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Abstract

In encoder-decoder neural models, multiple
encoders are in general used to represent the
contextual information in addition to the indi-
vidual sentence. In this paper, we investigate
multi-encoder approaches in document-level
neural machine translation (NMT). Surprising-
ly, we find that the context encoder does not
only encode the surrounding sentences but al-
so behaves as a noise generator. This makes
us rethink the real benefits of multi-encoder
in context-aware translation - some of the im-
provements come from robust training. We
compare several methods that introduce noise
and/or well-tuned dropout setup into the train-
ing of these encoders. Experimental result-
s show that noisy training plays an importan-
t role in multi-encoder-based NMT, especial-
ly when the training data is small. Also, we
establish a new state-of-the-art on IWSLT Fr-
En task by careful use of noise generation and
dropout methods.

1 Introduction

Sentence-level neural machine translation (NMT)
systems ignore the discourse phenomena and en-
code the individual source sentences with no use of
contexts. In recent years, the context-aware models
which learn contextual information from surround-
ing sentences have shown promising results in gen-
erating consistent and coherent translations (Zhang
et al., 2018; Voita et al., 2018; Kim et al., 2019;
Voita et al., 2019; Bawden et al., 2018; Miculicich
et al., 2018; Maruf and Haffari, 2018; Maruf et al.,
2019).

There are two common approaches to incorpo-
rating contexts into NMT: the simple way is to
concatenate the context and the current sentence
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to form a context-aware input sequence (Agrawal
et al., 2018; Tiedemann and Scherrer, 2017), where-
as a more widely-used approach utilizes additional
neural networks to encode context sentences (Jean
et al., 2017; Voita et al., 2018; Zhang et al., 2018).
Here we name the former as the single-encoder
approach and name the latter as the multi-encoder
approach. However, large-scale document corpora
are not easily available. Most context-aware NMT
systems are evaluated on small datasets and sig-
nificant BLEU improvements are reported (Wang
et al., 2017; Zhang et al., 2018; Tu et al., 2018). In
our experiments, we find that the improvement per-
sists if we feed pseudo sentences into the context
encoder, especially when we train the system on
small-scale data. A natural question here is: How
much does the improvement come from the leverage
of contextual information in multi-encoder?

In this work, we aim to investigate what kind-
s of information that the context-aware model
captures. We re-implement several widely used
context-aware architectures based on the multi-
encoder paradigm, and do an in-depth analysis
to study whether the context encoder captures the
contextual information. By conducting extensive
experiments on several document-level translation
benchmarks, we observe that:

• The BLEU gaps between sentence-level and
context-aware models decrease when the sen-
tence baselines are carefully tuned, e.g., prop-
er use of dropout.

• The multi-encoder systems are insensitive to
the context input. Even randomly sampled
sentences can bring substantial improvements.

• The model trained with the correct context can
achieve better performance during inference
without the context input.
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Figure 1: An overview of two multi-encoder systems. In the Outside approach, Hs is the query and Hc is the
key/value. In the Inside approach, Target is the query, Hs and Hc represent key/value.

Our contribution is two folds: (i) We find that
the benefit of the multi-encoder context-aware ap-
proach is not from the leverage of contextual in-
formation. Instead, the context encoder acts more
like a noise generator to provide richer training sig-
nals. (ii) The finding here inspires us to develop
a simple yet effective training strategy: we add a
Gaussian-noise to the encoder output, which can
effectively alleviate the overfitting, especially on
small datasets.

2 Approaches to Incorporating Contexts
into NMT

Here we describe two ways of introducing contex-
tual information into NMT systems.

2.1 The Single-Encoder Approach

The input of the single-encoder system is the con-
catenation of the context sentences and the cur-
rent sentence, with a special symbol inserted to
distinguish them (Tiedemann and Scherrer, 2017;
Agrawal et al., 2018). Then the extended sentence
is fed into the standard Transformer. These systems
may face the challenge of encoding extremely long
inputs, resulting in inefficient computation.

2.2 The Multi-Encoder Approach

The multi-encoder models take the surrounding
sentences as the context and employ an additional
neural network to encode the context, that is, we
have a source-sentence encoder and a context en-
coder. Figure 1 shows two methods of integrating
the context into NMT in the multi-encoder paradig-
m. Next we show that most of the multi-encoder
approaches (Voita et al., 2018; Zhang et al., 2018)

are instances of the models described below.

• Outside integration. As shown in Figure
1(a), the representations of the context and
the current sentence are firstly transformed
into a new representation by an attention net-
work. Then the attention output and the source
sentence representation are fused by a gated
sum.

• Inside integration. Alternatively, the de-
coder can attend to two encoders respectively
(Figure 1(b)). Then, the gating mechanism
inside the decoder is employed to obtain the
fusion vector.

3 Experimental Setup

3.1 Data and Settings
We evaluated the document-level approaches on
several publicly available datasets. For Chinese-
English (Zh-En) and French-English (Fr-En), we
used Ted talks from IWSLT15 and IWSLT16 (Cet-
tolo et al., 2012) evaluation campaigns as the train-
ing data. We validated on dev2010, and tested on
tst2010-2013 (Zh-En), tst2010 (Fr-En) respective-
ly. For English-German (En-De), we evaluated on
WMT18 task 1. For more convincing results, we
also randomly sampled 500k/1M/2M/5M sentence
pairs from the Chinese-English corpus provided by
WMT2 and test on newstest2017. We preprocessed
the sentences with Moses tokenizer3 except Chi-
nese sentences and used byte pair encoding (Sen-
nrich et al., 2016) with 32K merged operations to

1We used the News-Commentary v14 as the train set
2http://www.statmt.org/wmt19/translation-task.html
3http://www.statmt.org/moses
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Lang.
Train Valid Test

doc. sent. doc. sent. doc. sent.
Zh-En 1708 209K 8 887 56 5473
Fr-En 1803 220K 8 887 11 1664
En-De 8462 329K 130 3004 122 2998
En-Ru - 2M - 10k - 10k

Table 1: Details of datasets on different language pairs.

segment words into sub-word units. The Chinese
sentences were word segmented by the tool provid-
ed within NiuTrans (Xiao et al., 2012). For Fr-En
and Zh-En tasks, we lowercased all sentences to
obtain comparable results with previous work. We
also conducted experiments on a larger English-
Russian (En-Ru) dataset provided by Voita et al.
(2018), consisting of 2M sentence pairs selected
from publicly available OpenSubtitles2018 corpus.
The data statistics of each language pair can be seen
in Table 1. We chose the Transformer-base model
as the sentence-level baseline. The context encoder
also used the same setting as the sentence-level
baseline.

We used Adam (Kingma and Ba, 2014) for opti-
mization, and trained the systems on a single TiTan
V GPU4. The learning rate strategy was the same
as that used in Vaswani et al. (2017). Our imple-
mentation was based on Fairseq (Ott et al., 2019).
More details can be found in our repository5.

4 Results and Discussion

To study whether the context-encoder network cap-
tures contextual information in training, we present
three types of context as the input of the context-
encoder:

• Context: the previous sentence of the current
sentence.

• Random: a sentence consisting of words ran-
domly sampled from the source vocabulary.

• Fixed: a fixed sentence input for context-
encoder.

4.1 Baseline Selection
Weight sharing (Voita et al., 2018) and two-stage
training (Zhang et al., 2018) strategies have been
proven essential to build strong context-aware sys-
tems. The former shared the first N-1 blocks of

4For En-Ru and Zh-En we trained models on 4 GPUs
5The source code is available at https://github.

com/libeineu/Context-Aware

System Layers WS TS BLEU

Sentence-level - - - 28.9

Outside Context

6 × × 28.5
6 X × 29.3
6 × X 29.6
1 × X 29.4

Table 2: Comparison of context-aware model with t-
wo training strategies on En-De task. WS represents
weight-sharing and TS represents two-stage training.

context encoder with the source encoder, and the
latter first trained a standard sentence-level Trans-
former and finetuned the document-level Trans-
former with an extra context-encoder. We first
evaluated the importance of two training strategies
for multi-encoder systems. We selected the multi-
encoder with Outside integration (see Section 2)
as the context-aware model and trained systems
with two training strategies on the En-De task re-
spectively. As shown in Table 2, we find that both
two strategies outperform the sentence-level base-
line by a large margin. The model with two-stage
training performs slightly better than the weight-
sharing system in terms of BLEU. To our surprise,
the context-encoder with a single-layer can com-
pete with a six-layers model. We suspect that this
is because the training data is limited and we do
not need a sophisticated model to fit it. Therefore,
we choose the two-stage training and single-layer
context-encoder for all experiments in the remain-
der of this paper.

4.2 Results
Table 3 shows the results of several context-aware
models on different datasets. We see, first of all,
that all multi-encoder models, including both Insid-
e and Outside approaches outperform the sentence-
level baselines by a large margin on the Zh-En and
En-De datasets with a small p value of dropout.
Also, there are modest BLEU improvements on
the Fr-En and En-Ru tasks. When the models are
regularized by a larger dropout, all systems obtain
substantial improvements - but the gaps between
sentence-level and multi-encoder systems decrease
significantly.

We deduce that if the context-aware systems rely
on the contextual information from the preceding
sentence, the performance of Random and Fixed
should dramatically decrease due to the incorrec-
t context. Surprisingly, both Random and Fixed
systems achieve comparable performance or even

https://github.com/libeineu/Context-Aware
https://github.com/libeineu/Context-Aware
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System Zh-En Fr-En En-De En-Ru

p = 0.1 p = 0.3 p = 0.1 p = 0.3 p = 0.1 p = 0.3 p = 0.1 p = 0.3

Sentence-level 18.0 19.7 36.5 36.9 28.9 30.2 30.3 31.1
Single-encoder 18.1 19.1 36.2 37.3 28.5 30.2 30.4 31.2

Inside
Context 19.4 20.0 36.8 37.5 29.7 31.0 30.8 31.3
Random 19.5 20.3 37.0 37.4 29.9 30.7 30.8 31.4
Fixed 19.5 20.3 37.0 37.2 29.3 30.8 30.8 31.4

Outside
Context 19.4 19.8 36.8 37.4 29.4 30.7 30.9 31.1
Random 19.4 20.1 36.8 37.3 29.6 31.1 30.7 31.1
Fixed 19.4 20.0 36.7 37.2 29.5 31.1 30.8 31.1

Table 3: The BLEU scores [%] of different context-aware models with three context inputs. We use dropout = 0.1
and dropout = 0.3 respectively.

System Inside Outside

Aware Agnostic Aware Agnostic

Context 31.0 31.0 30.7 31.1
Random 30.7 30.8 31.1 31.3
Fixed 30.8 30.8 31.1 31.1

Table 4: The BLEU scores [%] of context-aware sys-
tems with two inference schemas. Aware represents
the inference process matches the training. Agnostic
represents that models ignore context encoder during
inference.

higher BLEU scores than Context in most cases
(See Table 3). A possible explanation is that the
context encoder does not only model the contex-
t. Instead, it acts more like a noise generator to
provide additional supervised signals to train the
sentence-level model.

4.3 Robust Training

To verify the assumption of robust training, we
followed the work (Srivastava et al., 2014; Berger
et al., 1996). We turned off the context-encoder
during the inference process, and made the infer-
ence system perform as the sentence-level base-
line. Table 4 shows that both Context and Random
inference without context-encoder obtain modest
BLEU improvements. This confirms that the in-
formation extracted by context-encoder just plays
a role like introducing randomness into training
(e.g., dropout), which is a popular method used
in robust statistics. We argue that three types of
context provide noise signals to disturb the distri-
bution of the sentence-level encoder output. The
BLEU improvements of both Outside and Inside
are mainly due to the richer noise signals which
can effectively alleviate the overfitting.

Inspired by Outside integration manner, we de-

System Zh-En Fr-En En-De En-Ru

Baseline 19.7 36.9 30.2 31.1
Context 19.8 37.4 30.7 31.1
Noise 19.9 37.4 30.9 31.3
Context+Noise 19.9 37.3 30.9 31.3

Table 5: Comparison of Outside Context and Gaussian-
noise methods on three tasks, with dropout = 0.3, σ =
0.3.

signed a simple yet effective method to regular-
ize the training process: A Gaussian noise is
added to the encoder output instead of the embed-
ding (Cheng et al., 2018). We sample a vector
ε ∼ N

(
0, σ2I

)
from a Gaussian distribution with

variance σ2, where σ is a hyper-parameter. As seen
in Table 5, the systems with Gaussian-noise signifi-
cantly outperform the sentence-level baselines, and
are slightly better than the Outside-context coun-
terpart. Moreover, a natural question is whether
further improvement can be achieved by combining
the Context with the Gaussian-noise method. From
the last line in Table 5, we observe no more im-
provement at all. The observation here convinced
the assumption again that the context-encoder plays
a similar role with the noise generator.

4.4 Large Scale Training

Most previous results are reported on small train-
ing datasets. Here we examine the effects of the
noise-based method on different sized datasets. We
trained the Inside-Random model and the Gaussian-
noise model on different datasets consisting of
500K to 5M sentence pairs. Seen from Figure
2, the baseline model achieves better translation
performance when we increase the data size. More
interestingly, it is observed that Inside-Random
and Gaussian-noise perform slightly better than
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Figure 2: BLEU scores vs. different data volume on Zh-
En sentence-level dataset. dropout = 0.1 and σ = 0.3.

the baseline, and the gaps gradually decrease with
the volume increasing. This is reasonable that mod-
els trained on large-scale data may suffer less from
the overfitting problem.

5 Related Work

Context-aware NMT systems incorporating the
contextual information generate more consistent
and coherent translations than sentence-level N-
MT systems. Most of the current context-aware
NMT models can be classified into two main cat-
egories, single-encoder systems (Tiedemann and
Scherrer, 2017) and multi-encoder systems (Jean
et al., 2017; Voita et al., 2018; Zhang et al., 2018).
Voita et al. (2018) and Zhang et al. (2018) inte-
grated an additional encoder to leverage the con-
textual information into Transformer-based NMT
systems. Miculicich et al. (2018) employed a hier-
archical attention network to model the contextu-
al information. Maruf and Haffari (2018) built a
context-aware NMT system using a memory net-
work, and Maruf et al. (2019) encoded the whole
document with selective attention network. How-
ever, most of the work mentioned above utilized
more complex modules to capture the contextual
information, which can be approximately regarded
as multi-encoder systems.

For a fair evaluation of context-aware NMT
methods, we argue that one should build a strong
enough sentence-level baseline with carefully regu-
larized methods, especially on small datasets (Kim
et al., 2019; Sennrich and Zhang, 2019). Beyond
this, Bawden et al. (2018) and Voita et al. (2019)
acknowledged that BLEU score is insufficient to
evaluate context-aware models, and they empha-
sized that multi-encoder architectures alone had a
limited capacity to exploit discourse-level context.
In this work, we take a further step to explore the
main cause, showing that the context-encoder acts
more like a noise generator, and the BLEU improve-

ments mainly come from the robust training instead
of the leverage of contextual information. Addi-
tionally, Cheng et al. (2018) added the Gaussian
noise to word embedding to simulate lexical-level
perturbations for more robust training. Differently,
we added the Gaussian noise to the encoder output
which plays a similar role with context-encoder,
which provides additional training signals.

6 Conclusions

We have shown that, in multi-encoder context-
aware NMT, the BLEU improvement is not attribut-
ed to the leverage of contextual information. Even
though we feed the incorrect context into training,
the NMT system can still obtain substantial BLEU
improvements on several small datasets. Anoth-
er observation is that the NMT models can even
achieve better translation quality without the con-
text encoder. This gives us an interesting finding
that the context-encoder acts more like a noise gen-
erator, which provides rich supervised training sig-
nals for robust training. Motivated by this, we
significantly improve the sentence-level system-
s with a Gaussian noise imposed on the encoder
output. Experiments on large-scale training data
demonstrate the effectiveness of this method.
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