
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3916–3927
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3916

A Self-Training Method for Machine Reading Comprehension with
Soft Evidence Extraction

Yilin Niu1∗, Fangkai Jiao2∗, Mantong Zhou1 , Ting Yao3 , Jingfang Xu3 , Minlie Huang1†

1 Department of Computer Science and Technology, Institute for Artificial Intelligence,
State Key Lab of Intelligent Technology and Systems,

Beijing National Research Center for Information Science and Technology,
Tsinghua University, Beijing 100084, China

2 School of Computer Science and Technology, Shandong University
3 Sogou Inc., Beijing, China

niuyl14@tsinghua.org.cn jiaofangkai@hotmail.com zmt.keke@gmail.com

{yaoting,jingfang}@sogou-inc.com aihuang@tsinghua.edu.cn

Abstract

Neural models have achieved great success
on machine reading comprehension (MRC),
many of which typically consist of two com-
ponents: an evidence extractor and an answer
predictor. The former seeks the most relevant
information from a reference text, while the
latter is to locate or generate answers from
the extracted evidence. Despite the impor-
tance of evidence labels for training the evi-
dence extractor, they are not cheaply accessi-
ble, particularly in many non-extractive MRC
tasks such as YES/NO question answering and
multi-choice MRC.

To address this problem, we present a Self-
Training method (STM), which supervises the
evidence extractor with auto-generated evi-
dence labels in an iterative process. At each
iteration, a base MRC model is trained with
golden answers and noisy evidence labels. The
trained model will predict pseudo evidence
labels as extra supervision in the next itera-
tion. We evaluate STM on seven datasets over
three MRC tasks. Experimental results demon-
strate the improvement on existing MRC mod-
els, and we also analyze how and why such a
self-training method works in MRC.

1 Introduction

Machine reading comprehension (MRC) has re-
ceived increasing attention recently, which can be
roughly divided into two categories: extractive
and non-extractive MRC. Extractive MRC requires
a model to extract an answer span to a question
from reference documents, such as the tasks in
SQuAD (Rajpurkar et al., 2016) and CoQA (Reddy
et al., 2019). In contrast, non-extractive MRC in-
fers answers based on some evidence in reference
∗Equal contribution
†Corresponding author: Minlie Huang.

documents, including Yes/No question answer-
ing (Clark et al., 2019), multiple-choice MRC (Lai
et al., 2017; Khashabi et al., 2018; Sun et al., 2019),
and open domain question answering (Dhingra
et al., 2017b). As shown in Table 1, evidence
plays a vital role in MRC (Zhou et al., 2019; Ding
et al., 2019; Min et al., 2018), and the coarse-to-
fine paradigm has been widely adopted in multiple
models (Choi et al., 2017; Li et al., 2018; Wang
et al., 2018) where an evidence extractor first seeks
the evidence from given documents and then an
answer predictor infers the answer based on the
evidence. However, it is challenging to learn a
good evidence extractor due to the lack of evidence
labels for supervision.

Manually annotating the golden evidence is ex-
pensive. Therefore, some recent efforts have been
dedicated to improving MRC by leveraging noisy
evidence labels when training the evidence extrac-
tor. Some works (Lin et al., 2018; Min et al., 2018)
generate distant labels using hand-crafted rules and
external resources. Some studies (Wang et al.,
2018; Choi et al., 2017) adopt reinforcement learn-
ing (RL) to decide the labels of evidence. How-
ever, such RL methods suffer from unstable train-
ing. More distant supervision techniques are also
used to refine noisy labels, such as deep probabil-
ity logic (Wang et al., 2019), but they are hard to
transfer to other tasks. Nevertheless, improving
the evidence extractor remains challenging when
golden evidence labels are not available.

In this paper, we present a general and effective
method based on Self-Training (Scudder, 1965) to
improve MRC with soft evidence extraction when
golden evidence labels are not available. Following
the Self-Training paradigm, a base MRC model
is iteratively trained. At each iteration, the base
model is trained with golden answers, as well as
noisy evidence labels obtained at the preceding it-
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Q: Did a little boy write the note?
D: ...This note is from a little girl. She

wants to be your friend. If you want to
be her friend, ...

A: No
Q: Is she carrying something?
D: ...On the step, I find the elderly Chinese

lady, small and slight, holding the hand of
a little boy. In her other hand, she holds
a paper carrier bag. ...

A: Yes

Table 1: Examples of Yes/No question answering. Ev-
idential sentences in bold in reference documents are
crucial to answer the questions.

eration. Then, the trained model generates noisy
evidence labels, which will be used to supervise evi-
dence extraction at the next iteration. The overview
of our method is shown in Figure 1. Through this
iterative process, the evidence is labeled automati-
cally to guide the RC model to find answers, and
then a better RC model benefits the evidence label-
ing process in return. Our method works without
any manual efforts or external information, and
therefore can be applied to any MRC tasks. Be-
sides, the Self-Training algorithm converges more
stably than RL. Two main contributions in this pa-
per are summarized as follows:

1. We propose a self-training method to improve
machine reading comprehension by soft evi-
dence labeling. Compared with other existing
methods, our method is more effective and
general.

2. We verify the generalization and effective-
ness of STM on several MRC tasks, in-
cluding Yes/No question answering (YNQA),
multiple-choice machine reading comprehen-
sion (MMRC), and open-domain question an-
swering (ODQA). Our method is applicable
to different base models, including BERT and
DSQA (Lin et al., 2018). Experimental re-
sults demonstrate that our proposed method
improves base models in three MRC tasks re-
markably.

2 Related Work

Early MRC studies focus on modeling semantic
matching between a question and a reference doc-
ument (Seo et al., 2017; Huang et al., 2018; Zhu

et al., 2018; Mihaylov and Frank, 2018). In order
to mimic the reading mode of human, hierarchical
coarse-to-fine methods are proposed (Choi et al.,
2017; Li et al., 2018). Such models first read the
full text to select relevant text spans, and then infer
answers from these relevant spans. Extracting such
spans in MRC is drawing more and more attention,
though still quite challenging (Wang et al., 2019).

Evidence extraction aims at finding evidential
and relevant information for downstream processes
in a task, which arguably improves the overall per-
formance of the task. Not surprisingly, evidence
extraction is useful and becomes an important com-
ponent in fact verification (Zhou et al., 2019; Yin
and Roth, 2018; Hanselowski et al., 2018; Ma
et al., 2019), multiple-choice reading comprehen-
sion (Wang et al., 2019; Bax, 2013; Yu et al., 2019),
open-domain question answering (Lin et al., 2018;
Wang et al., 2018), multi-hop reading comprehen-
sion (Nishida et al., 2019; Ding et al., 2019), natural
language inference (Wang et al., 2017; Chen et al.,
2017), and a wide range of other tasks (Nguyen
and Nguyen, 2018; Chen and Bansal, 2018).

In general, evidence extraction in MRC can be
classified into four types according to the training
method. First, unsupervised methods provide no
guidance for evidence extraction (Seo et al., 2017;
Huang et al., 2019). Second, supervised methods
train evidence extraction with golden evidence la-
bels, which sometimes can be generated automati-
cally in extractive MRC settings (Lin et al., 2018;
Yin and Roth, 2018; Hanselowski et al., 2018).
Third, weakly supervised methods rely on noisy
evidence labels, where the labels can be obtained
by heuristic rules (Min et al., 2018). Moreover,
some data programming techniques, such as deep
probability logic, were proposed to refine noisy
labels (Wang et al., 2019). Last, if a weak extrac-
tor is obtained via unsupervised or weakly super-
vised pre-training, reinforcement learning can be
utilized to learn a better policy of evidence extrac-
tion (Wang et al., 2018; Choi et al., 2017).

For non-extractive MRC tasks, such as YNQA
and MMRC, it is cumbersome and inefficient to an-
notate evidence labels (Ma et al., 2019). Although
various methods for evidence extraction have been
proposed, training an effective extractor is still a
challenging problem when golden evidence labels
are unavailable. Weakly supervised methods ei-
ther suffer from the low performance or rely on too
many external resources, which makes them diffi-



3918

cult to transfer to other tasks. RL methods can in-
deed train a better extractor without evidence labels.
However, they are much more complicated and
unstable to train, and highly dependent on model
pre-training.

Our method is based on Self-Training, a widely
used semi-supervised method. Most related stud-
ies follow the framework of traditional Self-
Training (Scudder, 1965) and Co-Training (Blum
and Mitchell, 1998), and focus on designing bet-
ter policies for selecting confident samples. Co-
Trade (Zhang and Zhou, 2011) evaluates the
confidence of whether a sample has been cor-
rectly labeled via a statistic-based data editing
technique (Zighed et al., 2002). Self-paced Co-
Training (Ma et al., 2017) adjusts labeled data dy-
namically according to the consistency between the
two models trained on different views. A reinforce-
ment learning method (Wu et al., 2018) designs an
additional Q-agent as a sample selector.

3 Methods

3.1 Task Definition and Model Overview

The task of machine reading comprehension can
be formalized as follows: given a reference docu-
ment composed of a number of sentences D =
{S1, S2, · · · , Sm} and a question Q, the model
should extract or generate an answer Â to this ques-
tion conditioned on the document, formally as

Â = argmax
A′

P (A′|Q,D).

The process can be decomposed into two compo-
nents, i.e., an evidence extractor and an answer pre-
dictor. The golden answer A is given for training
the entire model, including the evidence extractor
and the answer predictor. Denote Ei as a binary ev-
idence label {0, 1} for the i-th sentence Si, where
0/1 corresponds to the non-evidence/evidence sen-
tence, respectively. An auxiliary loss on the evi-
dence labels can help the training of the evidence
extractor.

The overview of our method is shown in Figure
1, which is an iterative process. During training,
two data pools are maintained and denoted as U
(unlabeled data) and L (labeled data). In addition
to golden answers, examples in L are annotated
with pseudo evidence labels. In contrast, there
are only golden answers provided in U . At each
iteration, the base model is trained on both data
pools (two training arrows). After training, the

model makes evidence predictions on unlabeled
instances (the labeling arrow), and then Selector
chooses the most confident instances from U to
provide noisy evidence labels. In particular, the
instances with newly generated evidence labels are
moved from U to L (the moving arrow), which are
used to supervise evidence extraction in the next
iteration. This process will iterate several times.

Selector

Base 
Model

𝑼

𝑳
moving

training

labeling

①

②①
③

Figure 1: Overview of Self-Training MRC (STM). The
base model is trained on both L and U . After training,
the base model is used to generate evidence labels for
the data from U , and then Selector chooses the most
confident samples, which will be used to supervise the
evidence extractor at the next iteration. The selected
data is moved from U to L at each iteration.

3.2 Base Model

As shown in Figure 2, the overall structure of a base
model consists of an encoder layer, an evidence
extractor, and an answer predictor.

EncoderD

Evidence Extractor

Predictor

𝑫𝒐𝒄𝒖𝒎𝒆𝒏𝒕 𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏

𝑨𝒏𝒔𝒘𝒆𝒓

𝒉𝑫

𝒉𝟏
𝑫 … 𝒉𝒎

𝑫𝒉𝟐
𝑫 𝒉

𝑸

EncoderQ

Figure 2: Overall structure of a base model that con-
sists of an encoder layer, an evidence extractor, and an
answer predictor. The encoders will obtain hQ for the
question, and hD

i for each sentence in a document. The
summary vector hD will be used to predict the answer.

The encoder layer takes document D and ques-
tion Q as input to obtain contextual representation
for each word. Denote hD

i,j as the representation of

the j-th word in Si, and hQ
i as the representation

of the i-th word in question Q. Our framework is
agnostic to the architecture of the encoder, and we
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show improvements on two widely used encoding
models, i.e., Transformer (with BERT, Devlin et al.,
2019) and LSTM (with DSQA, Lin et al., 2018) in
the experiments.

The evidence extractor employs hierarchical at-
tention, including token- and sentence-level atten-
tion, to obtain the document representation hD.
Token-level attention obtains a sentence vector
by self-attention (Vaswani et al., 2017) within the
words in a sentence, as follows:

hD
i =

|Si|∑
j

αi,jh
D
i,j , αi,j ∝ exp(FS(hQ,hD

i,j)),

sDi =

|Si|∑
j

βi,jh
D
i,j , βi,j ∝ exp(wsh

D
i,j + bs),

where hQ is the sentence representation of the
question. αi,j refers to the importance of word
j in sentence i, and so on for βi,j . ws and bs are
learnable parameters. The attention function FS

follows the bilinear form (Kim et al., 2018).
Sentence-level attention identifies important sen-
tences conditioned on the question in a soft way to
get the summary vector (hD), as follows:

hD =
m∑
i

γih
D
i , γi ∝ exp(FD(hQ, sDi )),

where FD has the same bilinear form as FS with
different parameters. γi refers to the importance of
the corresponding sentence.

The answer predictor adopts different structures
for different MRC tasks. For Yes/No question an-
swering, we use a simple linear classifier to infer
answers. For multiple-choice MRC, we use a Mul-
tiple Layer Perceptron (MLP) with Softmax to ob-
tain the score of each choice. And for open-domain
question answering, one MLP is used to predict the
answer start, and another MLP is used to predict
the end.

3.3 Loss Function
We adopt two loss functions, one for task-specific
loss and the other for evidence loss.

The task-specific loss is defined as the negative
log-likelihood (NLL) of predicting golden answers,
formally as follows:

LA(D,Q,A) = − logP (Â = A|D,Q),

where Â denotes the predicted answer and A is the
golden answer.

When the evidence label E is provided, we can
impose supervision on the evidence extractor. For
the most general case, we assume that a variable
number of evidence sentences exist in each sample
(Q,A,D). Inspired by the previous work (Nishida
et al., 2019) that used multiple pieces of evidence,
we calculate the evidence loss step by step. Sup-
pose we will extract K evidence sentences. In the
first step, we compute the loss of selecting the most
plausible evidence sentence. In the second step,
we compute the loss in the remaining sentences,
where the previously selected sentence is masked
and not counted in computing the loss at the sec-
ond step. The overall loss is the average of all the
step-by-step loss until we select out K evidence
sentences. In this manner, we devise a BP-able
surrogate loss function for choosing the top K evi-
dence sentences.

Formally, we have

LE(D,Q,E) =
1

K

K∑
k=1

H(D,Q,E,Mk),

where K is the number of evidence sen-
tences, a pre-specified hyperparamter. Mk =
{Mk

1 ,M
k
2 , · · · ,Mk

m} and each Mk
i ∈ {0,−∞}

is a sentence mask, where 0 means sentence i is not
selected before step k, and −∞ means selected.

At each step, the model will compute an atten-
tion distribution over the unselected sentences, as
follows:

λki =
exp(FD(hQ, si) +Mk

i )∑
j(exp(F

D(hQ, sj) +Mk
j ))

.

As Mk
i = −∞ for the previously selected sen-

tences, the attention weight on those sentences will
be zero, in other words, they are masked out. Then,
the step-wise loss can be computed as follows:

H(D,Q,E,Mk) = − logmax
i

(λki ∗ Ei),

where λki indicates the attention weight for sen-
tence i, and Ei ∈ {0, 1} is the evidence label for
sentence i. The sentence with the largest atten-
tion weight will be chosen as the k-th evidence
sentence.

For each sentence i, M1
i is initialized to be 0.

At each step k(k > 1), the mask Mk
i will be set

to −∞ if sentence i is chosen as an evidence sen-
tence at the preceding step k − 1, and the mask
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remains unchanged otherwise. Formally, the mask
is updated as follows:

Mk
i =

{
−∞ i = argmax

j
(λk−1j Ej)

Mk−1
i otherwise

.

During training, the total loss L is the combi-
nation of the task-specific loss and the evidence
loss:

L =
∑

(D,Q,A)∈U∪L

LA(D,Q,A)+

η
∑

(D,Q,E)∈L

LE(D,Q,E), (1)

where η is a factor to balance the two loss terms. L
and U denote the two sets in which instances with
and without evidence labels, respectively. Note that
the evidence label in L is automatically obtained
in our self-training method.

3.4 Self-Training MRC (STM)
STM is designed to improve base MRC models via
generating pseudo evidence labels for evidence ex-
traction when golden labels are unavailable. STM
works in an iterative manner, and each iteration
consists of two stages. One is to learn a better base
model for answer prediction and evidence labeling.
The other is to obtain more precise evidence labels
for the next iteration using the updated model.

At each iteration, STM first trains the base model
with golden answers and pseudo evidence labels
from the preceding iteration using the total loss as
defined Equation 1. Then the trained model can
predict a distribution of pseudo evidence labels for
each unlabelled instance (D,Q,A), and decides Ê
as

Ê = argmin
E′

LE(D,Q,E
′). (2)

Define the confidence of a labelled instance
(D,Q,A, Ê) as

c(D,Q,A, Ê) = exp(−LA(D,Q,A))∗
exp(−LE(D,Q, Ê)).

Selector selects the instances with the largest
confidence scores whose LA(D,Q,A) and
LE(D,Q, Ê) are smaller than the prespecified
thresholds. These labelled instances will be moved
from U to L for the next iteration.

In the first iteration (iteration 0), the initial la-
beled set L is set to an empty set. Thus the base

model is supervised only by golden answers. In this
case, the evidence extractor is trained in a distant
supervised manner.

The procedure of one iteration of STM is illus-
trated in Algorithm 1. δ and ε are two thresholds
(hyper-parameters). sort operation ranks the candi-
date samples according to their confidence scores
s and returns the top-n samples. n varies differ-
ent datasets, and details are presented in the ap-
pendix.

Algorithm 1 One iteration of STM
Input: Training sets U,L; Thresholds δ and ε;

Number of generated labels n; Weight of evi-
dence loss η;

Output: Trained MRC model M ; Updated train-
ing sets U,L;

1: Randomly initialize M ;
2: Train M on U and L;
3: Initialize L′ = ∅;
4: for each (D,Q,A) ∈ U do
5: lA = LA(D,Q,A);
6: Generate Ê via Equation 2;
7: lÊ = LE(D,Q, Ê);
8: if lA ≤ δ, lÊ ≤ ε then
9: s = c(D,Q,A, Ê);

10: Add (D,Q,A, Ê, s) to L′;
11: end if
12: end for
13: L′ = sort(L′, n);
14: L = L ∪ L′, U = U\L′;
15: return M,U,L;

3.5 Analysis
To understand why STM can improve evidence ex-
traction and the performance of MRC, we revisit
the training process and present a theoretical expla-
nation, as inspired by (Anonymous, 2020).

In Section 3.4, we introduce the simple label-
ing strategy used in STM. If there is no sample
selection, the evidence loss can be formulated as

Lθt = −Ex∼p(x)EE∼pθt−1 (E|x) log pθt(E|x),

where x represents (D,Q,A), and θt is the pa-
rameter of the t-th iteration. In this case, pseudo
evidence labels E are randomly sampled from
pθt−1(E|x) to guide pθt(E|x), and therefore min-
imizing Lθt will lead to θt = θt−1. As a matter
of fact, the sample selection strategy in STM is to
filter out the low-quality pseudo labels with two
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Model / Dataset CoQA MARCO BoolQ
BERT-MLP 78.0 70.8 71.6
BERT-HA 78.8 71.3 72.9
BERT-HA+RL 79.3 70.3 70.4
BERT-HA+Rule 78.1 70.4 73.8
BERT-HA+STM 80.5† 72.3‡ 75.2†

BERT-HA+Gold 82.0 N/A N/A

Table 2: Classification accuracy on three Yes/No ques-
tion answering datasets. N/A means there is no golden
evidence label. Significance tests were conducted be-
tween BERT-HA+STM and the best baseline of each
column (t-test). ‡ means p-value < 0.01, and † means
p-value < 0.05.

distribution mappings, f and g. The optimizing
target becomes

L′θt=−Ex∼f(p(x))EE∼g(pθt−1 (E|x)) log pθt(E|x).

In STM, f is a filter function with two pre-specified
thresholds, δ and ε. g is defined as argmax (Equa-
tion 2). Compared with random sampling, our
strategy tends to prevent θt from learning wrong
knowledge from θt−1. And the subsequent training
might benefit from implicitly learning the strategy.
In general, the strategy of STM imposes naive prior
knowledge on the base models via the two distri-
bution mappings, which may partly explain the
performance gains.

4 Experiments

4.1 Datasets
4.1.1 Yes/No Question Answering (YNQA)
CoQA (Reddy et al., 2019) is a multi-turn conversa-
tional question answering dataset where questions
may be incomplete and need historical context to
get the answers. We extracted the Yes/No questions
from CoQA, along with their histories, to form a
YNQA dataset.
BoolQ (Clark et al., 2019) consists of Yes/No ques-
tions from the Google search engine. Each ques-
tion is accompanied by a related paragraph. We
expanded each short paragraph by concatenating
some randomly sampled sentences.
MS MARCO (Nguyen et al., 2016) is a large MRC
dataset. Each question is paired with a set of refer-
ence documents, and the answer may not exist in
the documents. We extracted all Yes/No questions,
and randomly picked some reference documents
containing evidence1. To balance the ratio of Yes

1The evidence annotation in a document is provided by the

and No questions, we randomly removed some
questions whose answers are Yes.

4.1.2 Multiple-choice MRC
RACE (Lai et al., 2017) consists of about 28,000
passages and 100,000 questions from English ex-
ams for middle (RACE-M) and high (RACE-H)
schools of China. The average number of sentences
per passage in RACE-M and RACE-H is about 16
and 17, respectively.
DREAM (Sun et al., 2019) contains 10,197
multiple-choice questions with 6,444 dialogues,
collected from English examinations. In DREAM,
85% of the questions require reasoning with multi-
ple evidential sentences.
MultiRC (Khashabi et al., 2018) is an MMRC
dataset where the amount of correct options to each
question varies from 1 to 10. Each question in
MultiRC is annotated with evidence from its refer-
ence document. The average number of annotated
evidence sentences for each question is 2.3.

4.1.3 Open-domain QA (ODQA)
Quasar-T (Dhingra et al., 2017b) consists of
43,000 open-domain trivial questions, whose an-
swers were extracted from ClueWeb09. For fair
comparison, we retrieved 50 reference sentences
from ClueWeb09 for each question the same as
DSQA (Lin et al., 2018).

4.2 Baselines

We compared several methods in our experiments,
including some powerful base models without ev-
idence supervision and some existing methods
(*+Rule/RL/DPL/STM), which improve MRC with
noisy evidence labels. Experimental details are
shown in the appendix.

YNQA and MMRC: (1) BERT-MLP utilizes
a BERT encoder and an MLP answer predictor.
The predictor makes classification based on the
BERT representation at the position of [CLS].
The parameters of the BERT module were initial-
ized from BERT-base. (2) BERT-HA refers to
the base model introduced in Section 3.2, which
applies hierarchical attention over words and sen-
tences. (3) Based on BERT-HA, BERT-HA+Rule
supervises the evidence extractor with noisy evi-
dence labels, which are derived from hand-crafted
rules. We have explored three types of rules based
on Jaccard similarity, integer linear programming

original dataset.
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Model / Dataset
RACE-M RACE-H MultiRC DREAM

Dev Test Dev Test Dev Dev Test
Acc Acc Acc Acc F1m F1a EM0 Acc Acc

GPT+DPL 64.2 62.4 58.5 60.2 70.5 67.8 13.3 57.3 57.7
BERT-MLP 66.2 65.5 61.6 59.5 71.8 69.1 21.2 63.9 63.2
BERT-HA 67.8 68.2 62.6 60.4 70.1 68.1 19.9 64.2 62.8
BERT-HA+RL 68.5 66.9 62.5 60.0 72.1 69.5 21.1 63.1 63.4
BERT-HA+Rule 66.6 66.4 61.6 59.0 69.5 66.7 17.9 62.5 63.0
BERT-HA+STM 69.3‡ 69.2† 64.7‡ 62.6‡ 74.0‡ 70.9‡ 22.0† 65.3‡ 65.8†

BERT-HA+Gold N/A N/A N/A N/A 73.7 70.9 27.2 N/A N/A

Table 3: Results on three multiple-choice reading comprehension datasets. (F1a: F1 score on all answer-options;
F1m: macro-average F1 score of all questions; EM0: exact match.) Note that there is no golden evidence label
on RACE and DREAM. The results for DPL (deep programming logic) are copied from (Wang et al., 2019).
Significance tests were conducted between BERT-HA+STM and the best baseline of each column (t-test). ‡means
p-value < 0.01, and † means p-value < 0.05.

(ILP) (Boudin et al., 2015), and inverse term fre-
quency (ITF) (Wang et al., 2019), among which
ITF performed best in most cases. For simplic-
ity, we merely provided experimental results with
the rule of ITF. (4) Based on BERT-HA, BERT-
HA+RL trains the evidence extractor via reinforce-
ment learning, similar to (Choi et al., 2017). And
(5) another deep programming logic (DPL) method,
GPT+DPL (Wang et al., 2019), is complicated,
and the source code is not provided. Thus we di-
rectly used the results from the original paper and
did not evaluate it on BERT.

ODQA: (1) For each question, DSQA (Lin et al.,
2018) aggregates multiple relevant paragraphs from
ClueWeb09, and then infers an answer from these
paragraphs. (2) GA (Dhingra et al., 2017a) and
BiDAF (Seo et al., 2017) perform semantic match-
ing between questions and paragraphs with atten-
tion mechanisms. And (3) R3 (Wang et al., 2018)
is a reinforcement learning method that explic-
itly selects the most relevant paragraph to a given
question for the subsequent reading comprehension
module.

4.3 Main Results

4.3.1 Yes/No Question Answering
Table 2 shows the results on the three YNQA
datasets. We merely reported the classification ac-
curacy on the development sets since the test sets
are unavailable.

BERT-HA+STM outperformed all the base-
lines, which demonstrates the effectiveness of
our method. Compared with BERT-MLP, BERT-
HA achieved better performance on all the three

Model EM F1
GA (Dhingra et al., 2017a) 26.4 26.4
BiDAF (Seo et al., 2017) 25.9 28.5
R3 (Wang et al., 2018) 35.3 41.7
DSQA (Lin et al., 2018) 40.7 47.6

+distant supervision 41.7 48.7
+STM 41.8† 49.2†

Table 4: Experimental results on the test set of Quasar-
T. R3 is a RL-based method. Results of GA, BiDAF
and R3 are copied from (Lin et al., 2018). DSQA+STM
outperforms the best baseline (DSQA+DS) signifi-
cantly (t-test, p-value< 0.05, DS=distant supervision).

datasets, indicating that distant supervision on ev-
idence extraction can benefit Yes-No question an-
swering. However, compared with BERT-HA,
BERT-HA+RL made no improvement on MARCO
and BoolQ, possibly due to the high variance in
training. Similarly, BERT-HA+Rule performed
worse than BERT-HA on CoQA and MARCO,
implying that it is more difficult for the rule-
based methods (inverse term frequency) to find
correct evidence in these two datasets. In con-
trast, our method BERT-HA+STM is more gen-
eral and performed the best on all datasets. BERT-
HA+STM achieved comparable performance with
BERT-HA+Gold, which stands for the upper bound
by providing golden evidence labels, indicating that
the effectiveness of noisy labels in our method.

4.3.2 Multiple-choice MRC

Table 3 shows the experimental results on the three
MMRC datasets. We adopt the metrics from the
referred papers. STM improved BERT-HA consis-
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Model/Dataset CoQA MultiRC
P@1 R@1 R@2 R@3 P@1 P@2 P@3

BERT-HA 20.0 28.2 49.8 62.5 62.3 55.2 46.6
+RL 5.2 10.5 22.3 32.9 24.0 25.3 24.7
+Rule 38.4 32.4 53.6 65.1 71.8 59.6 48.7
+STM (iter 1) 32.7 32.8 57.1 70.1 72.2 63.3 52.5
+STM (iter 2) 37.3 32.9 58.0 71.3 72.7 64.4 53.5
+STM (iter 3) 39.9 31.4 55.3 68.8 69.5 61.6 51.6

BERT-HA+Gold 53.6 33.7 59.5 73.4 74.5 65.9 54.8

Table 5: Evidence extraction evaluation on the develop-
ment sets of CoQA and MultiRC. P@k / R@k repre-
sent precision / recall of the generated evidence labels,
respectively for top k predicted evidence sentences.

tently on RACE-H, MultiRC and DREAM in terms
of all the metrics. However, the improvement on
RACE-M is limited (1.0 gain on the test sets). The
reason may be that RACE-M is much simpler than
RACE-H, and thus, it is not challenging for the
evidence extractor of BERT-HA to find the correct
evidence on RACE-M.

4.3.3 Open-domain Question Answering
Table 4 shows the exact match scores and F1 scores
on Quasar-T. Distant evidence supervision (DS)
indicates whether a passage contains the answer
text. Compared with the base models DSQA and
DSQA+DS, DSQA+STM achieved better perfor-
mance in both metrics, which verifies that DSQA
can also benefit from Self-Training. Our method
is general and can improve both lightweight and
heavyweight models, like LSTM-based and BERT-
based models, in different tasks.

4.4 Performance of Evidence Extraction

To evaluate the performance of STM on evidence
extraction, we validated the evidence labels gener-
ated by several methods on the development sets of
CoQA and MultiRC. Considering that the evidence
of each question in MultiRC is a set of sentences,
we adopted precision@k and recall@k as the met-
rics for MultiRC, which represent the precision and
recall of the generated evidence labels, respectively,
when k sentences are predicted as evidence. We
adopted only precision@1 as the metric for CoQA
as this dataset provides each question with one
golden evidence sentence.

Table 5 shows the performance of five methods
for evidence labeling on the CoQA and MultiRC de-
velopment sets. It can be seen that BERT-HA+STM
outperformed the base model BERT-HA by a large
margin in terms of all the metrics. As a result,
the evidence extractor augmented with STM pro-

vided more evidential information for the answer
predictor, which may explain the improvements of
BERT-HA+STM on the two datasets.

4.5 Analysis on Error Propagation

To examine whether error propagation exists and
how severe it is in STM, we visualized the evolu-
tion of evidence predictions on the development
set of CoQA (Figure 3). From the inside to the
outside, the four rings show the statistic results of
the evidence predicted by BERT-HA (iteration 0)
and BERT-HA+STM (iteration 1, 2, 3). Each ring
is composed of all the instances from the develop-
ment set of CoQA, and each radius corresponds to
one sample. If the evidence of an instance is pre-
dicted correctly, the corresponding radius is marked
in green, otherwise in purple. Two examples are
shown in the appendix due to space limit.

Self-correction. As the innermost ring shows,
about 80% of the evidence predicted by BERT-HA
(iter 0) was incorrect. However, the proportion of
wrong instances reduced to 60% after self-training
(iter 3). More concretely, 27% of the wrong pre-
dictions were gradually corrected with high confi-
dence within three self-training iterations, as exem-
plified by instance A in Figure 3.

Error propagation. We observed that 4% of
the evidence was mistakenly revised by STM, as
exemplified by instance B in Figure 3. In such a
case, the incorrect predictions are likely to be re-
tained in the next iteration. But almost 50% of such
mistakes were finally corrected during the subse-
quent iterations like instance C. This observation
shows that STM can prevent error propagation to
avoid catastrophic failure.

Figure 3: Evolution of evidence predictions on the de-
velopment set of CoQA. From the inside to the outside,
the four rings correspond to BERT-HA (iteration 0) and
BERT-HA+STM (iteration 1, 2, 3), respectively.
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Model/Metric Ans. Acc Evi. Acc
RoBERTa-HA 92.6 13.8
RoBERTa-HA+STM 92.7 19.3(+40%)

Table 6: Answer prediction accuracy (Ans. Acc) and
evidence extraction accuracy (Evi. Acc) on the devel-
opment set of CoQA.

4.6 Improvement Over Stronger Pretrained
Models

To evaluate the improvement of STM over stronger
pre-trained models, we employed RoBERTa-
large (Liu et al., 2019) as the encoder in the base
model. Table 6 shows the results on CoQA. STM
significantly improved the evidence extraction (Evi.
Acc) of the base model. However, the improve-
ment on answer prediction (Ans. Acc) is marginal.
One reason is that RoBERTa-HA achieved such
a high performance that there was limited room
to improve. Another possible explanation is that
evidence information is not important for such
stronger models to generate answers. In other
words, they may be more adept at exploiting data
bias to make answer prediction. In comparison,
weaker pre-trained models, such as BERT-base,
can benefit from evidence information due to their
weaker ability to exploit data bias.

5 Conclusion and Future Work

We present an iterative self-training method (STM)
to improve MRC models with soft evidence extrac-
tion, when golden evidence labels are unavailable.
In this iterative method, we train the base model
with golden answers and pseudo evidence labels.
The updated model then generates new pseudo ev-
idence labels, which can be used as additional su-
pervision in the next iteration. Experiment results
show that our proposed method consistently im-
proves the base models in seven datasets for three
MRC tasks, and that better evidence extraction in-
deed enhances the final performance of MRC.

As future work, we plan to extend our method
to other NLP tasks which rely on evidence finding,
such as natural language inference.

Acknowledgments

This work was jointly supported by the NSFC
projects (Key project with No. 61936010 and
regular project with No. 61876096), and the Na-
tional Key R&D Program of China (Grant No.

2018YFC0830200). We thank THUNUS NExT
Joint-Lab for the support.

References
Anonymous. 2020. Revisiting self-training for neural

sequence generation. ICLR under review.

Stephen Bax. 2013. The cognitive processing of can-
didates during reading tests: Evidence from eye-
tracking. Language Testing, 30:441–465.

Avrim Blum and Tom M. Mitchell. 1998. Combin-
ing labeled and unlabeled data with co-training. In
COLT, pages 92–100.

Florian Boudin, Hugo Mougard, and Benoı̂t Favre.
2015. Concept-based summarization using integer
linear programming: From concept pruning to mul-
tiple optimal solutions. In EMNLP, pages 1914–
1918.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In ACL, pages 1657–
1668.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. In ACL, pages 675–686.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In ACL, pages 209–220.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL,
pages 2924–2936.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W. Cohen, and Ruslan Salakhutdinov.
2017a. Gated-attention readers for text comprehen-
sion. In ACL, pages 1832–1846.

Bhuwan Dhingra, Kathryn Mazaitis, and William W.
Cohen. 2017b. Quasar: Datasets for ques-
tion answering by search and reading. CoRR,
abs/1707.03904.

Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang,
and Jie Tang. 2019. Cognitive graph for multi-hop
reading comprehension at scale. In ACL, pages
2694–2703.

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. Ukp-athene: Multi-sentence

https://openreview.net/pdf?id=SJgdnAVKDH
https://openreview.net/pdf?id=SJgdnAVKDH
https://doi.org/10.1145/279943.279962
https://doi.org/10.1145/279943.279962
http://aclweb.org/anthology/D/D15/D15-1220.pdf
http://aclweb.org/anthology/D/D15/D15-1220.pdf
http://aclweb.org/anthology/D/D15/D15-1220.pdf
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://www.aclweb.org/anthology/P18-1063/
https://www.aclweb.org/anthology/P18-1063/
https://www.aclweb.org/anthology/P18-1063/
https://doi.org/10.18653/v1/P17-1020
https://doi.org/10.18653/v1/P17-1020
https://aclweb.org/anthology/papers/N/N19/N19-1300/
https://aclweb.org/anthology/papers/N/N19/N19-1300/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://doi.org/10.18653/v1/P17-1168
https://doi.org/10.18653/v1/P17-1168
http://arxiv.org/abs/1707.03904
http://arxiv.org/abs/1707.03904
https://www.aclweb.org/anthology/P19-1259/
https://www.aclweb.org/anthology/P19-1259/
http://arxiv.org/abs/1809.01479


3925

textual entailment for claim verification. CoRR,
abs/1809.01479.

Hsin-Yuan Huang, Eunsol Choi, and Wen-tau Yih.
2019. Flowqa: Grasping flow in history for conver-
sational machine comprehension. In ICLR.

Hsin-Yuan Huang, Chenguang Zhu, Yelong Shen, and
Weizhu Chen. 2018. Fusionnet: Fusing via fully-
aware attention with application to machine compre-
hension. In ICLR.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading
comprehension over multiple sentences. In NAACL,
pages 252–262.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In NIPS, pages
1571–1581.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
EMNLP, pages 785–794.

Weikang Li, Wei Li, and Yunfang Wu. 2018. A uni-
fied model for document-based question answering
based on human-like reading strategy. In AAAI,
pages 604–611.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In ACL, pages 1736–1745.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Fan Ma, Deyu Meng, Qi Xie, Zina Li, and Xuanyi
Dong. 2017. Self-paced co-training. In ICML,
pages 2275–2284.

Jing Ma, Wei Gao, Shafiq R. Joty, and Kam-Fai Wong.
2019. Sentence-level evidence embedding for claim
verification with hierarchical attention networks. In
ACL, pages 2561–2571.

Todor Mihaylov and Anette Frank. 2018. Knowledge-
able reader: Enhancing cloze-style reading compre-
hension with external commonsense knowledge. In
ACL, pages 821–832.

Sewon Min, Victor Zhong, Richard Socher, and Caim-
ing Xiong. 2018. Efficient and robust question an-
swering from minimal context over documents. In
ACL, pages 1725–1735.

Minh Nguyen and Thien Nguyen. 2018. Who is killed
by police: Introducing supervised attention for hier-
archical lstms. In COLING, pages 2277–2287.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In NIPS.

Kosuke Nishida, Kyosuke Nishida, Masaaki Nagata,
Atsushi Otsuka, Itsumi Saito, Hisako Asano, and
Junji Tomita. 2019. Answering while summarizing:
Multi-task learning for multi-hop QA with evidence
extraction. In ACL, pages 2335–2345.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, pages
2383–2392.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. Coqa: A conversational question answering
challenge. TACL, 7:249–266.

H. J. Scudder. 1965. Probability of error of some adap-
tive pattern-recognition machines. IEEE Trans. In-
formation Theory, 11.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In ICLR.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. DREAM: A challenge
dataset and models for dialogue-based reading com-
prehension. TACL, 7:217–231.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 6000–6010.

Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu,
Dan Roth, and David A. McAllester. 2019. Evi-
dence sentence extraction for machine reading com-
prehension. CoRR, abs/1902.08852.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerry
Tesauro, Bowen Zhou, and Jing Jiang. 2018. R3:
Reinforced ranker-reader for open-domain question
answering. In AAAI, pages 5981–5988.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In IJCAI, pages 4144–4150.

Jiawei Wu, Lei Li, and William Yang Wang. 2018. Re-
inforced co-training. In NAACL, pages 1252–1262.

Wenpeng Yin and Dan Roth. 2018. Twowingos: A two-
wing optimization strategy for evidential claim veri-
fication. In EMNLP, pages 105–114.

Jianxing Yu, Zhengjun Zha, and Jian Yin. 2019. In-
ferential machine comprehension: Answering ques-
tions by recursively deducing the evidence chain
from text. In ACL, pages 2241–2251.

http://arxiv.org/abs/1809.01479
https://openreview.net/forum?id=ByftGnR9KX
https://openreview.net/forum?id=ByftGnR9KX
https://openreview.net/forum?id=BJIgi_eCZ
https://openreview.net/forum?id=BJIgi_eCZ
https://openreview.net/forum?id=BJIgi_eCZ
https://aclanthology.info/papers/N18-1023/n18-1023
https://aclanthology.info/papers/N18-1023/n18-1023
https://aclanthology.info/papers/N18-1023/n18-1023
http://papers.nips.cc/paper/7429-bilinear-attention-networks
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16084
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16084
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16084
https://aclanthology.info/papers/P18-1161/p18-1161
https://aclanthology.info/papers/P18-1161/p18-1161
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://proceedings.mlr.press/v70/ma17b.html
https://www.aclweb.org/anthology/P19-1244/
https://www.aclweb.org/anthology/P19-1244/
https://www.aclweb.org/anthology/P18-1076/
https://www.aclweb.org/anthology/P18-1076/
https://www.aclweb.org/anthology/P18-1076/
https://aclanthology.info/papers/P18-1160/p18-1160
https://aclanthology.info/papers/P18-1160/p18-1160
https://aclanthology.info/papers/C18-1193/c18-1193
https://aclanthology.info/papers/C18-1193/c18-1193
https://aclanthology.info/papers/C18-1193/c18-1193
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://www.aclweb.org/anthology/P19-1225/
https://www.aclweb.org/anthology/P19-1225/
https://www.aclweb.org/anthology/P19-1225/
http://aclweb.org/anthology/D/D16/D16-1264.pdf
http://aclweb.org/anthology/D/D16/D16-1264.pdf
https://transacl.org/ojs/index.php/tacl/article/view/1572
https://transacl.org/ojs/index.php/tacl/article/view/1572
https://doi.org/10.1109/TIT.1965.1053799
https://doi.org/10.1109/TIT.1965.1053799
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://transacl.org/ojs/index.php/tacl/article/view/1534
https://transacl.org/ojs/index.php/tacl/article/view/1534
https://transacl.org/ojs/index.php/tacl/article/view/1534
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://arxiv.org/abs/1902.08852
http://arxiv.org/abs/1902.08852
http://arxiv.org/abs/1902.08852
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16712
https://doi.org/10.24963/ijcai.2017/579
https://doi.org/10.24963/ijcai.2017/579
https://aclanthology.info/papers/N18-1113/n18-1113
https://aclanthology.info/papers/N18-1113/n18-1113
https://aclanthology.info/papers/D18-1010/d18-1010
https://aclanthology.info/papers/D18-1010/d18-1010
https://aclanthology.info/papers/D18-1010/d18-1010
https://www.aclweb.org/anthology/P19-1217/
https://www.aclweb.org/anthology/P19-1217/
https://www.aclweb.org/anthology/P19-1217/
https://www.aclweb.org/anthology/P19-1217/


3926

Min-Ling Zhang and Zhi-Hua Zhou. 2011. Cotrade:
Confident co-training with data editing. TSMCB,
41:1612–1626.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: graph-based evidence aggregating and rea-
soning for fact verification. In ACL, pages 892–901.

Chenguang Zhu, Michael Zeng, and Xuedong Huang.
2018. Sdnet: Contextualized attention-based
deep network for conversational question answering.
CoRR, abs/1812.03593.
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A Case Study

Figure 4: Weight distribution of the two cases from the
sentence-level attention.

In Section 4.5 of the main paper, we provide a
quantitative analysis of the evolution of evidence
predictions, and draw two conclusions: (1) STM
can help the base model to correct itself; (2) Error
propagation will not result in catastrophic failure,
though exists.

To help understand these two conclusions, we
provide two corresponding cases from the devel-
opment set of CoQA (Reddy et al., 2019). The
original instances are shown in Table 7, and the
weight distribution from the sentence-level atten-
tion is shown in Figure 4. In case 1, BERT-HA
made wrong evidence prediction, while STM re-
vised it subsequently, which shows the ability of
self-correction. In case 2, BERT-HA first selected
the correct evidence with high confidence. How-
ever, in the iteration 1, BERT-HA with STM was
distracted by another plausible sentence. Instead
of insisting on the incorrect prediction, STM led
BERT-HA back to the right way, which shows that
error propagation is not catastrophic.

B Hyper-Parameters for Self-Training

We implemented BERT-HA with BERT-base from
a commonly used library2, and directly used the
original source code of DSQA3 (Lin et al., 2018).
All the codes and datasets will be released after
the review period. The hyper-parameters used in
BERT-HA and BERT-HA+STM are shown in Table
8.

2https://github.com/huggingface/transformers
3https://github.com/thunlp/OpenQA
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(Case 1)
Passage:
...(3)“Why don’t you tackle Indian River, Daylight?” (4)Harper advised, at parting.
(5)There’s whole slathers of creeks and draws draining in up there, and somewhere
gold just crying to be found. (6)That’s my hunch. (7)There’s a big strike coming, and
Indian River ain’t going to be a million miles away. (8)“And the place is swarming
with moose,” Joe Ladue added. (9)“Bob Henderson’s up there somewhere, been
there three years now, swearing something big is going to happen, living off’n
straight moose and prospecting around like a crazy man.” (10)Daylight decided to
go Indian River a flutter, as he expressed it; but Elijah could not be persuaded into
accompanying him. Elijah’s soul had been seared by famine, and he was obsessed
by fear of repeating the experience. (11)“I jest can’t bear to separate from grub,” he
explained. (12)“I know it’s downright foolishness, but I jest can’t help it...”
Question: Are there many bodies of water there?
Answer: No
(Case 2)
Passage:
(1)If you live in the United States, you can’t have a full-time job until you are 16
years old. (2)At 14 or 15, you work part-time after school or on weekends, and
during summer vacation you can work 40 hours each week. (3)Does all that mean
that if you are younger than 14, you can’t make your own money? (4)Of course not!
(5)Kids from 10-13 years of age can make money by doing lots of things. (6)Valerie,
11, told us that she made money by cleaning up other people’s yards. ...(11)Kids can
learn lots of things from making money. (12)By working to make your own money,
you are learning the skills you will need in life. (13)These skills can include things
like how to get along with others, how to use technology and how to use your time
wisely. (14)Some people think that asking for money is a lot easier than making it;
however, if you can make your own money, you don’t have to depend on anyone
else...
Question: Can they learn time management?
Answer: No

Table 7: Examples from the development set of CoQA. Evidential sentences in red in reference passages are crucial
to answer the questions. Sentences in blue are distracting as Figure 4 shows.

Dataset RACE-H RACE-M DREAM MultiRC CoQA MARCO BoolQ
Lmax 380 380 512 512 512 480 512
learning rate 5e-5♣/4e-5♠ 5e-5♣/4e-5♠ 2e-5 2e-5 2e-5 2e-5 3e-5
epoch 3 3 5 8 3 2♣/3♠ 4
η 0.8 0.8 0.8 0.8 0.8 0.8 0.8
batch size 32 32 32 32 6 8 6
ε 0.5 0.5 0.5 0.5 0.6 0.5 0.5
δ 0.9 0.9 0.8 0.8 0.9 0.9 0.7
n 40000 10000 3000 2000 1500 1000 500
Kmax 2 3 4 3 1 1 1

Table 8: Hyper-parameters marked with ♣/♠ are used in BERT-HA/BERT-HA+STM, respectively. Other un-
marked hyper-parameters are shared by these two models.


