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Abstract

Stance detection is an important task, which
aims to classify the attitude of an opinionated
text towards a given target. Remarkable suc-
cess has been achieved when sufficient labeled
training data is available. However, annotating
sufficient data is labor-intensive, which estab-
lishes significant barriers for generalizing the
stance classifier to the data with new targets. In
this paper, we proposed a Semantic-Emotion
Knowledge Transferring (SEKT) model for
cross-target stance detection, which uses the
external knowledge (semantic and emotion
lexicons) as a bridge to enable knowledge
transfer across different targets. Specifically, a
semantic-emotion heterogeneous graph is con-
structed from external semantic and emotion
lexicons, which is then fed into a graph convo-
lutional network to learn multi-hop semantic
connections between words and emotion tags.
Then, the learned semantic-emotion graph rep-
resentation, which serves as prior knowledge
bridging the gap between the source and tar-
get domains, is fully integrated into the bidi-
rectional long short-term memory (BiLSTM)
stance classifier by adding a novel knowledge-
aware memory unit to the BiLSTM cell. Exten-
sive experiments on a large real-world dataset
demonstrate the superiority of SEKT against
the state-of-the-art baseline methods.

1 Introduction

The goal of stance detection is to automatically
predict the attitude (i.e., favor, against, or none)
of an opinionated text towards a given target (Du
et al., 2017). Recently, deep learning methods, such
as convolutional neural network (CNN) and long
short-term memory (LSTM) (Augenstein et al.,
2016; Du et al., 2017), have dominated the study
of stance detection. Impressive stance detection
performances have been achieved when a large

∗corresponding authors: {lixutao, yym}@hit.edu.cn

number of labeled samples are available. However,
obtaining rich annotated data is a time-consuming
and labor-intensive process. Conventional stance
detection methods are struggling to cope well with
the data across targets. This motivates the stud-
ies of cross-target stance detection (Wei and Mao,
2019), which infers the attitude of the destination
target by leveraging a large amount of annotated
data from the source target.

So far, several previous studies have been con-
ducted for cross-target stance detection (Augen-
stein et al., 2016; Xu et al., 2018; Wei and Mao,
2019). These methods leverage either common
words or concept-level knowledge shared by dif-
ferent targets to bridge the knowledge gap across
the different targets. Such models suffer from two
issues when they are applied to cross-target stance
detection in practice. First, stance detection often
involves analyzing the texts from social media that
are short and informal, making it difficult to ex-
tract domain-independent common words shared
by different targets from the training data. Second,
users may express their stance towards a given tar-
get in an implicit way. Thus, the existing concept-
level based methods may fail to distinguish implicit
stance-carrying terms and context information.

To alleviate the aforementioned issues, we pro-
pose a semantic-emotion knowledge transferring
(SEKT) model for cross-domain stance detection,
which leverages external knowledge as a bridge
between source and destination targets. The pro-
posed model is motivated by the observation that
the data with different targets usually shares cer-
tain common external knowledge that can be trans-
ferred from the source to destination targets. First,
we build a semantic-emotion graph (SE-graph)
from semantic-related and emotion-related lexi-
cons, which incorporates external knowledge from
both word-level and concept-level. In SE-graph,
each node is either a word or an emotion tag, and
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the edge between each node pair indicates the co-
occurrences of the two nodes in the lexicons. Sec-
ond, a graph convolutional network (GCN) (Kipf
and Welling, 2016) is employed to learn the graph
representation that captures the multi-hop seman-
tic connections between words or emotion tags
rather than one-hop connection. Third, we extend
the standard bidirectional LSTM (BiLSTM) classi-
fier to fully integrate the external knowledge (SE-
graph) by adding an additional knowledge-aware
memory unit (KAMU) to the LSTM cell. KAMU
is capable of controlling the influence of the exter-
nal knowledge in learning the hidden state of each
word.

The main contributions of this paper can be sum-
marized as follows:

• We construct a semantic-emotion heteroge-
neous graph from external semantic and emo-
tion lexicons, and employ GCN to learn the
semantic graph representation. The external
knowledge enriches the representation learn-
ing of the text and target and can be used as
a bridge to enable knowledge transfer across
different targets.

• We extend the standard LSTM cell with an
additional memory unit, effectively integrat-
ing external knowledge into the classifier for
stance detection.

• We conduct extensive experiments on a large
dataset expanded from SemEval-2016 Task 6
to verify the effectiveness of our model for
cross-domain stance detection. The experi-
mental results show that our model consis-
tently outperforms the compared methods.

2 Related Work

2.1 In-domain Stance Detection
Stance detection aims to infer the attitude of a
text towards specific target expression, which is
related to argument mining, fact-checking, and
aspect-level sentiment analysis. Early stance de-
tection methods were concentrated on debates
(Thomas et al., 2006; Somasundaran and Wiebe,
2009; Walker et al., 2012). In recent years, min-
ing users’ stance from social media has attracted
increasing attention due to its broad applications
(Du et al., 2017; Dey et al., 2018; Wei et al., 2018).
For example, Du et al. (2017) incorporated target-
specific information into stance classification with

an attention mechanism. Dey et al. (2018) proposed
a two-phase RNN method, where the first phase is
to filter the non-neutral text while the second phase
is to classify the attitude. Wei et al. (2018) further
extended the model to deal with multi-target stance
detection and utilized a shared memory network
to capture the stance related information towards
multiple related targets. Sun et al. (2018) adopted
a hierarchical attention method to construct text
representation with various linguistic factors.

2.2 Cross-target Stance Detection

There are also several studies being developed for
cross-target stance detection problems, which can
be divided into two classes. The first one mainly
focuses on word-level transfer, which utilizes the
common words shared by two targets to bridge the
knowledge gap. For example, Augenstein et al.
(2016) proposed a bidirectional conditional encod-
ing method by incorporating the target to learn
the target-specific words. Xu et al. (2018) fur-
ther utilized the self-attention mechanism to iden-
tify the word importance. The second type of ap-
proach attempts to address this transfer learning
problem with concept-level knowledge shared by
two targets. For example, Wei and Mao (2019)
proposed a variational Transfer Network (VTN)
method, which complements the commonly used
knowledge by inferring the latent topics shared by
the two targets.

2.3 Incorporating External Knowledge

There are also plenty of studies that incorporate
external resources, such as prior knowledge, gram-
mar rules, domain descriptions, into deep learning
framework to address the data sparsity issue (Zhang
et al., 2018; Dragoni and Petrucci, 2018; Zhang
et al., 2019b; Hu et al., 2016). For example, Lei
et al. (2018) integrated the external knowledge in
the word embedding layer. Margatina et al. (2019)
combined the external knowledge with the hidden
layer acquired by RNN. However, these methods
ignored the relations between external knowledge
and input context. Ma et al. (2018) developed a
Sentic LSTM method, which contained an addi-
tional affective gate mechanism in the LSTM cell
to assist in learning knowledge-aware context rep-
resentation.
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Figure 1: The framework of the proposed SEKT model for cross-target stance detection. It consists of two main
components, i.e., SE-graph and knowledge-enhanced BiLSTM.

3 Our Methodology

3.1 Task Definition and Model Overview

We use Xs = {xsi , psi}N
s

i=1 to denote the collection
of labeled data in the source domain, where each x
denotes the input text and p denotes the correspond-
ing target. N s represents the number of instances
inXs. Each sentence-target pair (xs, ps) ∈ Xs has
a stance label ys. Given an input sentence xt and a
corresponding target pt in the target domain, this
study aims to predict a stance label for the input
sentence xt towards the given target pt by using the
model learned with the labeled data Xs in source
domain.

As illustrated in Figure 1, our model consists
of two primary components: a semantic-emotion
graph (SE-graph) network and a knowledge-
enhanced BiLSTM network. First, we build SE-
graph from semantic-related and emotion-related
lexicons, where GCN is employed to learn the
graph representation that captures the semantic
connections between words or emotion tags with
the multi-hop connection. Then, we extend the
BiLSTM classifier to fully integrate the SE-graph
by adding a novel knowledge-aware memory unit
(KAMU) to the LSTM cell. Next, we will intro-
duce the main components of our model in detail.

3.2 Semantic-Emotion Knowledge Graph
Construction

The data in different domains usually shares certain
background knowledge that can possibly be trans-
ferred from the source domain to the target domain.
Thus, we leverage external knowledge as a bridge
between the source and target domains.

To this end, we build a semantic-emotion knowl-
edge graph (SE-graph) to represent the external
knowledge that may contribute to cross-target
stance detection. The SE-graph utilizes the words
or emotion tags in the semantic and emotion lexi-
cons as nodes, and constructs weighted edges be-
tween words or emotion tags based on their co-
occurrence frequency. First, we utilize the whole
words from the semantic lexicon SenticNet (Cam-
bria et al., 2018) as the word-nodes and add edges
between the semantic words that capture the word-
word semantic connections. Second, we attempt to
assign emotion tags to the words in SenticNet by
looking for the emotion lexicon EmoLex (Moham-
mad and Turney, 2013), and add edges between
the words and emotion tags that capture the word-
tag connection. For example, for a word “mad” in
SenticNet, its semantic-related words from Sen-
ticNet are ”resent, malice, rage, temper”, and
the corresponding emotion tags from EmoLex are
“#anger’, #disgust”. In this way, we can construct
a weighted SE graph G. However, each emotion
tag (node) represents a concept-level knowledge,
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which tends to have many connected nodes. As
a result, emotional knowledge may dominate the
input text. To alleviate this issue, we re-scale the
weights of the word-tag edges by a constant.

The SE-graph can capture the semantic connec-
tions between words and emotion tags with multi-
hop connections. It can help the stance detector to
differentiate the important and appropriate words
for knowledge transfer. Intuitively, the nodes with
high degrees can be considered as the words that
contain common background knowledge, which
often act as a bridge between different targets.

3.3 SE-graph Embedding

We learn the embedding of each node in the SE-
graph with graph convolutional network (GCN),
aiming to fully exploit the multi-hop semantic and
emotional connections between the nodes. Due to
the semantic locality between the words, we extract
a k-hop subgraph from SE-graph for each word.
The subgraph is then fed into a GCN to learn the
graph representation. Here, we adopt GCN because
it has been proved to be effective and efficient to
learn graph embedding (Zhang et al., 2019a).

Formally, let E ∈ Rv×d be a matrix containing
all v nodes in SE-graph with their features, where
d is the size of the node embedding. For each
node, we extract a k-hop subgraph Gs from the
whole graph, which has a degree matrix D and
adjacency matrix A. The normalized symmetric
adjacency matrix of subgraph Gs can be calculated
as: Ã = D− 1

2AD− 1
2 . By feeding the subgraph

Gs into a two-layer GCN, the corresponding sub-
graph representation L ∈ Rn×c with n nodes can
be calculated by:

L = σ(Ãσ(ÃEW0)W1) (1)

where σ represents a non-linear function, W0 ∈
Rd∗v and W1 ∈ Rd∗c are trainable parameters. To
obtain a more compact graph representation, we
further feed L into a fully-connected layer, produc-
ing a final graph representation M ∈ Rd.

3.4 Knowledge-enhanced BiLSTM

Preliminary (Vanilla BiLSTM) Generally, two
independent BiLSTM networks (denoted as
BiLSTMx and BiLSTMp) are employed to encode
the input sentence x and the target p, respectively.
BiLSTM can capture the left and right context
of each word in the input. In particular, for the
t-th word wt in the input sequence of the target,

BiLSTMp computes its forward hidden state
−→
h pt

and backward hidden state
←−
h pt . We concatenate

both the forward and backward hidden states to
form the final hidden state hpt = [

−→
h pt ⊕

←−
h pt ] for

word wt at the t-th position of the input target. Af-
ter learning the contextual representation of the
target, we learn a target-aware sentence represen-
tation Hs by initializing BiLSTMx with the final
hidden state of BiLSTMp.

The background knowledge contained in exter-
nal lexicons is the collection of facts that individu-
als are expected to know, and plays a crucial role in
reading comprehension. We propose a knowledge-
enhanced BiLSTM (KE-BiLSTM) model, which
incorporates the external background knowledge
contained in the semantic-emotion knowledge
graph into the BiLSTMs via a novel knowledge-
aware memory unit (KAMU). KE-BiLSTM helps
to identify discriminative semantic and emotion
knowledge from the input text. It is motivated by
two considerations:

• The external commonsense knowledge pro-
vides rich information of entities and relations
between them, and highlights the features that
are essential for stance detection. For exam-
ple, with the external semantic lexicon, we
can correctly understand the unusual word
“zugzwang” through the semantically related
words “chess”, “strategy”, “forced” contained
in the semantic lexicon. Hence, we devise
KE-BiLSTM to effectively leverage the graph
embedding of SE-graph and fully explore the
external knowledge from both word-level and
concept-level.

• There exist dynamic interaction patterns and
complementarity between the context and
the external knowledge within the input se-
quence for stance detection. Instead of lever-
aging only the input context in each BiLSTM
unit, we take external commonsense knowl-
edge into consideration by adding a novel
knowledge-aware memory unit to the BiL-
STM, which dynamically controls the amount
of external knowledge at each encoding step
and thus balances the contextual and knowl-
edge information for stance detection.

As illustrated in Figure 2, KE-BiLSTM consists
of two primary parts: a BiLSTM network (depicted
in blue) and a knowledge-aware memory unit (de-
picted in green). Similar to the standard BiLSTM
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Figure 2: The structure of the knowledge-enhanced
BiLSTM unit.

network, KE-BiLSTM also computes forward and
backward hidden sequences, which are then com-
bined to form the output representation. Due to
limited space, we solely introduce the implemen-
tation details of the forward layer. The forward
and backward knowledge-enhance LSTMs can be
computed in a similar way.

In KE-BiLSTM, the BiLSTM network learns
the sequential features of the input text. Formally,
in the forward layer of BiLSTM, the input gate it,
forget gate ft, output gate gt, and the memory cell−→
C t are updated as:

it = σ(Wiwt + Ui
−→
h t−1 + Vi

−→
C t−1) (2)

ft = σ(Wfwt + Uf
−→
h t−1 + Vf

−→
C t−1) (3)

gt = tanh(Wgwt + Ug
−→
h t−1 + Vg

−→
C t−1) (4)

−→
C t = ft �

−→
C t−1 + it � gt (5)

where σ represents the sigmoid function. W , U ,
and V are trainable parameters. wt is the t-th word
of the input text.

−→
h t−1 is the hidden state for the

t− 1-th word.
We propose a knowledge-aware memory com-

ponent to incorporate the external knowledge into
BiLSTM. For each word wt, we extract the cor-
responding entity from SE-graph by performing
n-gram matching and acquire a subgraph represen-
tation M0

t . A new knowledge memory
−→
M t at time

t is computed with a linear interpolation between
the previous M0

t and its candidate activation δt:

−→
M t = zt �M0

t + (1− zt)� δt (6)

where zt ∈ [0, 1] is utilized to balance the impor-
tance of M0

t and δt, which can be computed by:

zt = σ(Wzwt + UzM
0
t ) (7)

whereWz andUz are parameters to be learned. The
candidate activation δt is updated as:

δt = tanh(Wδwt + Uδ(rt �M0
t )) (8)

where Wδ and Uδ are parameters to be learned. rt
is the reset gate which aims to combine the knowl-
edge in M0

t and wt, which is defined as:

rt = σ(Wrwt + UiM
0
t ) (9)

where Wr and Ur are projection parameters.
Finally, the linear transformation of wt, ht−1,
−→
M t and Ct are combined to calculate the output
−→o t of the forward KE-BiLSTM layer:

−→o t = σ(Wowt + Uo
−→
h t−1 + Vo

−→
M t +Qo

−→
C t)

(10)
−→
h t = ot � tanh(

−→
C t +

−→
M t) (11)

where −→o t and
−→
h t denote the output gate and

the hidden state of the forward network of KE-
BiLSTM unit at time step t. The hidden state

←−
h t

of the backward network at time step t can be com-
puted in a same way. We can get the overall hidden
state ht = [

−→
h t ⊕

←−
h t] for word wt.

Finally, we can use KE-BiLSTM to learn
knowledge-enhanced sentence representation
Hs = {hs1, . . . , hsn} and knowledge-enhanced
target representation Hp = {hp1, . . . , h

p
m}, where

n and m denote the lengths of sentence x and
given target p, respectively.

3.5 Stance Detection

We employ an attention mechanism to character-
ize the effect of the target on enforcing our SEKT
model to pay more attention to the important words
of the context. In particular, we use the target rep-
resentation Hp as the attention source to calculate
the attention weight αt for the t-th word:

αt = softmax(h̄p
T
hxt ) (12)

where h̄p denote the average vector of target repre-
sentation Hp. We can learn the attentive sentence
representation emb by congregating the embed-
dings of hidden states Hs with attention vector α:

emb =

n∑
t=1

αth
x
t (13)
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Target Favor/Against/None Avg-length
DT 148/299/260 17.1
HC 163/565/256 17.0
FM 268/ 511/170 18.4
LA 167/544/222 19.0
TP 333/452/460 33.3

Table 1: The statistics of our experimental data ex-
tended from SemEval-2016 Task 6.

Finally, the sentence representation emb is fed
into a fully-connected layer followed by a softmax
layer to compute a stance probability distribution:

ŷ = softmax(Wyemb + by) (14)

where Wy is a projection parameter and by is a bias
term. ŷ denotes the predicted stance probability for
the input sentence x and target p. Given an anno-
tated training set Xs, we utilize the cross-entropy
between the predicted stance ŷ and the ground-truth
stance y as our loss function for stance detection:

L = −
N∑
i=1

C∑
j=1

yij log ŷij (15)

where N represents the number of instances in the
training set. C denotes the number of possible
stance categories. yi represents the one-hot rep-
resented ground-truth label for the i-th instance.
ŷi is the predicted stance probability vector. This
model can be optimized with the standard gradient
descent algorithm.

4 Experiments

4.1 Experimental Data
We extend the SemEval-2016 Task 6 dataset (de-
noted as SemEval-2016) to evaluate the perfor-
mance of our SEKT model for cross-target stance
detection. SemEval-2016 is the first stance detec-
tion dataset collected from Twitter, which contains
4870 stance-bearing tweets towards different tar-
gets. Each tweet is classified as “favor”, “against”
or “none”. Following the previous work (Wei and
Mao, 2019), we use the tweets from four targets, in-
cluding Donald Trump (DT), Hillary Clinton (HC),
Legalization of Abortion (LA), and Feminist Move-
ment (FM). These targets are commonly utilized to
evaluate the cross-target stance classification.

In addition to the four targets in SemEval-2016,
we introduce an additional Trade Policy (TP) tar-
get as the fifth target, which is an incredibly hot
topic nowadays. Specifically, 1245 tweets related

to TP are collected and manually labeled as “fa-
vor”, “against” and “none”. The statistics of this
expanded dataset are reported in Table 1.

Concerning the targets, the expanded dataset can
be divided into two groups: Women’s Right (FM,
LA) and American Politics (HC, DT, TP). Thus, we
constructed 8 cross-target stance detection tasks (
DT→HC, HC→DT, FM→LA, LA→FM, TP→HC,
HC→TP, TP→DT, DT→TP). Here, the left side
of the arrow corresponds to the source target and
the right side of the arrow denotes the destination
target.

4.2 Evaluation Metrics

Two evaluation metrics are adopted to verify our
SEKT model. First, following (Wei and Mao,
2019), we leverage the average F1-score as one
evaluation metric (denoted as Favg). Second, since
the targets in the dataset are imbalanced, we also
compute both the micro-averaged F1 (dominating
large class) and macro-averaged F1 (dominating
small class), and treat their average as another eval-
uation metric: F1m = (F1micro + F1macro)/2.

4.3 Implementation Details

In the experiments, we use the 300-dimensional
word2vec pre-trained on English Google News
corpus to initialize the word embeddings. Follow
(Augenstein et al., 2016), the node features is pre-
trained on unlabelled corpora. The hidden size of
LSTM is set to 100. Dropout (dropout rate = 0.2)
is used to avoid overfitting. The Adam optimizer is
applied to train the model, with the mini-batch size
of 8 and the learning rate of 0.001.

4.4 Baseline Methods

We evaluate and compare our model with several
strong baselines, which are described as follows:

• BiLSTM: This method uses BiLSTM to en-
code the sentence and target separately. The
hidden states from both directions are com-
bined to infer the stance label.

• BiCond (Augenstein et al., 2016): This
method is similar to BiLSTM but uses a con-
ditional encoding method that learns a target-
dependent sentence representation for stance
detection.

• CrossNet (Xu et al., 2018): This model is
a variant of BiCond, which leverages a self-
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Source-Target: FM→LA LA→FM HC→DT DT→HC HC→TP TP→HC DT→TP TP→DT
BiLSTM 0.448 0.412 0.298 0.358 0.291 0.395 0.311 0.341
BiCond 0.450 0.416 0.297 0.358 0.292 0.402 0.317 0.347
CrossNet 0.454 0.433 0.431 0.362 0.298 0.417 0.314 0.374
VTN 0.473 0.478 0.479 0.364 - - - -
BERT 0.479 0.339 0.436 0.365 0.261 0.231 0.241 0.456
CrossNet-C 0.449 0.439 0.442 0.369 0.297 0.413 0.324 0.355
CrossNet-CF 0.467 0.457 0.457 0.396 0.307 0.411 0.377 0.398
CrossNet-CA 0.473 0.475 0.455 0.407 0.301 0.442 0.409 0.396
TextCNN-E 0.469 0.458 0.380 0.404 0.309 0.450 0.356 0.396
SEKT (Ours) 0.536 0.513 0.477 0.420 0.335 0.460 0.444 0.395

Table 2: Performance comparison of cross-target stance detection in terms of F1avg on 8 tasks.

Source-Target: FM→LA LA→FM HC→DT DT→HC HC→TP TP→HC DT→TP TP→DT
BiLSTM 0.401 0.379 0.433 0.401 0.236 0.418 0.207 0.389
BiCond 0.403 0.392 0.442 0.408 0.239 0.424 0.207 0.396
CrossNet 0.442 0.431 0.461 0.418 0.244 0.425 0.211 0.407
BERT 0.499 0.395 0.412 0.399 0.353 0.295 0.391 0.478
CrossNet-C 0.473 0.399 0.439 0.403 0.251 0.428 0.221 0.414
CrossNet-CF 0.497 0.438 0.434 0.404 0.280 0.437 0.302 0.428
CrossNet-CA 0.507 0.434 0.452 0.401 0.283 0.453 0.375 0.440
TextCNN-E 0.513 0.466 0.360 0.385 0.283 0.472 0.191 0.433
SEKT (Ours) 0.523 0.510 0.463 0.432 0.300 0.489 0.391 0.435

Table 3: Performance comparison of different models for cross-target stance detection.

attention layer to capture important words in
the input text.

• VTN (Wei and Mao, 2019): The model uti-
lizes the latent topics shared between the two
targets as transferable knowledge for cross-
target adaptation.

• BERT (Devlin et al., 2019): The method fine-
tunes a pre-trained BERT model to perform
cross-target detection. Specifically, we con-
vert the given context and target to “[CLS] +
target + [SEP] + context” structure for source
and target domain, respectively.

We also extend CrossNet and TextCNN to incor-
porate external knowledge (SE-graph), resulting in
stronger competitors.

• CrossNet-C: Similar to (Margatina et al.,
2019), we extend the original CrossNet
model by incorporating external knowledge.
Here, three variants are considered, where
CrossNet-C adopts the attentional concatena-
tion, CrossNet-CF uses the feature-based gat-
ing mechanism, and CrossNet-CA adopts an
attentional affine transformation.

• TextCNN-E: TextCNN (Kim, 2014) is an
important baseline for text classification.
Here, we extend TextCNN to the cross-

target setting, denoted as TextCNN-E. Specif-
ically, each word is represented as a 3D ten-
sor by concatenating the embeddings of k
semantically/emotionally-related words.

4.5 Overall Performance
We report the experimental results in terms of
F1avg and F1m in Table 2 and Table 3, respec-
tively. From the results, we can observe that BiL-
STM has the worst performance because BiLSTM
neither exploits the target information nor consid-
ers knowledge transfer for the cross-target stance
detection. BiCond performs slightly better than
BiLSTM, since it explicitly encodes the target in-
formation. As an extension to BiCond by intro-
ducing the attention mechanism, CrossNet shows
a marginal improvement (e.g., 13.4% on HC→DT
for F1avg, 3.9% on LA→FM for F1m). This may
be because that the attention mechanism can learn
the informative stance-aware sentence representa-
tion. However, this knowledge transfer scheme is
based on word-level information, which often suf-
fers from the data scarcity problem. VTN, which is
a concept-level knowledge transfer model, achieves
the best performance among all the baseline meth-
ods. It is noteworthy that the performance of BERT
is not stable. Promising results are achieved on
FM→LA and HC→DT, but it performs unsatisfac-
torily on other tasks. The reason may be that BERT
does not explicitly employ any knowledge transfer
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SEKT w/o SE w/o KAMU
FM→LA 0.536 (0.523) 0.461 (0.492) 0.471 (0.499)
LA→FM 0.513 (0.510) 0.443 (0.455) 0.475 (0.469)
HC→DT 0.477 (0.463) 0.449 (0.439) 0.449 (0.450)
DT→HC 0.420 (0.432) 0.400 (0.404) 0.411 (0.407)
HC→TP 0.335 (0.279) 0.314 (0.278) 0.321 (0.280)
TP→HC 0.460 (0.489) 0.448 (0.466) 0.453 (0.471)
DT→TP 0.444 (0.391) 0.407 (0.371) 0.411 (0.376)
TP→DT 0.395 (0.435) 0.394 (0.420) 0.395 (0.431)

Table 4: Ablation test results in terms of F1avg and
F1m (in the parentheses) by discarding SE graph (w/o
SE) and knowledge-aware memory unit (w/o KAMU).

strategy. The proposed SEKT method yields better
performance than all the baselines in most of the
tasks. For example, our method improves 5.7% on
FM→LA, 3.5% on LA→FM, 5.5% on DT→HC
over the best competitors in terms of F1avg. The
advantage of SEKT comes from its two character-
istics: (i) we develop a GCN based model to fully
exploit the external knowledge from both seman-
tic and emotion lexicons; (ii) a knowledge-aware
memory unit is proposed to better fuse the external
knowledge.

We also compare our SEKT model with the com-
petitors that also integrate the semantic-emotion
knowledge graph with GCN, e.g., CrossNet-C,
CrossNet-CF, CrossNet-CA and TextCNN-E. The
results are demonstrated in Table 2 and Table 3.
CrossNet-C produces the worst performance in
general. The reason is that concatenating the ex-
ternal knowledge and context representation could
make the external knowledge lost in the sentence
encoding process. CrossNet-CF and CrossNet-CA
perform better than CrossNet-C since they incorpo-
rate the external knowledge into the hidden layers
of BiLSTM. As expected, SEKT achieves the best
performance, which verifies the effectiveness of the
KAMU model.

4.6 Ablation Study

To investigate the impact of each part on our SEKT
model, we perform the ablation test by discard-
ing SE graph knowledge (denoted as w/o SE) and
knowledge-aware memory unit (denoted as w/o
KAMU), respectively. Specifically, for the w/o
SE model, the external knowledge is expressed
by a weighted sum of the embeddings of four
semantically/emotionally-related words. For the
w/o KAMU model, we replace the KE-BiLSTM
structure by the standard BiLSTM layer, and the ex-
ternal knowledge is combined in the hidden layer.

hop No. DT→HC LA→FM DT→TP
1 0.401 0.489 0.431
2 0.417 0.513 0.444
3 0.420 0.479 0.424
4 0.374 0.369 0.408

Table 5: The experimental results with respect to vary-
ing number of hops in GCN.

The ablation results are summarized in Table 4.
From the results, we observe that both the SE
graph and KAMU make great improvements to
our SEKT method. The external semantic and
emotional knowledge can help SEKT to capture
multi-hop semantic correlations between words or
emotion tags. On the one hand, KAMU helps to
fully incorporate the external knowledge into the
BiLSTM network, which makes the representation
learning model more general to new targets.

Number of Hops Based on our empirical obser-
vation, capturing the multi-hop semantic correla-
tion is one of the most important parts for the over-
all performance of SEKT. Thus, we also investigate
the impact of the number of hops used in GCN. In
particular, we evaluate the performance of SEKT
by varying the number of hops from 1 to 4 with a
step size of 1. From Table 5, we can observe that
the best results are achieved when the number of
hops is 2 or 3. This is because GCN with a medi-
ate hop number can capture semantic correlations
between words while preventing from introducing
unnecessary noises.

5 Error Analysis

To better understand the limitations of SEKT, we
additionally carry out an analysis of the errors made
by SEKT. Specifically, we randomly select 100
instances that are incorrectly predicted by SEKT
from the expanded SemEval-2016 dataset. We re-
vealed several reasons for the classification errors,
which can be divided into the following categories.
First, SEKT fails to classify some sentences that
contain latent opinions or require deep compre-
hension. For example, for the sentence “I guess
NBC does not like to hear the truth.[favor]” with
a target “Donald Trump”, SEKT tends to predict
an incorrect against stance. This is because the
SEKT model cannot learn the implicit relation-
ship between NBC∗ and TRUMP, which is not ac-
quirable from the semantic-emotion lexicons. The

∗National Broadcasting Company
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second error category is caused by special hash-
tags with implicit meanings. For example, SEKT
cannot correctly predict the stance for the sen-
tence “The gift that keeps on giving. #makeitstop
#SemST”[against]. This may be because the infor-
mation in the sentence is not sufficient enough such
that SEKT cannot capture the sequential patterns
of the stance-related words. It suggests that certain
data augmentation strategy needs to be devised in
the future so as to capture the sequential patterns
between stance-related words from short texts.

6 Conclusion

In this paper, we proposed a semantic-emotion
knowledge transferring (SEKT) model for cross-
target stance classification, which used the exter-
nal knowledge from semantic and emotion lexi-
cons as commonsense knowledge to bridge the gap
across different targets. Specifically, we first built
a SE-graph from semantic and emotion lexicons,
which leveraged external knowledge from both
word-level and concept-level. Second, the GCN
was employed to learn the graph representation that
captured multi-hop semantic connections between
words or emotion tags. Third, we extend the stan-
dard BiLSTM classifier to fully integrate the exter-
nal knowledge by adding a novel knowledge-aware
memory unit to the BiLSTM cell. The experimental
results demonstrated that the SEKT model signif-
icantly outperformed the state-of-the-art methods
for cross-target stance detection.
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