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Abstract

The hypernymy detection task has been ad-
dressed under various frameworks. Previously,
the design of unsupervised hypernymy scores
has been extensively studied. In contrast, su-
pervised classifiers, especially distributional
models, leverage the global contexts of terms
to make predictions, but are more likely to
suffer from “lexical memorization”. In this
work, we revisit supervised distributional mod-
els for hypernymy detection. Rather than tak-
ing embeddings of two terms as classification
inputs, we introduce a representation learning
framework named Bidirectional Residual Re-
lation Embeddings (BiRRE). In this model, a
term pair is represented by a BiRRE vector as
features for hypernymy classification, which
models the possibility of a term being mapped
to another in the embedding space by hyper-
nymy relations. A Latent Projection Model
with Negative Regularization (LPMNR) is pro-
posed to simulate how hypernyms and hy-
ponyms are generated by neural language mod-
els, and to generate BiRRE vectors based on
bidirectional residuals of projections. Experi-
ments verify BiRRE outperforms strong base-
lines over various evaluation frameworks.

1 Introduction

As a type of linguistic resources, hypernymy rela-
tions refer to “is-a” relations between terms. Such
relations are frequently exploited in a wide range
of NLP tasks, including taxonomy induction (Mao
et al., 2018), lexical entailment (Vulic et al., 2017)
and Web query understanding (Wang et al., 2015).

In the NLP community, the task of hyper-
nymy detection has been studied under various
frameworks, e.g., unsupervised hypernym dis-
covery (Roller et al., 2018; Chen et al., 2018;
Chang et al., 2018), supervised hypernymy clas-
sification (Shwartz et al., 2016; Nguyen et al.,
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2017), graded lexical entailment (Vulic et al.,
2017). To address unsupervised hypernym discov-
ery, pattern-based and distributional approaches are
two mainstream types of methods. Pattern-based
approaches use Hearst patterns (Hearst, 1992) and
their variants to extract hypernymy relations from
texts (Kozareva and Hovy, 2010; Roller and Erk,
2016). Distributional methods employ hypernymy
measures (or called scores) to predict hypernymy
based on distributional vectors (Santus et al., 2014,
2017), alleviating the pattern sparsity issue. Le et al.
(2019) combine Hearst patterns and hyperbolic em-
beddings for unsupervised hypernym detection.

Compared to unsupervised tasks, the supervised
hypernymy detection task is formulated more di-
rectly, classifying a term pair as hypernymy or
non-hypernymy based on two terms’ representa-
tions (Yu et al., 2015; Anke et al., 2016; Nguyen
et al., 2017). Although this task definition is more
straightforward, the corresponding methods receive
criticism because they may suffer from “lexical
memorization” (Levy et al., 2015), referring to the
phenomenon that they only learn whether a term
is a “prototypical hypernym”, rather than the ac-
tual relations between two terms. To address the
problem, several methods combine other signals
as inputs for hypernymy classifiers, such as depen-
dency paths (Shwartz et al., 2016) and the WordNet
concept hierarchy (Nguyen et al., 2017). Nonethe-
less, it is worth studying whether supervised clas-
sifiers can learn hypernymy relations purely based
on distributional representations.

In this paper, we revisit supervised distribu-
tional models for hypernymy detection, and pro-
pose a representation learning framework named
Bidirectional Residual Relation Embeddings
(BiRRE). To handle “lexical memorization” (Levy
et al., 2015), we learn a BiRRE vector for each term
pair as features for the classifier, avoiding using the
two terms’ embeddings directly. The BiRRE vector
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models the possibility of a term being mapped to
another in the embedding space by hypernymy rela-
tions, learned via existing neural language models
and supervised signals of the training set. Specif-
ically, we introduce the Latent Projection Model
with Negative Regularization (LPMNR) to simulate
how hypernyms and hyponyms are generated in the
the embedding space. The BiRRE vectors are gen-
erated based on bidirectional residuals of projec-
tion results of LPMNR. Experiments over multiple
public datasets and various evaluation frameworks
prove that BiRRE outperforms strong baselines.

The rest of this paper is organized as follows.
Section 2 summarizes the related work. The
BiRRE framework is elaborated in Section 3, with
experiments shown in Section 4. Finally, we con-
clude our paper and discuss the future work in
Section 5.

2 Related Work

In this section, we overview related work on var-
ious tasks related to hypernymy detection. Due
to space limitation, we focus on recent advances
and refer readers to Wang et al. (2017a) for earlier
work.

Pattern-based approaches date back to Hearst
(1992), utilizing handcrafted patterns in English
for text matching. An example of Hearst patterns
is “[...] such as [...]”. They are employed to build
large-scale taxonomies (Wu et al., 2012; Faralli
et al., 2019). Although Hearst patterns are fairly
simple, recent studies show they are highly useful
for designing hypernymy measures (Roller et al.,
2018; Le et al., 2019). Other approaches aim at
improving the coverage of generalized Hearst pat-
terns by automatic pattern expansion (Kozareva and
Hovy, 2010; Roller and Erk, 2016), or considering
other context-rich representations (such as Hetero-
geneous Information Networks (Shi et al., 2019)).
A potential drawback of pattern-based methods is
that the recall of extraction results over specific
domains is limited (Alfarone and Davis, 2015), as
textual patterns are naturally sparse in the corpus.

To overcome the sparsity issue, distributional
hypernymy measures model the degree of hyper-
nymy within a term pair. A majority of these hyper-
nymy measures are based on Distributional Inclu-
sion Hypothesis (DIH) (Weeds et al., 2004), mean-
ing that a hypernym covers a broader spectrum
of contexts, compared to its hyponyms. The im-
provements and variants of DIH include (Santus

et al., 2014; Chen et al., 2018; Chang et al., 2018)
and many others. A comprehensive overview of
distributional hypernymy measures can be found
in Santus et al. (2017). Recently, Le et al. (2019)
combine Hearst patterns and distributional vectors
for hypernym detection. Additionally, the work
of graded lexical entailment (Vulic et al., 2017)
and cross-lingual graded lexical entailment (Vulic
et al., 2019) aims at computing numerical scores,
indicating the degree of hypernymy of a term pair.

For supervised hypernymy classification, tra-
ditional approaches employ distributional vectors
of two terms as features, such as the Concat model,
the Diff model, the SimDiff model (Turney and
Mohammad, 2015). Recently, several approaches
are proposed to learn hypernymy embeddings, con-
sidering the semantic hierarchies of concepts (Yu
et al., 2015; Luu et al., 2016; Nguyen et al., 2017;
Chang et al., 2018; Nickel and Kiela, 2018; Ganea
et al., 2018; Rei et al., 2018; Chen et al., 2018).
For example, Yu et al. (2015) learn hypernym and
hyponym embeddings for a term by max-margin
neural network. Nguyen et al. (2017) propose hier-
archical embeddings for hypernymy classification,
jointly trained over texts and the WordNet concept
hierarchy. Rei et al. (2018) propose a directional
similarity neural network based on word embed-
dings to predict the degree of hypernymy between
two terms. Yet a number of models encode terms
in the hyperbolic space, such as the hyperbolic
Lorentz Model (Nickel and Kiela, 2018), Hyper-
bolic Entailment Cones (Ganea et al., 2018), and
others (Le et al., 2019; Aly et al., 2019). The hy-
perbolic geometry is more capable of modeling
the transitivity property of hypernymy. Addition-
ally, patterns and distributional vectors can also be
combined for supervised hypernymy prediction, as
in Shwartz et al. (2016); Held and Habash (2019)
and several systems submitted to SemEval 2018
Task 9 (Camacho-Collados et al., 2018).

Another type of supervised models can be cat-
egorized as projection-based approaches, which
model how to map embeddings of a term to those
of its hypernyms. Fu et al. (2014) is most influen-
tial, followed by a number of variants. Biemann
et al. (2017); Wang et al. (2017b, 2019b) improve
projection learning by considering explicit nega-
tive samples. The usage of orthogonal matrices is
exploited in Wang et al. (2019a). One advantage is
that they do not perform classification on two terms’
embeddings directly, alleviating “lexical memoriza-
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Figure 1: The BiRRE framework for supervised hypernymy detection.

tion” (Levy et al., 2015). Compared to previous
work, BiRRE is supervised, but does not minimize
the classification error firstly. It uses LPMNR to
learn hypernym/hyponym generation process by
projection learning. Hence, it takes advantages of
both traditional classification and projection-based
approaches.

3 The BiRRE Framework

In this section, we first introduce the task descrip-
tion and the BiRRE framework. The detailed steps
and justifications are elaborated subsequently.

3.1 Task Description
Given two sets of term pairs: the training sets of hy-
pernymy D(+) = {(xi, yi)} and non-hypernymy
relations D(−) = {(xi, yi)}, the task is to learn
a classifier f to distinguish hypernymy vs. non-
hypernymy relations. Particularly, yi is a hypernym
of xi if (xi, yi) ∈ D(+). For non-hypernym rela-
tions, the relation types between two terms xi and
yi in D(−) can be reverse-hypernymy, synonymy,
antonymy, or unrelated, depending on the respec-
tive task and dataset settings.

3.2 General Framework
The BiRRE framework is shown in Figure 1, con-
sisting of pre-processing and three major modules.

Pre-processing: The pre-processing step of
the BiRRE framework requires minimal compu-
tation. For each term pair (xi, yi) ∈ D(+) ∪D(−),
we retrieve the corresponding embedding vectors

from any neural language models (e.g., Word2Vec,
GloVe), without fine-tuning. Denote normalized
embeddings of xi and yi as xi and yi, respectively.

M1: The hyponym projection module learns
how to map embeddings of a hypernym to those of
its hyponyms. Consider the example in Figure 2.
There are usually one-to-many mappings (in se-
mantics) from hypernyms to hyponyms. Hence,
we map a hypernym to its N semantically di-
verse hyponyms by LPMNR. We denote the N
hyponym embeddings w.r.t. yi as hypo(1)(yi), · · · ,
hypo(N)(yi)

1. Based on the difference between
the true hyponym embeddings xi and the N pre-
dicted hyponym embeddings , we compute the
hyponym residual vector reshypo(xi,yi) to mea-
sure the “goodness” of mapping from yi to xi. As
shown in Biemann et al. (2017), the explicit usage
of negative samples (i.e., non-hypernymy relations)
improves the performance of projection learning.
In this module, we take D(+) as the training set
and D(−) for regularization purposes.

M2: The hypernym projection module learns
how to map embeddings of a hyponym to those of
its hypernyms. Based on Figure 2, such mappings
tend to be simpler. Hence, we only learn one map-
ping model from a hyponym to embeddings of its
hypernym. We denote the hypernym embeddings

1Because the training process is completed in the embed-
ding space, our model learns to associate low-density hyper-
nym regions with multiple numbers of high-density hyponym
regions. Here, M(1)yi, · · · ,M(N)yi may refer to the distri-
butions of word embeddings of hyponyms, with no guarantee
that they refers to actual word embeddings.
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Figure 2: Two types of hypernymy relation mappings.

as hyper(xi). This step is learned by a simplified
version of LPMNR. Similarly, we denote the hyper-
nym residual vector as reshyper(xi,yi), measuring
the “goodness” of mapping from xi to yi. In this
module, we also take D(+) as the training set and
D(−) for regularization.

M3: Finally, the BiRRE vector (denoted as
ri) w.r.t. (xi, yi) is computed by concatenat-
ing reshypo(xi,yi) and reshyper(xi,yi). A feed-
forward neural network is trained over D(+) and
D(−) for hypernymy relation classification. The
parameters of M3 are learned by back propagation,
with parameters of M1 and M2 fixed in this step.

3.3 Hyponym Projection (M1)

Previously, several approaches (Fu et al., 2014; Ya-
mane et al., 2016) assume there is a d×d projection
matrix M such that Mxi ≈ yi where d is the di-
mension of word embeddings for (xi, yi) ∈ D(+).
According to Wang et al. (2019a), the usage of
orthogonal matrices has better performance for hy-
pernymy prediction, as the the cosine similarity of
Mxi and yi can be maximized when Mxi and yi
are normalized.

Let M = {M(1), · · · ,M(N)} be the parame-
ter collection of our hyponym projection model
(i.e., N d× d orthogonal projection matrices). For
each hypernym yi, these N projection matrices
map yi to the embeddings of N semantically di-
verse hyponyms M(1)yi, · · · ,M(N)yi. The major
challenge is that the explicit semantics of N projec-
tions are unknown, and may vary across different
datasets. To derive a unified solution for all sce-

narios, we introduce a latent variable θ(p)i ∈ (0, 1)
to represent the weight of (xi, yi) ∈ D(+) w.r.t.
the projection matrix M(p) (p ∈ {1, · · · , N},∑

(xi,yi)∈D(+) θ
(p)
i = 1). The objective of hy-

ponym projection is as follows:2

min
M

∑
(xi,yi)∈D(+)

N∑
p=1

θ
(p)
i,j ‖M

(p)yi − xi‖2

s. t. M(p)TM(p) = Id, p ∈ {1, · · · , N}

(1)

where Id is the d× d identity matrix.
A potential drawback of Eq. (1) is that it only

considers hypernymy relations D(+). The relation
classification objective is not optimized. As Bie-
mann et al. (2017) suggest, negative samples can of
help for learning projection regularizers. The regu-
larizers push the projected hyponym embeddings of
a term further away from its non-hyponyms, mak-
ing hypernymy and non-hypernymy relations more
separable. Hence, we reformulate Eq. (1) as:

min
M

1

|D(+)|
∑

(xi,yi)∈D(+)

N∑
p=1

θ
(p)
i ‖M

(p)yi − xi‖2

+
λ

|D(−)|
∑

(xi,yi)∈D(−)

N∑
p=1

φ
(p)
i (M(p)yi)

T · xi

s. t. M(p)TM(p) = Id, p ∈ {1, · · · , N}
(2)

where λ > 0 is the regularization balancing factor.
The latent variable φ(p)i ∈ (0, 1) is the weight of
the negative sample (xi, yi) ∈ D(−) w.r.t. M(p).
The constraint

∑
(xi,yi)∈D(−) φ

(p)
i = 1 also holds.

To the best of our knowledge, there is no stan-
dard off-the-shelf solution to Eq. (2). We slightly
change the regularization term of Eq. (2). The ob-
jective function is changed as follows, which we
refer as the Latent Projection Model with Negative
Regularization (LPMNR):

min
M

1

|D(+)|
∑

(xi,yi)∈D(+)

N∑
p=1

θ
(p)
i ‖M

(p)yi − xi‖2

− λ

|D(−)|
∑

(xi,yi)∈D(−)

N∑
p=1

φ
(p)
i ‖M

(p)yi − xi‖2

s. t. M(p)TM(p) = Id, p ∈ {1, · · · , N}
(3)

2For simplicity, we omit the constraints of latent variables
in the objective functions in this paper.
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Optimizing Eq. (3) is non-trivial due to the ex-
istence of the unknown weights θ(p)i and φ(p)i . In
this paper, we present a dual-iterative algorithm
to solve the problem. All values of θ(p)i and φ(p)i
are randomly initialized (with θ(p)i , φ

(p)
i ∈ (0, 1),∑

(xi,yi)∈D(+) θ
(p)
i = 1 and

∑
(xi,yi)∈D(−) φ

(p)
i =

1). In each iteration, we update the values of θ(p)i ,
φ
(p)
i and M(p). When all the values of θ(p)i and
φ
(p)
i are fixed, Eq. (3) can be regarded as a variant

of the Multi-Wahba problem (Wang et al., 2019a).
For simplicity, let α = λ|D(+)|

|D(−)| . We extend their
work and give an SVD based closed-form solution
to Eq. (3) in Algorithm 1.

Algorithm 1 Closed-form Solution to Eq. (3)

1: for p = 1 to N do
2: B(p) =

∑
(xi,yi)∈D(+) θ

(p)
i xiy

T
i

−α ·
∑

(xi,yi)∈D(−) φ
(p)
i xiy

T
i ;

3: U(p)Σ(p)V(p)T = SV D(B(p));
4: R(p) = diag(1, . . . , 1︸ ︷︷ ︸

d−1

, det(U(p))det(V(p)));

5: M(p) = U(p)R(p)V(p)T ;
6: end for

Proof: It is trivial to see that the optimal val-
ues of each matrix is independent from each other.
Hence, we only need to optimize:

min
M

1

|D(+)|
∑

(xi,yi)∈D(+)

θ
(p)
i ‖M

(p)yi − xi‖2

− λ

|D(−)|
∑

(xi,yi)∈D(−)

φ
(p)
i ‖M

(p)yi − xi‖2

s. t. M(p)TM(p) = Id

For simplicity, let α = λ|D(+)|
|D(−)| , with the superscript

(p) omitted. The problem can be transformed as:

J(M) =
∑

(xi,yi)∈D(+)

θi‖Myi − xi‖2

− α ·
∑

(xi,yi)∈D(−)

φi‖Myi − xi‖2

s. t. MTM = Id

Define the matrix B =
∑

(xi,yi)∈D(+) θixiy
T
i −

α ·
∑

(xi,yi)∈D(−) φixiy
T
i . We re-write the objec-

tive function as: J(M) = 1 − tr(MBT ). Hence,

we have transformed the problem into the Multi-
Wahba problem (Wang et al., 2019a). J(M) is
minimized when the optimal value of M is:

M∗ = Udiag(1, . . . , 1︸ ︷︷ ︸
d−1

, det(U)det(V))VT

with UΣVT = SV D(B). �
After optimal values of M(p) are computed, the

values of all ‖M(p)yi − xi‖2 are known. In this
condition, we fix the values of M(p) and update all
θ
(p)
i and φ(p)i . We turn the problem of minimizing

Eq. (3) into the following problems:

min
θ
(p)
i

∑
(xi,yi)∈D(+)

‖M(p)yi − xi‖2 · θ(p)i (4)

max
φ
(p)
i

∑
(xi,yi)∈D(−)

‖M(p)yi − xi‖2 · φ(p)i (5)

We update θ(p)i and φ(p)i by constrained gradient
descent where the updating formulas are:

θ
(p)∗
i = θ

(p)
i −η ·

∑
(xi,yi)∈D(+)

‖M(p)yi−xi‖2 (6)

φ
(p)∗
i = φ

(p)
i +η ·

∑
(xi,yi)∈D(−)

‖M(p)yi−xi‖2 (7)

where η > 0 is the learning rate (a small deci-
mal). θ(p)∗i and φ(p)∗i are updated values of θ(p)i
and φ(p)i for the new iteration, respectively. Af-
ter the update of all weights, we normalize the
weights to satisfy:

∑
(xi,yi)∈D(+) θ

(p)
i = 1 and∑

(xi,yi)∈D(−) φ
(p)
i = 1. The iterative procedure

continues until convergence, with the algorithm
summarized in Algorithm 2.

After training, given xj , M1 outputs N hy-
ponym embeddings: hypo(1)(yi) = M(1)yi, · · · ,
hypo(N)(yi) = M(N)yi. We define the hyponym
residual vector reshypo(xi,yi) as follows:

reshypo(xi,yi)) = xi −M(p̃)yi

where p̃ is the index of the selected projection ma-
trix that best fits for (xi, yi) ∈ D(+). We set p̃
empirically as: p̃ = argminp ‖xi −M(p)yi‖2.

Based on the objective in Eq. (3), if (xi, yi) ∈
D(+), ‖reshypo(xi,yi)‖2 tends to be small. Other-
wise, ‖reshypo(xi,yi)‖2 would be large. Hence, it
is discriminative for hypernymy classification.
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Algorithm 2 Optimization Algorithm for Eq. (3)

1: Randomly initialize all θ(p)i and φ(p)i ;
2: while Eq. (3) does not converge do
3: ComputeM by Algorithm 1;
4: for p = 1 to N do
5: while Eq. (4) does not converge do
6: Update and normalize θ(p)i,j by Eq. (6);
7: end while
8: while Eq. (5) does not converge do
9: Update and normalize φ(p)i,j by Eq. (7);

10: end while
11: end for
12: end while

Algorithm 3 Training Algorithm of BiRRE
1: Learn N hyponym projection matricesM;
2: Learn hypernym projection matrix Q;
3: for each (xi, yi) ∈ D(+) ∪D(−) do
4: Compute the BiRRE vector ri by Eq. (8);
5: end for
6: Train the hypernymy classifier f over D(+) ∪
D(−) using ri as features;

3.4 Hypernym Projection (M2)
The hypernym projection module can be regarded
as a simplified version of the previous module. De-
note Q as the d×d projection matrix. The objective
of hypernym projection is formulated as follows:

min
Q

1

|D(−)|
∑

(xi,yi)∈D(−)

‖Qxi − yi‖2 −
λ

|D(+)|∑
(xi,yi)∈D(+)

‖Qxi − yi‖2 s. t. QTQ = Id

It can be solved by Algorithm 1 with weights re-
duced and N = 1. Similar to hyponym projec-
tion, we compute the hypernym residual vector
reshyper(xi,yi) as follows:

reshyper(xi) = Qxi − yi

3.5 Hypernymy Relation Classification (M3)
For each pair (xi, yi) ∈ D(+) ∪D(−), we generate
the BiRRE vector ri via the concatenation of two
residual vectors:

ri = reshypo(xi,yi)⊕ reshyper(xi,yi) (8)

A feed forward neural network is trained for hy-
pernymy vs. non-hypernymy classification over

D(+) and D(−) using ri as features. To this end,
we summarize the high-level training process of
BiRRE, as shown in Algorithm 3. There can be
zero, one or multiple hidden layers in the neural
network. The detailed study of network structures
will be discussed in the experiments.

3.6 Discussion
Orthogonal projections have been applied to predict
various types of word relations (Ethayarajh, 2019).
However, the mechanisms behind orthogonal pro-
jections in the embedding space for predicting such
relations can not be fully explained by NLP re-
searchers. In BiRRE, we use different numbers of
matrices in M1 and M2, in order to capture the
mappings between hypernyms and hyponyms. Due
to the complicated nature of linguistics, such pro-
jections are not 100% correct. Hence, we learn the
residual vectors and train a classifier (in M3) to de-
cide which dimensions learned by M1 and M2 are
best predictors for hypernymy relations. Therefore,
the performance of BiRRE can be improved.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the BiRRE model over various bench-
marks. We also compare it with state-of-the-art to
show its effectiveness.

4.1 Experimental Settings
The default word embeddings used by our model
are pre-trained by the fastText model (Bojanowski
et al., 2017) over the English Wikipedia corpus of
version December 2019. We train the model by
ourselves using their original codes. The embed-
ding size is set as d = 300, according to their paper.
In the implementation, the parameters η and N are
set to 10−3 and max{1, blg |D(+)|c} (an empirical
formula), respectively. We also tune the model pa-
rameters in subsequent experiments. The neural
network in M3 is fully connected and trained via
the Adam algorithm with the dropout rate to be 0.1.

4.2 Experiment 1: Effectiveness of BiRRE
We use the largest hypernymy relation dataset (to
our knowledge) from Shwartz et al. (2016) to test
the effectiveness of BiRRE. It is created from vari-
ous resources: WordNet, DBPedia, Wikidata and
YAGO, and divided into random split and lexical
split. Especially, the lexical split forces training,
testing and validation sets contain distinct vocab-
ularies, disabling “lexical memorization” (Levy
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Method Precision Recall F1 Precision Recall F1
Random Split Lexical Split

Roller and Erk (2016) 0.926 0.850 0.886 0.700 0.964 0.811
Shwartz et al. (2016) 0.913 0.890 0.901 0.809 0.617 0.700
Glavas and Ponzetto (2017) 0.933 0.826 0.876 0.705 0.785 0.743
Rei et al. (2018) 0.928 0.887 0.907 0.826 0.860 0.842
BiRRE 0.945 0.932 0.938 0.880 0.918 0.898

Table 1: Performance of different approaches over the dataset (Shwartz et al., 2016).

et al., 2015). We follow the same evaluation steps
of Shwartz et al. (2016); Rei et al. (2018) and re-
port the results in Table 1. The network structure
and parameters are tuned over the validation set.

Based on the results, BiRRE consistently outper-
forms state-of-the-art by 3.1% and 5.6% in terms
of F1. Additionally, the performance gap between
lexical and random splits has been narrowed down
from 6.5% (Rei et al., 2018) to 4.0% (BiRRE). It
shows that BiRRE alleviates “lexical memoriza-
tion”, compared to other distributional models. We
also conduct pairwise statistical tests between Rei
et al. (2018) and our outputs. It shows that BiRRE
outperforms the approach significantly.

We tune the value of λ from 0.0 to 1.0 using
the development set. The results over the lexical
spilt of the dataset (Shwartz et al., 2016) are shown
in Figure 3(a). Bigger λ means a larger effect of
negative regularization. As seen, the usage of nega-
tive regularization improves the prediction perfor-
mance by a large margin. A suitable choice of λ
is generally around 0.4 to 0.6. As for the neural
network structures, the number of hidden nodes
does not have a large impact on the model perfor-
mance. Hence, we only report the results when
we use the same number of nodes in hidden layers
as the dimension of word embeddings d, shown in
Figure 3(b). Our results are consistent with previ-
ous research, which show that adding more hidden
layers can decrease the prediction accuracy, leading
to model overfitting.

4.3 Experiment 2: Supervised Hypernymy
Classification

We evaluate BiRRE over two benchmark datasets:
BLESS (Baroni and Lenci, 2011) and ENTAIL-
MENT (Baroni et al., 2012), consisting of 14,547
and 2,770 labeled term pairs, respectively. For eval-
uation, we follow the same “leave-one-out” eval-
uation protocols as used in previous research (Yu
et al., 2015; Luu et al., 2016; Nguyen et al., 2017).
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(a) Tuning λ
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(b) Varying network depth

Figure 3: Tuning parameter λ and the depth of the neu-
ral network classifier for BiRRE.

All the experimental results are reported in terms
of averaged accuracy. Because the two datasets
do not have separate validation sets, we take the
dataset (Shwartz et al., 2016) to tune parameters
of BiRRE. To prevent “data leakage”, we exclude
all the data of the validation set that also appear
in the test set for parameter tuning. We compare
BiRRE against several previous supervised mod-
els (Mikolov et al., 2013; Yu et al., 2015; Luu et al.,
2016; Nguyen et al., 2017; Wang et al., 2019a). 3

The averaged accuracy scores of all these meth-
ods are shown in Table 2. From the results, we
can see that our model outperforms all previous
baseline approaches, having the averaged accuracy
of 98% and 93%, respectively. We also conduct
the paired t-test, which shows that BiRRE sig-

3We have also considered SemEval 2018 Task 9 (Camacho-
Collados et al., 2018) for evaluation. However, this task fo-
cuses on the complete process of retrieving (or discovering)
hypernyms for input terms from specific corpora. Hence, it is
not suitable to evaluate BiRRE directly.
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Method BLESS ENT.
Mikolov et al. (2013) 0.84 0.83
Yu et al. (2015) 0.90 0.87
Luu et al. (2016) 0.93 0.91
Nguyen et al. (2017) 0.94 0.91
Wang et al. (2019a) 0.97 0.92
BiRRE 0.98 0.93

Table 2: Performance comparison for supervised hy-
pernymy classification in terms of averaged accuracy.
ENT. stands for ENTAILMENT.

nificantly outperforms classical models (Mikolov
et al., 2013). Compared to the strongest competi-
tor (Wang et al., 2019a), the accuracy of our model
is also higher by 1%.

4.4 Experiment 3: Ablation Study of BiRRE
We further study the effectiveness of individual
residual vectors for hypernymy classification and
conduct the following ablation study. Each time,
we only use a unidirectional residual vector as fea-
tures (i.e., reshypo(xi,yi) and reshyper(xi,yi)).
Additionally, we follow several previous papers (Yu
et al., 2015; Luu et al., 2016; Nguyen et al., 2017),
using the addition, offset and concatenation of em-
bedding vectors as features (i.e., xi + yi, xi − yi
and xi ⊕ yi to train the neural networks for hyper-
nymy classification. These three models are treated
as naive baselines. The experimental settings are
the same as in Experiments 1 and 2.

The experimental results over BLESS (Baroni
and Lenci, 2011), ENTAILMENT (Baroni et al.,
2012) and the lexical split of the dataset (Shwartz
et al., 2016) are illustrated in Table 3. We have
the following three observations. i) Traditional
models using xi + yi, xi − yi and xi ⊕ yi as fea-
tures do not yield satisfactory results. The most
likely cause is that they suffer from the “lexical
memorization” problem. ii) The hyponym resid-
ual vector reshypo(xi,yi) is slightly more effective
than the hypernym residual vector reshyper(xi,yi).
It means that the more complicated hyponym gen-
eration process is more precise and suitable for
our task. iii) By combining reshypo(xi,yi) and
reshyper(xi,yi), the proposed approach is more
effective and outperforms previous methods.

4.5 Experiment 4: Hypernym Discovery
Yet another widely used evaluation framework is
hypernym discovery, including three subtasks: i)
ranked hyernym detection, ii) hyernymy direction

Feature Set BLESS ENT. Shwartz
xi + yi 0.76 0.77 0.72
xi − yi 0.79 0.74 0.73
xi ⊕ yi 0.81 0.80 0.77
reshypo(xi,yi) 0.92 0.87 0.84
reshyper(xi,yi) 0.89 0.84 0.82
ri (i.e., BiRRE) 0.99 0.93 0.88

Table 3: Ablation study results of BiRRE in terms of
averaged accuracy. ENT. stands for ENTAILMENT.

classification and iii) graded lexical entailment, as
presented in Nguyen et al. (2017); Roller et al.
(2018); Le et al. (2019) and many others. These
subtasks require algorithms to output unsupervised
scores (or measures), indicating the level of hyper-
nymy within a term pair. Therefore, this framework
is not directly applicable to evaluate BiRRE.

We evaluate BiRRE on hypernym discovery
by external supervision. For ranked hyernym de-
tection, following Roller et al. (2018); Le et al.
(2019), we consider five test sets: BLESS (Ba-
roni and Lenci, 2011), EVAL (Santus et al., 2015),
LEDS (Baroni et al., 2012), SHWARTZ (Shwartz
et al., 2016) and WBLESS (Weeds et al., 2014). For
each test set, we use the remaining four datasets
(excluding all term pairs in the current test set) to
train and tune the BiRRE model. For each term in
the test set, we create a ranked list of candidate hy-
pernyms by placing positive predictions over nega-
tive. Next, for candidate hypernyms with the same
relation label, we rank them by norms of BiRRE
vectors to produce the final ranked list.

For the hypernymy direction classification sub-
task, we use three test sets: BLESS (Baroni and
Lenci, 2011), WBLESS (Weeds et al., 2014) and
BIBLESS (Kiela et al., 2015). Because this subtask
is directly evaluated in terms of accuracy, we train
the supervised BiRRE model using the external
dataset (Shwartz et al., 2016) (also excluding term
overlaps) and report the performance. Another
subtask evaluated in Roller et al. (2018); Le et al.
(2019) is graded lexical entailment (Vulic et al.,
2017). Because BiRRE only produces discrete out-
puts, how BiRRE can be adapted for graded lexical
entailment is left as future work.

The experimental results are summarized in Ta-
ble 4. For comparison, we take three recent mod-
els (Nguyen et al., 2017; Roller et al., 2018; Le
et al., 2019) as strong baselines. Due to space lim-
itation, for Roller et al. (2018), we only list the
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Method BLESS EVAL LEDS SHWARTZ WBLESS
Task: Ranked Hyernym Detection (Average Precision)
Nguyen et al. (2017) 0.45 0.54 - - 0.85
Roller et al. (2018) 0.76 0.48 0.84 0.44 0.96
Le et al. (2019) 0.81 0.50 0.89 0.50 0.98
BiRRE 0.87 0.56 0.88 0.56 0.98
Method BLESS WBLESS BIBLESS
Task: Hyernymy Direction Classification (Accuracy)
Nguyen et al. (2017) 0.92 0.87 0.81
Roller et al. (2018) 0.96 0.87 0.85
Le et al. (2019) 0.94 0.90 0.87
BiRRE 0.98 0.95 0.92

Table 4: Experimental results of ranked hyernym detection and hyernymy direction classification.

scores generated by “spmi(x, y)” due to its supe-
riority. We can see that BiRRE consistently out-
performs baselines over most of the datasets. As
for LEDS and WBLESS, the results of BiRRE and
the state-of-the-art (Le et al., 2019) are comparable.
Hence, our supervised distributional model BiRRE
can also address hypernym discovery, previously
addressed by unsupervised hypernymy scores.

We need to claim that models in Table 4 use
different knowledge sources (either patterns or dis-
tributional vectors) for parameter learning. Strictly
speaking, the gaps of scores in this set of tasks
do not necessarily reflect which method is better
in all situations. It still remains an open question
that how to evaluate all types of methods related to
hypernymy detection in a unified framework.

4.6 Experiment 5: Choice of Different Word
Embeddings

We also test our model using other types of word
embeddings. We consider two other types of tra-
ditional word embeddings: Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014), as
well as BERT (Devlin et al., 2019) representations
without contexts 4. Experiments are conducted over
the same datasets as used in Experiment 3. The re-
sults are shown in Table 5, in terms of accuracy.
As shown, the effect of fastText (Bojanowski et al.,
2017) is slightly better than Word2Vec and GloVe.
The representations of BERT do not yield satisfac-
tory performance, probably due to the fact that the
dimensionality of BERT is higher than other mod-
els, making the number of parameters in BiRRE

4The dimensions of Word2Vec and GloVe are the same
as fastText. The pre-trained BERT model we use is
Google’s base model, released at https://github.com/
google-research/bert.

Word Embed. BLESS ENT. Shwartz
Word2Vec 0.94 0.90 0.82
GloVe 0.96 0.88 0.83
BERT 0.87 0.85 0.77

Table 5: The performance of BiRRE using other word
embeddings. ENT. stands for ENTAILMENT.

too large to be learned. Note that the study of deep
neural language models is beyond the scope of this
paper, which can be explored in the future.

5 Conclusion and Future Work

In this paper, we present the BiRRE model for
supervised hypernymy detection. It employs two
projection-based hypernym and hyponym genera-
tion modules based on word embeddings to learn
BiRRE vectors for hypernymy classification. Ex-
perimental results show that BiRRE outperforms
state-of-the-arts over various benchmark datasets.

Future work includes i) improving projection
learning to model complicated linguistic properties
of hypernymy; ii) extending our model to address
other tasks, such as graded lexical entailment (Vulic
et al., 2017) and cross-lingual graded lexical entail-
ment (Vulic et al., 2019); and iii) exploring how
deep neural language models (such as BERT (De-
vlin et al., 2019), Transformer-XL (Dai et al., 2019),
XLNet (Yang et al., 2019)) can improve the perfor-
mance of hypernymy detection.
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im Walde, and Ngoc Thang Vu. 2017. Hierarchical
embeddings for hypernymy detection and direction-
ality. In EMNLP, pages 233–243.



3640

Maximilian Nickel and Douwe Kiela. 2018. Learning
continuous hierarchies in the lorentz model of hyper-
bolic geometry. In ICML, pages 3776–3785.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543.

Marek Rei, Daniela Gerz, and Ivan Vulic. 2018. Scor-
ing lexical entailment with a supervised directional
similarity network. In ACL, pages 638–643.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In EMNLP, pages 2163–2172.

Stephen Roller, Douwe Kiela, and Maximilian Nickel.
2018. Hearst patterns revisited: Automatic hyper-
nym detection from large text corpora. In ACL,
pages 358–363.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte im Walde. 2014. Chasing hypernyms in vec-
tor spaces with entropy. In EACL, pages 38–42.

Enrico Santus, Vered Shwartz, and Dominik
Schlechtweg. 2017. Hypernyms under siege:
Linguistically-motivated artillery for hypernymy
detection. In EACL, pages 65–75.

Enrico Santus, Frances Yung, Alessandro Lenci, and
Chu-Ren Huang. 2015. Evalution 1.0: an evolving
semantic dataset for training and evaluation of distri-
butional semantic models. In LDL@IJCNLP, pages
64–69.

Yu Shi, Jiaming Shen, Yuchen Li, Naijing Zhang, Xin-
wei He, Zhengzhi Lou, Qi Zhu, Matthew Walker,
Myunghwan Kim, and Jiawei Han. 2019. Discover-
ing hypernymy in text-rich heterogeneous informa-
tion network by exploiting context granularity. In
CIKM, pages 599–608.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In ACL,
pages 2389–2398.

Peter D. Turney and Saif M. Mohammad. 2015. Exper-
iments with three approaches to recognizing lexical
entailment. NLE, 21(3):437–476.

Ivan Vulic, Daniela Gerz, Douwe Kiela, Felix Hill, and
Anna Korhonen. 2017. Hyperlex: A large-scale eval-
uation of graded lexical entailment. Computational
Linguistics, 43(4).

Ivan Vulic, Simone Paolo Ponzetto, and Goran Glavas.
2019. Multilingual and cross-lingual graded lexical
entailment. In ACL, pages 4963–4974.

Chengyu Wang, Yan Fan, Xiaofeng He, and Aoying
Zhou. 2019a. A family of fuzzy orthogonal projec-
tion models for monolingual and cross-lingual hy-
pernymy prediction. In WWW, pages 1965–1976.

Chengyu Wang, Xiaofeng He, and Aoying Zhou.
2017a. A short survey on taxonomy learning from
text corpora: Issues, resources and recent advances.
In EMNLP, pages 1190–1203.

Chengyu Wang, Xiaofeng He, and Aoying Zhou.
2019b. Improving hypernymy prediction via taxon-
omy enhanced adversarial learning. In AAAI, pages
7128–7135.

Chengyu Wang, Junchi Yan, Aoying Zhou, and Xi-
aofeng He. 2017b. Transductive non-linear learn-
ing for chinese hypernym prediction. In ACL, pages
1394–1404.

Zhongyuan Wang, Kejun Zhao, Haixun Wang, Xi-
aofeng Meng, and Ji-Rong Wen. 2015. Query un-
derstanding through knowledge-based conceptual-
ization. In IJCAI, pages 3264–3270.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David J.
Weir, and Bill Keller. 2014. Learning to distinguish
hypernyms and co-hyponyms. In COLING, pages
2249–2259.

Julie Weeds, David J. Weir, and Diana McCarthy.
2004. Characterising measures of lexical distribu-
tional similarity. In COLING, pages 1015–1021.

Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Qili Zhu. 2012. Probase: a probabilistic tax-
onomy for text understanding. In SIGMOD, pages
481–492.

Josuke Yamane, Tomoya Takatani, Hitoshi Yamada,
Makoto Miwa, and Yutaka Sasaki. 2016. Distribu-
tional hypernym generation by jointly learning clus-
ters and projections. In COLING, pages 1871–1879.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS, pages 5754–
5764.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In IJCAI, pages 1390–1397.


