations collected for a given word into an auto-
matically determined number of partitions (usage
types) and organise them along the temporal axis.
Finally, we propose three metrics to quantify the
degree of change undergone by a word.

3.1 Language Model
We produce usage representations using the BERT
language model (Devlin et al., 2019), a multi-
layer bidirectional Transformer encoder trained on
masked token prediction and next sentence predic-
tion, on the BooksCorpus (800M words) (Zhu et al.,
2015) and on English text passages extracted from
Wikipedia (2,500M words). There are two versions
of BERT. For space and time efficiency, we use the
smaller base-uncased version, with 12 layers, 768
hidden dimensions, and 110M parameters.1

3.2 Usage Representations
Given a word of interest w and a context of occur-
rence s = (v1, ..., vi, ..., vn) with w = vi, we ex-
tract the activations of all of BERT’s hidden layers
for sentence position i and sum them dimension-
wise. We use addition because neither concatena-
tion nor selecting a subset of the layers produced
notable differences in the relative geometric dis-
tance between word representations.

The set of N usage representations for w in a
given corpus can be expressed as the usage matrix
Uw = (w1, . . . ,wN ). For each usage representa-
tion in the usage matrix Uw, we store the context of

1We rely on Hugging Face’s implementation of BERT
(available at https://github.com/huggingface/
transformers).

(a) PCA visualisation of the
usage representations.
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(b) Probability-based usage
type distributions along time.

Figure 1: Usage representations and usage type distri-
butions generated with occurrences of the word atom
in COHA (Davies, 2012). Colours encode usage types.

occurrence (a 128-token window around the target
word) as well as a temporal label tw indicating the
time interval of the usage.

3.3 Usage Types
Once we have obtained a word-specific matrix of
usage vectors Uw, we standardise it and cluster
its entries using K-Means.2 This step partitions
usage representations into clusters of similar usages
of the same word, or usage types (see Figure 1a),
and thus it is directly related to automatic word
sense discrimination (Schütze, 1998; Pantel and
Lin, 2002; Manandhar et al., 2010; Navigli and
Vannella, 2013, among others).

For each word independently, we automatically
select the number of clusters K that maximises the
silhouette score (Rousseeuw, 1987), a metric of
cluster quality which favours intra-cluster coher-
ence and penalises inter-cluster similarity, without
the need for gold labels. For each value of K, we
execute 10 iterations of Expectation Maximization
to alleviate the influence of different initialisation
values (Arthur and Vassilvitskii, 2007). The final
clustering for a given K is the one that yields the
minimal distortion value across the 10 runs, i.e.,
the minimal sum of squared distances of each data
point from its closest centroid. We experiment with
K ∈ [2, 10]. We choose the range [2, 10] heuris-
tically: we forgo K = 1 as K-Means and the
silhouette score are ill-defined for this case, while
keeping the number of possible clusters manage-
able computationally. This excludes the possibility
that a word has a single usage type. Alternatively,
we could use a measure of intra-cluster dispersion
for K = 1, and consider a word monosemous if its
dispersion value is below a threshold d (if the dis-
persion is higher than d, we would discard K = 1

2Other clustering methods are also possible. For this first
study, we choose the widely used K-Means (scikit-learn).

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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and use the silhouette score to find the bestK ≥ 2).
There also exist clustering methods that select the
optimal K automatically, e.g. DBSCAN or Affin-
ity Propagation (Martinc et al., 2020). They never-
theless require method-specific parameter choices
which indirectly determine the number of clusters.

By counting the number of occurrences of each
usage type k in a given time interval t (we refer
to this count as freq(k, t)), we obtain frequency
distributions ftw for each interval under scrutiny:

ftw ∈ NKw : ftw[k] = freq(k, t) k ∈ [1,Kw] (1)

When normalised, frequency distributions can be
interpreted as probability distributions over usage
types ut

w : ut
w[k] =

1
Nt

ftw[k]. Figure 1b illustrates
the result of this process.

3.4 Quantifying Semantic Change

We propose three metrics for the automatic quan-
tification of lexical semantic change using contex-
tualised word representations. The first two (en-
tropy difference and Jensen-Shannon divergence)
are known metrics for comparing probability dis-
tributions. In our approach, we apply them to
measure variations in the relative prominence of
coexisting usage types. We conjecture that these
kinds of metric can help detect semantic change
processes that, e.g., lead to broadening or narrow-
ing (i.e., to increase or decrease, respectively, in
the number or relative distribution of usage types).

The third metric (average pairwise distance)
only requires a usage matrix Uw and the tempo-
ral labels tw (Section 3.2). Since it does not rely on
usage type distributions, it is not sensitive to possi-
ble errors stemming from the clustering process.

Entropy difference (ED) We propose measur-
ing the uncertainty (e.g., due to polysemy) in the
interpretation of a word w in interval t using the
normalised entropy of its usage distribution ut

w:

η(ut
w) = logKw

(
Kw∏
k=1

ut
w[k]

−ut
w[k]

)
(2)

To quantify how uncertainty over possible interpre-
tations varies across time intervals, we compute the
difference in entropy between the two usage type
distributions in these intervals: ED(ut

w,ut′
w) =

η(ut′
w)− η(ut

w). We expect high ED values to sig-
nal the broadening of a word’s interpretation and
negative values to indicate narrowing.

Jensen-Shannon divergence (JSD) The second
metric takes into account not only variations in the
size of usage type clusters but also which clusters
have grown or shrunk. It is the Jensen-Shannon
divergence (Lin, 1991) between usage type distri-
butions:

JSD(ut
w,u

t′
w) = H

(
1

2

(
ut
w + ut′

w

))
− 1

2

(
H
(
ut
w

)
−H

(
ut′
w

)) (3)

where H is the Boltzmann-Gibbs-Shannon entropy.
Very dissimilar usage distributions yield high JSD
whereas low JSD values indicate that the propor-
tions of usage types barely change across periods.

Average pairwise distance (APD) While the
previous two metrics rely on usage type distribu-
tions, it is also possible to quantify change bypass-
ing the clustering step into usage types, e.g. by
calculating the average pairwise distance between
usage representations in different periods t and t′:

APD(Ut
w,U

t′
w) =

1

N t ·N t′

∑
xi∈Ut

w, xj∈Ut′
w

d(xi, xj)

(4)

where Ut
w is a usage matrix constructed with occur-

rences of w only in interval t. We experiment with
cosine, Euclidean, and Canberra distance.

Generalisation to multiple time intervals The
presented metrics quantify semantic change across
pairs of temporal intervals (t, t′). When more than
two intervals are available, we measure change
across all contiguous intervals (m(Ut

w,Ut+1
w ),

where m is one of the metrics), and collect these
values into vectors. We then transform each vec-
tor into a scalar change score by computing the
vector’s mean and maximum values.3 Whereas the
mean is indicative of semantic change across the en-
tire period under consideration, the max pinpoints
the pair of successive intervals where the strongest
shift has occurred.

3The Jensen-Shannon divergence can also be measured
with respect to T > 2 probability distributions (Ré and
Azad, 2014): JSD

(
u1
w, . . . , uT

w

)
= H

(
1
T

∑T
i=1 ui

w

)
−

1
T

∑T
i=1 H

(
ui
w

)
. However, this definition of the JSD is insen-

sitive to the order of the temporal intervals and yields lower
correlation with human semantic change ratings (cfr. Section
5.2) than the pairwise metrics.
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4 Data

We examine word usages in a large diachronic cor-
pus of English, the Corpus of Historical Ameri-
can English (COHA, Davies, 2012), which covers
two centuries (1810–2009) of language use and
includes a variety of genres, from fiction to news-
papers and popular magazines, among others. In
this study, we focus on texts written between 1910
and 2009, for which a minimum of 21M words per
decade is available, and discard previous decades,
where data are less balanced per decade.

We use the 100 words annotated with semantic
shift scores by Gulordava and Baroni (2011) as our
target words. These scores are human judgements
collected by asking five annotators to quantify the
degree of semantic change undertaken by each
word (shown out of context) from the 1960’s to the
1990’s. We exclude extracellular as in COHA this
word only appears in three decades; all other words
appear in at least 8 decades, with a minimum and
maximum frequency of 191 and 108,796, respec-
tively. We refer to the resulting set of 99 words and
corresponding shift scores as the ‘GEMS dataset’
or the ‘GEMS words’, as appropriate.

We collect a contextualised representation for
each occurrence of these words in the second cen-
tury of COHA, using BERT as described in Sec-
tion 3.2. This results in a large set of usage repre-
sentations, ∼1.3M in total, which we cluster into
usage types using K-Means and silhouette coeffi-
cients (Section 3.3). We use these usage represen-
tations and usage types in the evaluation and the
analyses offered in the remaining of the paper.

5 Correlation with Human Judgements

Before using our proposed method to analyse lan-
guage change, we assess how its key components
compare with human judgements. We test whether
the clustering into usage types reflects human simi-
larity judgements (Section 5.1) and to what extent
the degree of change computed with our metrics
correlates with shift scores provided by humans
(Section 5.2).

5.1 Evaluation of Usage Types
The clustering of contextualised representations
into usage types is one of the main steps in our
method (see Section 3.3). It relies on the similarity
values between pairs of usage representations cre-
ated by the language model. To quantitatively eval-
uate the quality of these similarity values (and thus,

by extension, the quality of usage representations
and usage types), we compare them to similarity
judgements by human raters.

New dataset of similarity judgements We cre-
ate a new evaluation dataset, following the annota-
tion approach of Erk et al. (2009, 2013) for rating
pairs of usages of the same word. Since we need
to collect human judgements for pairs of usages,
annotating the entire GEMS dataset would be ex-
tremely costly and time consuming. Therefore, to
limit the scope of the annotation, we select a subset
of words. For each shift score value s in the GEMS
dataset, we sample a word uniformly at random
from the words annotated with s. This results in 16
words. To ensure that our selection of usages is suf-
ficiently varied, for each of these words, we sample
five usages from each of their usage types (the num-
ber of usage types is word-specific) along different
time intervals, one usage per 20-year period over
the century. All possible pairwise combinations are
generated for each target word, resulting in a total
of 3,285 usage pairs.

We use the crowdsourcing platform Figure
Eight4 to collect five similarity judgements for each
of these usage pairs. Annotators are shown pairs
of usages of the same word: each usage shows the
target word in its sentence, together with the pre-
vious and the following sentences (67 tokens on
average). Annotators are asked to assign a similar-
ity score on a 4-point scale, ranging from unrelated
to identical, as defined by Brown (2008) and used
e.g., by Schlechtweg et al. (2018).5 A total of
380 annotators participated in the task. The inter-
rater agreement, measured as the average pairwise
Spearman’s correlation between common annota-
tion subsets, is 0.59. This is in line with previous
approaches such as Schlechtweg et al. (2018), who
report agreement scores between 0.57 and 0.68.

Results To obtain a single human similarity
judgement per usage pair, we average the scores
given by five annotators. We encode all averaged
human similarity judgements for a given word in a
square matrix. We then compute similarity scores
over pairs of usage vectors output by BERT6 to

4https://www.figure-eight.com, recently ac-
quired by Appen (https://appen.com).

5The full instructions with examples given to the annota-
tors are available in Appendix A.1.

6For this evaluation, BERT is given the same variable-size
context as the human annotators. Vector similarity values
are computed as the inverse of Euclidean distance, because
K-means relies on this metric for cluster assignments.

https://www.figure-eight.com
https://appen.com
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obtain analogous matrices per word and measure
Spearman’s rank correlation between the human-
and the machine-generated matrices using the Man-
tel test (Mantel, 1967).

We observe a significant (p < 0.05) positive cor-
relation for 10 out of 16 words, with ρ coefficients
ranging from 0.13 to 0.45.7 This is an encour-
aging result, which indicates that BERT’s word
representations and similarity scores (as well as
our clustering methods which build on them) corre-
late, to a substantial extent, with human similarity
judgements. We take this to provide a promising
empirical basis for our approach.

5.2 Evaluation of Semantic Change Scores

We now quantitatively assess the semantic change
scores yielded by the metrics described in Sec-
tion 3.4 when applied to BERT usage represen-
tations and the usage types created with our ap-
proach. We do so by comparing them to the human
shift scores in the GEMS dataset. For consistency
with this dataset, which quantifies change from the
1960’s to the 1990’s as explained in Section 4, we
only consider these four decades when calculating
our scores. Using each of the metrics on repre-
sentations from these time intervals, we assign a
semantic change score to all the GEMS words. We
then compute Spearman’s rank correlation between
the automatically generated change scores and the
gold standard shift values.

Results Table 1 shows the Spearman’s correla-
tion coefficients obtained using our metrics, to-
gether with a frequency baseline (the difference
between the normalised frequency of a word in the
1960’s and in the 1990’s). The three proposed met-
rics yield significant positive correlations. This is
again a very encouraging result regarding the po-
tential of contextualised word representations for
capturing lexical semantic change.

As a reference, we report the correlation coef-
ficients with respect to GEMS shift scores doc-
umented by the authors of two alternative ap-
proaches: the count-based model by Gulordava
and Baroni (2011) themselves (trained on two
time slices from the Google Books corpus with
texts from the 1960’s and the 1990’s) and the
sense-based SCAN model by Frermann and La-
pata (2016) (trained on the DATE corpus with texts
from the 1960’s through the 1990’s).8

7Scores per target word are given in Appendix A.2.
8Gulordava and Baroni (2011) report Pearson correlation.

Frequency difference 0.068
Entropy difference (max) 0.278
Jensen-Shannon divergence (max) 0.276
Average pairwise distance (Euclidean, max) 0.285

Gulordava and Baroni (2011) 0.386
Frermann and Lapata (2016) 0.377

Table 1: Spearman’s ρ correlation coefficients between
the gold standard scores in the GEMS dataset and the
change scores assigned by our three metrics and a rela-
tive frequency baseline. For reference, correlation coef-
ficients reported by previous works using different ap-
proaches are also given. All correlations are significant
(p < 0.05) except for the frequency difference baseline.

For all our metrics, the max across the four time
intervals—i.e., identifying the pair of successive
intervals where the strongest shift has occurred
(cfr. end of Section 3.4)—is the best performing
aggregation strategy. Table 1 only shows values
obtained with max and Euclidean distance for APD,
as they are the best-performing options.

It is interesting to observe that APD can prove
as informative as JSD and ED, although it does not
depend on the clustering of word occurrences into
usage types. Yet, computing usage types offers a
powerful tool for analysing lexical change, as we
will see in the next section.

6 Analysis

In this section, we provide an in-depth qualitative
analysis of the linguistic properties that define us-
age types and the kinds of lexical semantic change
we observe. More quantitative methods (such as
taking the top n words with highest JSD, APD
and ED and checking, e.g., how many cases of
broadening each metric captures) are difficult to
operationalise (Tang et al., 2016) because there ex-
ist no well-established formal notions of semantic
change types in the linguistic literature. To carry
out this analysis, for each GEMS word, we iden-
tify the most representative usages in a given usage
type cluster by selecting the five closest vectors to
the cluster centroid, and take the five corresponding
sentences as usage examples.

6.1 What do Usage Types Capture?

We first leave the temporal variable aside and
present a synchronic analysis of usage types. Our

However, to allow for direct comparison, Frermann and Lapata
(2016) computed Spearman correlation for that work (see their
footnote 7), which is the value we report.
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goal is to assess the interpretability and internal
coherence of the obtained usage clusters.

We observe that usage types can discriminate
between underlying senses of polysemous (and
homonymous) words, between literal and figura-
tive usages, and between usages that fulfil different
syntactic roles; plus they can single out phrasal
collocations as well as named entities.

Polysemy and homonymy Distinctions often
occur between underlying senses of polysemous
and homonymous words. For example, the vec-
tors collected for the polysemous word curious are
grouped together into two usage types, depending
on whether curious is used to describe something
that excites attention as odd, novel, or unexpected
(‘a wonderful and curious and unbelievable story’)
or rather to describe someone who is marked by a
desire to investigate and learn (‘curious and amazed
and innocent’). The same happens for the homony-
mous usages of the word coach, for instance, which
can denote vehicles as well as instructors (see Fig-
ure 2a for a diachronic view of the usage types).

Metaphor and metonymy In several cases, lit-
eral and metaphorical usages are also separated.
For example, occurrences of curtain are clustered
into four usage types (Figure 2c): two of these cor-
respond to a literal interpretation of the word as
a hanging piece of cloth (‘curtainless windows’,
‘pulled the curtain closed’) whereas the other two
indicate metaphorical interpretations of curtain as
any barrier that excludes the free exchange of in-
formation or communication (‘the curtain on the
legal war is being raised’). Similarly, we obtain
two usage types for sphere: one for literal usages
that denote a round solid figure (‘the sphere of the
moon’), and the other for metaphorical interpre-
tations of the word as an area of knowledge or
activity (‘a certain sphere of autonomy’) as well as
metonymical usages that refer to the planet Earth
(‘land and peoples on the top half of the sphere’).

Syntactic roles and argument structure Fur-
ther distinctions are observed between word us-
ages that fulfil a different syntactic functionality:
not only is part-of-speech ambiguity detected (e.g.,
‘the cost-tapered average tariff’ vs. ‘cost less to
make’) but contextualised representations also cap-
ture regularities in syntactic argument structures.
For example, usages of refuse are clustered into
nominal usages (‘society’s emotional refuse’, ‘the
amount of refuse’), verbal transitive and intransi-

tive usages (‘fall, give up, refuse, kick’), as well
as verbal usages with infinitive complementation
(‘refuse to go’, ‘refuse for the present to sign a
treaty’).

Collocations and named entities Specific clus-
ters are also assigned to lexical items that are parts
of phrasal collocations (e.g., ‘iron curtain’) or of
named entities (‘alexander graham bell’ vs. ‘bell-
like whistle’).

Other distinctions Some distinctions are inter-
pretable but unexpected. As an example, the word
doubt does not show the default noun-verb sepa-
ration but rather a distinction between usages in
affirmative contexts (‘there is still doubt’, ‘the ben-
efit of the doubt’) and in negative contexts (‘there
is not a bit of doubt’, ‘beyond a reasonable doubt’).

Observed errors For some words, we find that
usages which appear to be identical are separated
into different usage types. In a handful of cases,
this seems due to the setup we have used for ex-
perimentation, which sets the minimum number of
clusters to 2 (see Section 3.3). This leads to distinct
usage types for words such as maybe, for which a
single type is expected. In other cases, a given in-
terpretation is not identified as an independent type,
and its usages appear in different clusters. This
holds, for example, for the word tenure, whose
usages in phrases such as ‘tenure-track faculty po-
sition’ are present in two distinct usage types (see
Figure 2b).

Finally, we see that in some cases a usage type
ends up including two interpretations which ar-
guably should have been distinguished. For exam-
ple, two of the usage types identified for address
are interpretable and coherent: one includes usages
in the sense of formal speech and the other one
includes verbal usages. The third usage type, how-
ever, includes a mix of nominal usages of the word
as in ‘disrespectful manners or address’ as well as
in ‘network address’.

6.2 What Kinds of Change are Observed?

Here we consider usage types diachronically. Dif-
ferent kinds of change, driven by cultural and tech-
nological innovation as well as by historical events,
emerge from a qualitative inspection of usage distri-
butions along the temporal dimension. We describe
the most prominent kinds—narrowing and broad-
ening, including metaphorisation—and discuss the
extent to which our metrics are able to detect them.
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you can always go coach // stage coach
cinderella  here comes your coach

(a) coach
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employment and tenure // minority faculty in tenure
tenure of office
tenuretrack faculty position
reasons for short term leases and insecurity of tenure

(b) tenure
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I hung colored lights around my curtainless windows
inflatable curtaintype headprotection bags
raising the curtain on its [...] taxreform program
bureaucracies [...] on both sides of the curtain

(c) curtain
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0.8

1

the polished disk // a disk on a rigid backing
floppy and harddisk drives // portable diskradio

(d) disk

Figure 2: Evolution of usage type distributions in the period 1910–2009, generated with occurrences of coach,
tenure, curtain and disk in COHA (Davies, 2012). The legends show sample usages per identified usage type.

Narrowing Examination of the dynamics of us-
age distributions allows us to see that for a few
words certain usage types disappear or become less
common over time (i.e., the interpretation of the
word becomes ‘narrower’, less varied). This is the
case, for example, for coach, where the frequency
decrease of a usage type is gradual and caused by
technological evolution (see Figure 2a).

Negative mean ED (see Section 3.4) reliably in-
dicates this kind of narrowing. Indeed coach is
assigned one of the lowest ED score among the
GEMS words. In contrast, ED fails to detect the
obsolescence of a usage type when new usage types
emerge simultaneously (since this may lead to no
entropy reduction). This is the case, e.g., of tenure.
The usage type capturing tenure of a landed prop-
erty becomes obsolete; however, we obtain a posi-
tive mean ED caused by the appearance of a new
usage type (the third type in Figure 2b).

Broadening For a substantial amount of words,
we observe the emergence of new usage types (i.e.,
a ‘broadening’ of their use). This may be due to

technological advances as well as to specific his-
torical events. As an example, Figure 2d shows
how, starting from the 1950’s and as a result of
technological innovation, the word disk starts to be
used to denote also optical disks while beforehand
it referred only to generic flat circular objects.

A special kind of broadening is metaphorisation.
As mentioned in Section 6.1, the usage types for the
word curtain include metaphorical interpretations.
Figure 2c allows us to see when the metaphorical
meaning related to the historically charged expres-
sion iron curtain is acquired. This novel usage type
is related to a specific historical period: it emerges
between the 1930’s and the 1940’s, reaches its peak
in the 1950’s, and remains stably low in frequency
starting from the 1970’s.

The metrics that best capture broadening are JSD
and APD—e.g., disk is assigned a high semantic
change score by both metrics. Yet, sometimes these
metrics generate different score rankings. For ex-
ample, curtain yields a rather low APD score due
to the low relative frequency of the novel usage
(Figure 2c). In contrast, even though the novel us-
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age type is not very prominent in some decades,
JSD can still discriminate it and measure its devel-
opment. On the other hand, the word address, for
which we also observe broadening, is assigned a
low score by JSD due to the errors in its usage type
assignments pointed out in Section 6.1. As APD
does not rely on usage types, it is not affected by
this issue and does indeed assign a high change
score to the word.

Finally, although our metrics help us identify the
broadening of a word’s meaning, they cannot cap-
ture the type of broadening (i.e., the nature of the
emerging interpretations). Detecting metaphorisa-
tion, for example, may require inter-cluster com-
parisons to identify a metaphor’s source and target
usage types, which we leave to future work.

7 Conclusion

We have introduced a novel approach to the analy-
sis of lexical semantic change. To our knowledge,
this is the first work that tackles this problem using
neural contextualised word representations and no
lexicographic supervision. We have shown that the
representations and the detected semantic shifts are
aligned to human interpretation, and presented a
new dataset of human similarity judgements which
can be used to measure said alignment. Finally,
through extensive qualitative analysis, we have
demonstrated that our method allows us to capture
a variety of synchronic and diachronic linguistic
phenomena.

Our approach offers several advantages over pre-
vious methods: (1) it does not rely on a fixed num-
ber of word senses, (2) it captures morphosyntac-
tic properties of word usage, and (3) it offers a
more effective interpretation of lexical meaning by
enabling the inspection of particular example sen-
tences. In recent work, we have experimented with
alternative ways of obtaining usage representations
(using a different language model, fine-tuning, and
various layer selection strategies) and we have ob-
tained very promising results in detecting semantic
change across four languages (Kutuzov and Giu-
lianelli, 2020). In the future, we plan to investigate
whether usage representations can provide an even
finer grained account of lexical meaning and its dy-
namics, e.g., to automatically discriminate between
different types of meaning change. We expect our
work to inspire further analyses of variation and
change which exploit the expressiveness of contex-
tualised word representations.
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A Appendix

This appendix includes supplementary materials
related to Section 5.1.

A.1 New Dataset of Similarity Judgements

Obtaining usage pairs For each of our 16 target
words, we sample five usages from each of their
usage types, one for every 20-year period in the
last century of COHA. When a usage type does not
occur in a time interval, we uniformly sample an
interval from those that do contain occurrences of
that usage type. All possible pairwise combinations
(without replacement) are generated for each target
word, resulting in a total of 3,285 usage pairs.

Crowdsourced annotation We use the crowd-
sourcing platform Figure Eight (since then acquired
by Appen9) to collect five similarity judgements
for each of these usage pairs. To control the qual-
ity of the similarity judgements, we select Figure
Eight workers from the pool of most experienced
contributors, we require them to be native English

9https://appen.com

speakers and to have completed a test quiz con-
sisting of 10 similarity judgements. For this pur-
pose, 170 usage pairs were manually annotated by
the first author with 1 to 3 acceptable labels. The
compensation scheme for the raters is based on an
average wage of 10 USD per hour.

Figures 4 and 5 (on the next pages) show the full
instructions given to the annotators and Figure 3
illustrates a single annotation item.

Figure 3: An annotation item on the Figure Eight
crowdsourcing platform.

A.2 Correlation Results
We measure Spearman’s rank correlation between
human- and machine-generated usage similarity
matrices using the Mantel test and observe a sig-
nificant positive correlation for 10 out of 16 words.
Table 2 presents the correlation coefficients and
p-values obtained for each word.

ρ p

federal 0.131 0.001
spine 0.195 0.032

optical 0.227 0.003
compact 0.229 0.002

signal 0.233 0.008
leaf 0.252 0.001
net 0.361 0.001

coach 0.433 0.007
sphere 0.446 0.002
mirror 0.454 0.027

card 0.358 0.055
virus 0.271 0.159
disk 0.183 0.211

brick 0.203 0.263
virtual -0.085 0.561
energy 0.002 0.990

Table 2: Correlation results per word.

https://appen.com
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Figure 4: Annotation instructions (part 1).
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Figure 5: Annotation instructions (part 2).


