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Abstract

The current aspect extraction methods suffer
from boundary errors. These errors lead to
a relatively minor difference between the ex-
tracted aspects and the ground-truth. However,
they hurt the performance severely. In this pa-
per, we propose to utilize a pointer network
for repositioning the boundaries. Recycling
mechanism is used which enables the train-
ing data to be collected without manual inter-
vention. We conduct the experiments on the
benchmark datasets SE14 of laptop and SE14-
16 of restaurant. Experimental results show
that our method achieves substantial improve-
ments over the baseline, and outperforms state-
of-the-art methods.

1 Introduction

Aspect extraction (Hu and Liu, 2004) is a crucial
task in the field of real-world aspect-oriented sen-
timent analysis, where an aspect stands for a se-
quence of tokens which adhere to a specific sen-
timent word, in general, serving as the target on
which people express their views. For example, the
tokens “twist on pizza” is the aspect of the opinion
“healthy” in 1). In this paper, we concentrate on
the study of aspect extraction conditioned on the
unawareness of sentiment words.

1) Their twist on pizza is healthy.
Ground-truth: twist on pizza
Predicted: [BOUND] pizza [BOUND]

2) Buy the separate RAM memory and you will
have a rocket.
Ground-truth: RAM memory
Predicted: [BOUND] separate RAM memory [BOUND]

What is undoubtedly true is that the existing neu-
ral aspect extraction methods (Section 5.3) have
achieved remarkable success to some extent. The
peak performance on the benchmark datasets, to

our best knowledge, is up to 85.61% F1-score (Li
et al., 2018). We suggest that further improvements
can be made by fine-tuning the boundaries of the
extracted aspects. It is so because some incorrectly-
extracted aspects result from minor boundary er-
rors, where the boundaries refer to the start and
end positions of a token sequence. For example,
reinstating the omitted words “twist on” and trim-
ming the redundant word “separate” in 1) and 2)
by changing the start positions contributes to the
recall of the correct aspects.

We propose to utilize a pointer network for repo-
sitioning the boundaries (Section 2). The pointer
network is separately trained, and it is only used
to post-process the resultant aspects output by a
certain extractor (Section 3). Supervised learn-
ing is pre-requisite for obtaining a well-trained
pointer network. However, so far, there is a lack of
boundary-misspecified negative examples to con-
struct the training set. Instead of manually labeling
negative examples, we recycle those occurring dur-
ing the time when the extractor is trained (Section
4). Our contributions in this paper are as follows:

• By means of a pointer network, we refine the
boundary-misspecified aspects.

• The separately-trained pointer network serves
as a post-processor and therefore can be easily
coupled with different aspect extractors.

• The use of recycling mechanism facilitates the
process of constructing the training set.

2 Pointer Network Based Boundary
Repositioning

We train a pointer network to predict the start and
end positions of the correct aspect. What we feed
into the network include a candidate aspect and
the sentence which contains the candidate (herein
called source sentence). The candidate may be a
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boundary-misspecified aspect, truly-correct aspect
or other text span. The network outputs two words
ws and we, one of which is predicted to be the start
position, the other the end:{

ws = argmax .ps(w
s)

we = argmax .pe(w
e)

(1)

where, P(*) denotes the probability that a word
serves as the start or end position, and argmax
refers to the maximum likelihood estimation. The
text span which lies between the start and end posi-
tions ws and we will be eventually selected as the
boundary-repositioned aspect.

It is noteworthy that, during testing, the status
(boundary-misspecified, truly-correct or other) of
the candidate aspect is assumed to be unknown.
This is derived from the consideration of the practi-
cal situation in which the status of the pre-extracted
aspect is unforeseeable.

Encoding Assume C={w1, ..., wn} represents
the candidate aspect, where wc

i ∈ Rl stands for
the combination of the word, position and segment
embeddings of the i-th token in C. The source sen-
tence is represented in the same way and denoted
by U={w1,..., wm}. We concatenate C and U to
construct the input representation:

WC⊕U = [CLS, C,SEP, U,SEP] (2)

where, CLS denotes the embedding of a dummy
variable, while SEP is that of a separator (Devlin
et al., 2019). In our experiments, WordPiece em-
beddings are used which can be obtained from the
lookup table of Wu et al. (2016). The embeddings
of position, segment, separator and dummy vari-
able are initialized randomly.

We encode each element wi in the input rep-
resentation WC⊕U by fine-tuning BERT (Devlin
et al., 2019): hi=BERT(wi), i ∈[1, n+m+3].

Decoding Due to the use of the multi-head self-
attention mechanism (Vaswani et al., 2017), BERT
is able to perceive and more heavily weight the
attentive words in the source sentence U , accord-
ing to the information in the candidate aspect C,
and vice versa. This property allows the attention-
worthy words out of C to be salvaged and mean-
while enables the attention-unworthy words in C
to be laid aside. On the other hand, a trainable
decoder tends to learn the consistency between the
ground-truth aspect and the attentive words. There-
fore, we suppose that the decoder is able to leave

the boundaries of C unchanged if C aligns with the
ground-truth aspect, otherwise redefine the bound-
aries in U in terms of the attentive words.

Following the practice in prior research (Vinyals
et al., 2015), we decode the representation hi with a
linear layer and the softmax function, where W ∈
R2×l and b ∈ R2 are trainable parameters:[

ps(wi)
pe(wi)

]
= softmax(Whi + b) (3)

Training Our goal is to assign higher probabili-
ties to the start and end positions ŵs and ŵe for all
the ground-truth aspects in the training set. There-
fore, we measure loss by calculating the average
negative log-likelihood for all pairs of ŵs and ŵe:

LB = − 1

NB

NB∑
i=1

[ log ps(ŵs
i ) + log pe(ŵ

e
i )

2

]
(4)

where, NB is the number of ground-truth aspects.
During training, we obtain the parameters W and b
in equation (3) by minimizing the loss LB .

3 BiLSTM-CRF based Pre-Extraction

We use the pointer network to post-process the
pre-extracted aspects (which are referred to the
candidate aspects in section 2). In our experiments,
we employ a BiLSTM-CRF model to obtain the
candidate aspects.

In this case, we solve aspect pre-extraction as a
sequence labeling task. BIO labeling space y={B,
I , O} (Xu et al., 2018) is specified as the output
for each token in the source sentence, in which B,
I and O respectively signal the beginning of an
aspect, inside of an aspect and non-aspect word.

First of all, we represent the tokens in the source
sentence using GloVe embeddings (Pennington
et al., 2014). On the basis, we use a bidirectional
recurrent neural network with Long-Short Term
Memory (BiLSTM for short) (Liu et al., 2015) to
encode each token, so as to obtain the initial hid-
den state vector hlstmi . Self-attention mechanism
(Vaswani et al., 2017) is utilized for the resolution
of long-distance dependency, by which we obtain
the attention-weighted hidden state hatti . We con-
catenate hlstmi and hatti to produce the final feature
vector for the i-th token: ĥi=hlstmi ⊕ hatti .

Conditioned on the feature vector ĥi emitted by
BiLSTM with attention, we estimate the emission
probabilities that the i-th token may serve as B,
I and O respectively. The fully-connected dense
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layer is used to map ĥi to the BIO labeling space:
pi(BIO) = fden(ĥi). Over the emission probabil-
ities of all the tokens in the source sentence, we
utilized a linear-chain Conditional Random Field
(CRF) (Wang et al., 2016) to predict the optimum
label sequence of BIO. Eventually, the tokens la-
beled with B and I will be taken as the aspects.

We train the extractor by maximizing the log-
likelihood of sequence labeling (Luo et al., 2019):

LE =

NE∑
i=1

logP (y|fden(ĥi), Ŵ , b̂) (5)

where, NE denotes the number of tokens in the
training set, Ŵ is a trainable parameter which plays
a role of transition matrix in CRF and b̂ is the bias.

4 Recycling Mechanism

The extractor can be trained on the benchmark
datasets provided by the SemEval tasks (Pontiki
et al., 2016). However, it is impractical to sepa-
rately train the positioner because there is a lack
of boundary-misspecified negative examples. To
solve the problem, we recycle the negative exam-
ples occurring during the training of the extractor.

We define a negative example to be a text span
which partially overlaps with the ground-truth as-
pect. The text spans which are completely inconsis-
tent with the ground-truth are not considered. For
example, “Fresh ingrediants” in 3) is an eligible
negative example, but “super tasty” is ineligible.

3) Fresh ingrediants and super tasty.
Ground-truth: ingrediants
Eligible: Fresh ingrediants
Ineligible: super tasty

We maintain a table that maps each ground-truth
aspect to a list of negative examples. We initialize
the mapping table by taking ground-truth aspects as
entries and assigning an empty list to each of them.
For each entry, we traverse the results output by
the extractor in each training epoch and pick up the
eligible negative examples. The newly-observed
negative examples will be added to the list of the en-
try only if they have not yet been included in the list.
We perform recycling in the first 20 epochs. Few
examples can be found in the subsequent epochs.

5 Experimentation

5.1 Datasets
We evaluate the proposed methods on the laptop
and restaurant datasets provided by SemEval 2014-

2016 aspect-based sentiment analysis tasks (SE14-
16 for short) (Pontiki et al., 2014, 2015, 2016). For
comparison purpose, we follow the previous work
to randomly select 20% of the official training data
to form the validation set.

Table 1 shows the sample statistics in the train-
ing, validation and test sets as well as that of the
recycled negative examples (denoted by Neg).

Dataset
Training Validation Test

Aspect Neg Aspect Aspect
SE14-L 1,853 2,008 505 654
SE14-R 2,961 3,208 733 1,134
SE15-R 966 1,050 234 542
SE16-R 1,398 1,424 346 612

Table 1: Sample statistics for SE14-16. “L” indicates
the laptop domain and “R” the restaurant.

5.2 Hyperparameter Settings

For the aspect pre-extraction model, we initialize
all word embeddings by 100-dimensional GloVe
word embeddings (Pennington et al., 2014). Each
of BiLSTM units is of 100 dimensions and the
number of hidden states in the self-attention layer
is set to 200. We employ dropout on the output
layer of BiLSTM (i.e., penultimate layer) and the
dropout rate is set to 0.5. The learning rate for
parameter updating is set to 1e-3.

For the boundary reposition model, we employ
basic BERT (Devlin et al., 2019) as the encoder
which contains 12 transformer encoding blocks.
Each block holds 768 hidden units and 12 self-
attention heads. During training, the maximum
length of the input sequence is set to 180 and the
batch size is set to 10. The learning rate is set to
3e-5 and the number of training epochs is set to 5.

5.3 Compared Models

We compare with the state-of-the-art models. By
taking learning framework as the criterion, we di-
vide the models into two classes:

Single-task Learning In the family of aspect-
oriented single-task learning, the traditional CRF1

is used at the earliest time which is based on feature
engineering. On the basis, HIS RD (Chernyshe-
vich, 2014) additionally utilizes the part-of-speech
and named entity features. NLANGP (Toh and
Su, 2016) first incorporates syntactic features and
word embeddings. HIS RD and NLANGP top

1https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
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Figure 1: Amounts of the salvaged and misjudged aspects, and the percentages in all the samples

the list for aspect extraction in 2014 and 2016 Se-
mEval challenges. During the period, WDEmb
(Yin et al., 2016) enhances word embeddings us-
ing the linear context. And Liu et al. (2015)’s
work may be the first attempt to directly use
vanilla LSTM for aspect analysis. Soon after-
wards, Xu et al. (2018) construct a multi-layer Con-
volution Neural Network (DE-CNN) which inte-
grates GloVe and domain-specific embeddings. Ma
et al. (2019) first use Sequence-to-Sequence learn-
ing (Seq2Seq4ATE) with GRUs and the position-
aware attention mechanism this year.

Multi-task Learning For aspect-oriented multi-
task learning, Li and Lam (2017) design a triple-
LSTM model (MIN) to share the features which
are generated toward extraction and classification
tasks. CMLA (Wang et al., 2017) uses a multi-
layer attention mechanism for the joint extraction
of aspect terms and sentiment words. HAST (Li
et al., 2018) strengthens the joint model using trun-
cated history-attention and selective transformation
network. RINANTE (Dai and Song, 2019) shares
features in the bottom layer of BiLSTM-CRF and
uses distant supervision to expand the training data.

Similar to RINANTE, our aspect pre-extraction
model (Baseline) is based on BiLSTM-CRF. How-
ever, we force it to work in the single-task learning
framework. More importantly, instead of distant su-
pervision, we use recycling mechanism to acquire
local boundary-misspecified examples, and instead
of retraining BiLSTM-CRF for use, we only repo-
sition the boundaries of the resultant aspects.

5.4 Main Results
We show the performance difference over test sets
in Table 2. It can be observed that the single-task
BiLSTM-CRF based extractor either achieves a
comparable performance to some of the current
state-of-the-art methods, or performs worse than

Method SE14-L SE14-R SE15-R SE16-R
CRF 72.77 79.72 62.67 66.96
HIS-RD (2014) 74.55 79.62 - -
LSTM (2015) 75.71 82.01 68.26 70.35
NLANGP (2016) - - 67.12 72.34
WDEmb (2016) 75.16 84.97 69.73 -
DE-CNN (2018) 81.59 85.20 68.28 74.37
Seq2Seq (2019) 80.31 - - 75.14
MIN (2017) 77.58 - - 73.44
CMLA (2017) 77.80 85.29 70.73 -
HAST (2018) 79.52 85.61 71.46 73.61
RINANTE (2019) 73.47 84.06 66.17 -
BiSELF-CRF (ours) 78.15 83.73 68.81 73.49
+Repositioning 81.90 86.58 71.72 75.56

Table 2: Performance (F-scores) comparison

others. Nevertheless, refining the pre-extracted as-
pects by boundary repositioning yields substantial
improvements and achieves the best performance.

Figure 1 provides further insight into the test
results. It shows that there are 41% of boundary-
misspecified aspects in average can be successfully
salvaged. On the contrary, there are only 1.7% of
correctly-extracted aspects in average have been
misjudged. Besides, there are few completely erro-
neous extraction results can be rectified.

5.5 Adaptation to BERT
In a separate experiment, we examine the adapta-
tion performance of boundary repositioning. The
original pre-extraction model is replaced by the
fine-tuning BERT and a more sophisticated model.
The former is coupled with a dense layer and a soft-
max layer. The latter is constructed by coupling the
fine-tuning BERT and the BiSELF-CRF network.
On the contrary, the set of negative examples which
are recycled in the earlier experiment remains un-
changed. Table 3 shows the test results. It can be
observed that boundary repositioning still achieves
considerable improvements in performance. This
demonstrates the robust adaptation ability.
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Method SE14-L SE14-R SE15-R SE16-R
BERT (fine-tuning) 78.48 85.49 69.49 74.98
+Repositioning 81.43 87.10 72.68 77.71
BERT+BiSELF-CRF 80.15 85.60 66.64 75.64
+Repositioning 82.68 87.11 70.23 77.51

Table 3: Test results (F-scores) for adaptation analysis

Method SE14-L SE14-R SE15-R SE16-R
DE-CNN(reported) 81.59 85.20 68.28 74.37
DE-CNN(retrained) 82.09 80.07 66.40 74.09
+repositioning 84.17 84.55 72.03 75.40

Table 4: Performance (F-scores) achieved by coupling
the retrained DE-CNN with boundary repositioning

5.6 Cooperation with the State-Of-The-Art

We tend to verify whether boundary repositioning
can cooperate with the existing methods. Consid-
ering that DE-CNN (Xu et al., 2018) has a com-
petitive advantage, we take it in this case study.
We utilize DE-CNN for pre-extracting aspects and
conduct boundary repositioning over the resultant
aspects. The following notes needs to be consid-
ered if one tends to conduct a similar experiment.

• Both the source code of Xu et al (2018)’s
DE-CNN and the preprocessed input data in
SE14-L and SE16-R are publicly available.
Conditioned on the input data, the retrained
DE-CNN obtains similar performance to that
reported in Xu et al (2018)’s study.

• Dai et al (2019) reported the performance
of DE-CNN on SE14-R and SE15-R. How-
ever, it wasn’t mentioned whether Xu et al
(2018)’s open-source DE-CNN was used or
it was reproduced. We retrained Xu et al
(2018)’s open-source DE-CNN and prepro-
cessed the input data in SE14-R and SE15-R
all over again. The obtained performance on
the datasets are worse than that reported in
Dai et al (2019)’s work.

Table 4 shows the performance of DE-CNN, in-
cluding the reported performance in Xu et al (2018)
and Dai et al (2019)’s work, that of the retrained
DE-CNN, as well as the one coupled with bound-
ary repositioning. It can be observed that bound-
ary repositioning yields substantial improvements
over the retrained DE-CNN on all the four datasets.
Compared to the reported performance, the use of
boundary repositioning also results in significant
improvements on SE14-L, SE 15-R and SE16-R.

Method P-value
BiSELF-CRF vs BiSELF-CRF+repositioning 0.0017
DE-CNN vs DE-CNN+repositioning 0.0222

Table 5: Test results for significance analysis

5.7 Statistical Significance

We follow Johnson (1999) to use the sampling-
based P-values for examining the significance.
Johnson (1999) suggest that the ideal threshold of P-
value is 0.05. It indicates that a system achieves sig-
nificant improvements over others only if P-values
are less than 0.05, otherwise insignificant. Besides,
it has been proven that the smaller the P-value, the
higher the significance (Dror et al., 2018).

We form the updated versions of BiSELF-CRF
and DE-CNN by coupling them with boundary
repositioning. On the basis, we compute P-values
by comparing the extraction results of the two mod-
els to that of the updated versions. Table 5 shows
the P-values. It can be observed that the P-values
are much lower than the threshold. This demon-
strates that boundary repositioning produces signif-
icant improvements.

In brief, we prove that boundary repositioning
can be used as a reliable post-processing method
for aspect extraction. The source code of boundary
repositioning to reproduce the above experiments
has been made publicly available. We submit the
source code and instruction along with this paper.

6 Conclusion

Our experimental results demonstrate that bound-
ary repositioning can be used as a simple and robust
post-processing method to improve aspect extrac-
tion. Our findings reveal that illustrative aspects
in scientific literature are generally long-winded.
Extracting these aspects suffers more severely from
boundary errors. In the future, we will develop a
syntax-based multi-scale graph convolutional net-
work to deal with both short and long aspects.
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Núria Bel, Salud Marı́a Jiménez Zafra, and Gülsen
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