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Abstract
The automatic text-based diagnosis remains
a challenging task for clinical use because
it requires appropriate balance between accu-
racy and interpretability. In this paper, we
attempt to propose a solution by introducing
a novel framework that stacks Bayesian Net-
work Ensembles on top of Entity-Aware Con-
volutional Neural Networks (CNN) towards
building an accurate yet interpretable diagno-
sis system. The proposed framework takes
advantage of the high accuracy and general-
ity of deep neural networks as well as the
interpretability of Bayesian Networks, which
is critical for AI-empowered healthcare. The
evaluation conducted on the real Electronic
Medical Record (EMR) documents from hos-
pitals and annotated by professional doctors
proves that, the proposed framework outper-
forms the previous automatic diagnosis meth-
ods in accuracy performance and the diagnosis
explanation of the framework is reasonable.

1 Introduction

The automatic diagnosis of diseases has drawn
the increasing attention from both research com-
munities and industrial companies in the recent
years due to the advancement of artificial intelli-
gence (AI) (Liang et al., 2019; Esteva et al., 2019;
Liu et al., 2018). As reported in (Anandan et al.,
2019), “AI-enabled analysis software is helping
to guide doctors and other health-care workers
through diagnostic processes and questioning to
arrive at treatment decisions with greater speed
and accuracy.” Although the image-based diag-
nosis has been well studied using PACS (Picture
Archiving and Communication Systems) data (Lit-
jens et al., 2017), the text-based diagnosis for Clin-
ical Decision Support (CDS) (Berner, 2007) re-
mains difficult due to the rare access to reliable
clinical corpus and the difficulty in balancing be-
tween accuracy and interpretability.

Table 1: A real outpatient EMR from hospital.
Section Content

Basic 男, 30岁 (Male, 30 years old)

CC 咽部不适3天 (Pharyngeal discomfort for 3 days)

HPI

患者于3日前起咽痛伴发热,无呼吸困难、咳嗽、
咳痰、嗳气或反酸 (The patient developed pharyngalgia
and fever 3 days ago, without dyspnea, cough, sputum,
belching or acid reflux)

PE

咽峡稍充血,双侧扁桃体Ⅰ度肿大,无栓塞物及瘢痕
(The hypopharyngeal isthmus is slightly congested.
The bilateral tonsils are first-degree enlarged. There is no
embolism or scar in the pharynx.)

TR

血常规示白细胞计数升高, WBC12.5 ∗ 109/L. C反应
蛋白正常. ( The blood test showed elevated white blood
cell count, WBC12.5 ∗ 109/L. The C-reactive protein
is normal.)

Diagnosis 急性扁桃体炎 (Acute tonsillitis)

There have been attempts to study automatic
text-based diagnosis with Electronic Medical
Record (EMR) documents integrated in the Hospi-
tal Information System (Mullenbach et al., 2018;
Yang et al., 2018; Girardi et al., 2018). Basically,
an EMR document is written by a doctor and con-
sists of several sections that describe the illness of
the patient. Besides the patient’s basic informa-
tion like name, age and gender, an EMR document
contains Chief Complaint (CC), History of Present
Illness (HPI), Physical Examination (PE), Test Re-
ports (TR, e.g. lab test reports and PACS reports),
Diagnosis, etc. Table 1 shows a real outpatient
EMR document from a hospital. These sections
describe the patient’s medical situation from dif-
ferent aspects: CC summarizes the patient’s main
discomforts of this visit. HPI extends CC by adding
more details and findings from the conversation be-
tween doctor and patient. PE shows the findings by
physically examining the patient’s body, e.g. by pal-
pation or inspection. TR are the objective findings
from the lab test reports or the PACS reports. In the
hospitals, the doctors will make a comprehensive
analysis mainly based on CC, HPI, PE, TR and the
basic information, and make a diagnosis. However,
it is very hard for computers to automatically un-
derstand all the diverse sections and capture the key
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information before making an appropriate diagno-
sis. Besides, an inpatient EMR document is similar
to that in Table 1 except that HPI, PE and TR are
usually more lengthy and detailed. The framework
proposed in this work can be applied on both the
outpatient and the inpatient EMR documents and
we will not distinguish them later.

In this study, we bring forward a novel frame-
work of automatic diagnosis with EMR documents
for CDS.1 Specifically, we propose to predict the
main diagnosis based on the patient’s current ill-
ness. Different from the previous works (Yang
et al., 2018; Sha and Wang, 2017; Li et al., 2017;
Girardi et al., 2018; Mullenbach et al., 2018) that
solely rely on the end-to-end neural models, we pro-
pose to stack the Bayesian Network (BN) ensem-
bles on top of Entity-aware Convolutional Neural
Networks (ECNN) in automatic diagnosis, where
ECNN improves the accuracy of the prediction
and BN ensembles explain the prediction. The
proposed framework attempts to bring some inter-
pretability of the predictions by incorporating the
knowledge encoded in the BN ensembles. The
main contributions of this work are as follows:
• We propose a novel framework that stacks the

Bayesian network ensembles on top of the
entity-aware convolutional neural networks to
bring interpretability into automatic diagnosis
without compromising the accuracy of deep
learning. Interpretability is very important in
the AI-empowered healthcare studies.
• We bring forward three variants of Bayesian

Networks for disease inference that provides
interpretability. Moreover, we ensemble these
BNs towards more robust diagnosis results.
• The evaluation conducted on real EMR doc-

uments from hospitals proves that the pro-
posed framework outperforms the previous
automatic diagnosis methods with EMRs. The
proposed framework has been used as a crit-
ical component in the clinical decision sup-
port system developed by Baidu, which assists
physicians in diagnosis in over hundreds of
primary healthcare facilities in China.
• We publish the Chinese medical knowledge

graph of Gynaecology and Respiration used
in our Bayesian Network for disease inference
with this paper for reproducibility. The data

1Different from Electronic Health Record (EHR) where
the illness of a patient’s multiple visits are combined together,
EMR only contains the patient’s illness of this particular visit.
EMRs are more generally used in the hospitals in China.

set can be downloaded from Github.2

2 Related Work

Due to the rapid advancement of machine intel-
ligence, the text-based automatic diagnosis is be-
coming one of the most important applications of
machine learning and natural language processing
in the recent years (Anandan et al., 2019; Koleck
et al., 2019). Different from diagnosis or question
answering on the Web (Chen et al., 2019), diag-
nosis for the CDS takes place in the hospitals and
clinics, and the predictive algorithm is integrated
into the Hospital Information System to assist doc-
tors and physicians in the diagnosis.

Liang et al. (2019) proposes a top-down hier-
archical classification method towards diagnosing
pediatric diseases. From the root to the leaf, each
level on the diagnostic hierarchy is a logistic regres-
sion model that performs classification on labels
from coarse granularity to fine-grained granular-
ity, e.g. from organ systems down to respiratory
systems and to upper respiratory systems. This
method requires heavy manual annotation of train-
ing samples at different levels of hierarchy.

Zhang et al. (2017) combines the variational
auto-encoder and the variational recurrent neural
network together to make diagnosis based on labo-
ratory test data. However, laboratory test data are
not the only resources considered in this paper.

Prakash et al. (2017) introduces the memory net-
works into diagnostic inference based on free text
clinical records with external knowledge source
from Wikipedia.

Sha and Wang (2017) proposes a hierarchical
GRU-based neural network to predict the clinical
outcomes based on the medical code sequences
of the patient’s previous visits. It deals with the
sequential disease forecasting problem with EHR
data rather than the diagnosis problem for the cur-
rent visit with EMR document. Similarly, Choi
et al. (2016a) studies the RNN-based model for
clinical event prediction. Baumel et al. (2017) in-
vestigates the multi-label classification problem
for discharge summaries of EHR with hierarchical
attention-bidirectional GRU.

The most similar works to ours are in (Yang
et al., 2018; Li et al., 2017) which trains an end-
to-end convolutional network model to predict di-

2https://github.com/PaddlePaddle/
Research/tree/master/KG/ACL2020_
SignOrSymptom_Relationship

https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2020_SignOrSymptom_Relationship
https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2020_SignOrSymptom_Relationship
https://github.com/PaddlePaddle/Research/tree/master/KG/ACL2020_SignOrSymptom_Relationship
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agnosis based on EMRs. Besides, Girardi et al.
(2018) improves the CNN model with the attention
mechanism in automatic diagnosis. Moreover, Mul-
lenbach et al. (2018) studies a label-wise attention
model to further improve the accuracy of diagnosis
at the cost of more computation time. Choi et al.
(2016b) proposes a reverse time attention mecha-
nism for interpretable healthcare studies.

Different from the previous studies, the novelty
of this paper is to bring interpretability into au-
tomatic diagnosis by stacking the ensembles of
Bayesian networks on top of the entity-aware con-
volutional neural networks.

3 The Proposed Framework

Automatic diagnosis can be formally considered
as a classification problem where the proposed
method outputs a probability distribution Pr(d|S)
over all diseases d ∈ D based on the illness de-
scription S. In this study, S corresponds to the
patient’s EMR document, i.e. S consists of several
sections of texts and some structured data like age,
gender and medical department.

We bring forward a new framework that com-
bines the black-box deep learning and the white-
box knowledge inference to diagnose disease with
EMR documents. Figure 1 shows the architecture
of the proposed framework. Firstly, the medical en-
tities are extracted from the EMR contents. Then,
the EMR document is fed into the entity-aware
convolutional networks to generate disease prior
probability. Next, the Bayesian network ensem-
bles perform disease inference based on the prior
probability and the probabilistic graphical mod-
els (PGMs) before ensembling the final predictions.

3.1 Named Entity Recognition

Before introducing the convolutional and the
Bayesian networks, we first discuss a basic compo-
nent of this framework – the named entity recog-
nition (NER). NER extracts the entities as well as
their types from text sentences, which is very im-
portant to capture the key information of the texts.
In our experiments, we used Baidu’s enterprise
Chinese medical NER system that integrates the
advanced NER models (Dai et al., 2019; Jia et al.,
2019) and extracts entities of symptoms, vital signs,
diseases and test report findings.

The F1 score of the NER system we use is 91%
in a separate evaluation conducted on 1000 dedupli-
cated sentences from real EMR documents by 10

Table 2: The NER results of the EMR document shown
in Table 1. TR Finding: test result finding. (+) for
positive, (-) for negative and (?) for unknown.

Word Section Type Polarity

咽部不适
(pharyngeal discomfort)

CC Symptom (+)

咽痛 (pharyngalgia) HPI Symptom (+)

发热 (fever) HPI Symptom (+)

呼吸困难 (dyspnea) HPI Symptom (-)

咳嗽 (cough) HPI Symptom (-)

咳痰 (sputum) HPI Symptom (-)

嗳气 (belching) HPI Symptom (-)

反酸 (acid reflux) HPI Symptom (-)

咽峡充血 (congested
hypopharyngeal isthmus)

PE Vital Sign (+)

双侧扁桃体肿大
(enlarged bilateral tonsils)

PE Vital Sign (+)

咽部栓塞物
(pharyngeal embolism)

PE Vital Sign (-)

咽部瘢痕
(pharyngeal scar)

PE Vital Sign (-)

白细胞计数升高
(elevated WBC)

TR TR Finding (+)

C反应蛋白异常(abnormal
C-reactive protein)

TR TR Finding (-)

急性扁桃体炎
(acute tonsillitis)

Diagnosis Diesease (+)

certificated physicians in China. 3 Meanwhile, the
polarity (positive (+), negative (-) or unknown (?))
of entities is also recognized. The polarity in this
work objectively means the presence or absence
of a finding in a given EMR. It is recognized in
conjunction with the rule-based method with a vo-
cabulary of negative Chinese words as well as the
polarity detection model. Table 2 shows the NER
results of the EMR in Table 1. Please note that
the disease (acute tonsillitis) from the diagnosis
section is the ground-truth label to predict and it
will not be included in the input to the predictive
model in the evaluation.

In the offline processing of the EMR corpus, we
preserved the Top-K most frequent entities of all
types as the entity vocabulary. In later experiments,
we empirically set K = 10, 000. The entity vocab-
ulary will be used to construct the one-hot feature
for each EMR document, which will be introduced
later. Since NER is not the focus of this study, the
readers can choose the public Chinese NER API4

from Baidu for fast experiments. We will focus on
the major contributions of the proposed framework
in the next sections.

3There are two senior physicians beyond the attending
doctor level and eight junior physicians contributed in the
annotation tasks here and later.

4http://ai.baidu.com/tech/cognitive/
entity_annotation

http://ai.baidu.com/tech/cognitive/entity_annotation
http://ai.baidu.com/tech/cognitive/entity_annotation
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Figure 1: The architecture of the proposed framework.

3.2 ECNN for Prior Generation
The convolutional networks take as input the list
of texts w.r.t. the sections of an EMR document as
well as the medical entities extracted from them,
and output the probability distribution of the dis-
eases. To distinguish from the previous CNN mod-
els without medical entities (Yang et al., 2018; Li
et al., 2017), we use ECNN to denote the entity-
aware CNN model proposed in this paper where
another branch of fully connected layers processes
the medical entities and outputs the corresponding
feature representation. Let N denote the number
of sections (CC, HPI, PE, TR, etc) selected from
the EMR document to construct ECNN. ECNN
consist of two parts: (1) N convolutional towers,
each of which reads a unique section, and (2) one
multi-layer perceptron (MLP) branch that reads a
high-dimensional hand-crafted feature.

Similar to the previous CNN method for text clas-
sification (Kim, 2014), each convolutional tower
processes the input sequence with three kernels of
various length resulting in multi-channel feature
output. The three kernels process the input with
3-grams, 4-grams and 5-grams, respectively, and
their outputs are concatenated as the output of a
convolutional tower. Each kernel in the convolu-
tional networks has 100 filters with strides as 1.
The input is padded with valid method and the
output is activated by ReLU.

For the input of MLP, we create the entity vocab-
ulary that consists of the top-K frequent entities.
Then, each EMR document is transformed to a K-
dimensional one-hot feature f . That is, if the i-th
entity in the entity vocabulary appears as a positive
finding in the input EMR, then the i-th dimension

of f is set to 1, and otherwise, it is set to 0. More-
over, the patient’s age and gender are appended
to f to get the hand-crafted feature for MLP. The
MLP contains one dense layer activated by sigmoid
function with 128 hidden units.

ECNN is trained with Adam optimizer (learning
rate 0.001), 20 epochs and batch size of 32. The
output of each convolutional tower and the output
of the MLP are further concatenated before passing
through the dropout and the softmax layer. Similar
to Kim (2014), the dropout rate is empirically set to
0.5. A |D|-dimensional feature is output by ECNN
as the disease priors for the inference in the next
where D is the disease set.

In ECNN, the CNNs are supposed to capture the
sequential signals in the section texts and the MLP
is supposed to encode the feature of the critical
entities. By jointly modeling with CNNs and MLP,
the proposed ECNN is expected to have superior
performance than either of them alone.

3.3 Bayesian Network Ensembles

Although ECNN also outputs a probability distribu-
tion over all diseases, the result is not interpretable
due to its end-to-end nature. However, the inter-
pretability is very important in the CDS to explain
how the diagnosis is generated by machines. Thus,
we propose the Bayesian network ensembles on top
of the output of ECNN to explicitly infer disease
with PGMs. There are three steps:

3.3.1 Relation Extraction
We extract the relations between disease and other
types of entities (disease, finding) where finding
can be symptom, vital sign, test report finding, etc.
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The rest of this paper will use finding to denote any
type of entities other than disease. Relation extrac-
tion is performed in conjunction with the (disease,
finding) co-occurrence mining and the deep extrac-
tion model (Shi et al., 2019) from the EMR doc-
uments and the textbooks 5. Then, the pairs with
high co-occurrences larger than a support (e.g. 5)
are preserved. The extracted relations are reviewed
by 10 certificated physicians. The invalid extracted
relations which result from issues like incorrect
recognition of entities or polarities by NER, the
symptom caused by the secondary diagnosis but
incorrectly paired with the first diagnosis, are re-
moved before adding to the medical knowledge
graph. Therefore, the relation (disease, finding) in
the medical knowledge graph can, to some extent,
be interpreted as: disease causes finding.

In our study, the pairs are mined from 275,797
EMR documents of two medical departments (Gy-
naecology and Respiration). On average, each dis-
ease of Gynaecology in our experiments is associ-
ated with 24 findings and that of Respiration is 42.
For Gynaecology, there are 33 diseases, 305 symp-
toms, 143 vital signs and 25 test report findings in
the PGMs. For Respiration, there are 21 diseases,
263 symptoms, 187 vital signs and 31 test report
findings in the PGMs.

3.3.2 Relation Weights Estimation
We experiment with six classical text features as
the relation weights in this study.

(1) Occurrence. The weight of finding i given
disease j is:

w(i; j) =
n(i, j)∑
k n(k, j)

, (1)

where n(i, j) is the number of co-occurrences of
finding i and disease j. w(i; j) is computed by the
type of findings.

(2) TF-IDF Feature. Similar to TF-IDF feature
in information retrieval, the weight of finding i
given disease j is:

w(i; j) = n(i, j) ∗ (log |D|+ 1

ni + 1
+ 1), (2)

where ni is the number of diseases whose EMR
documents contain finding i.

(3) TFC Feature. TFC feature (Salton and
Buckley, 1988) is a variant of TF-IDF and it es-
timates the weight of finding i given disease j as:

5The undergraduate teaching materials in most of the med-
ical schools in China, authorized by the publisher.

w(i; j) =
n(i, j) ∗ log |D|ni√∑
k(n(k, j) ∗ log

|D|
nk

)2
. (3)

(4) TF-IWF Feature. The Term-Frequency
Inverse-Word-Frequency (TF-IWF) feature (Basili
et al., 1999) estimates the weight of finding i given
disease j as:

w(i; j) = n(i, j) ∗ (log
∑

k tk
ti

)2, (4)

where ti represents the number of occurrences of
word i in the whole training corpus.

(5) CHI Feature. CHI feature (χ2 Test) mea-
sures how much a term is associated with a class
from a statistical view. The CHI feature of finding
i given disease j is (Yang and Pedersen, 1997):

w(i; j) =
N ∗ (A ∗ D − C ∗ B)2

(A + C) ∗ (B + D) ∗ (A + B) ∗ (C + D)
, (5)

where N , A, B, C and D are the number of all
documents, the number of documents containing
finding i and belonging to disease j, the number
of documents containing i but not belonging to j,
the number of documents belonging to j but not
containing i, and the number of documents not
containing i and not belonging to j.

(6) Mutual Information. This feature assumes
that the higher the strength between a finding and
a disease, the higher their mutual information will
be. Similar to the definition in CHI feature, this
feature is defined as:

w(i; j) ≈ log
A ∗N

(A+ C) ∗ (A+B)
. (6)

The above features are normalized by disease
before applying to the diagnosis inference. By
default, the average of the six features is used as
the connection weight.

3.3.3 Diagnosis Inference
We propose the Bayesian network ensembles for
the diagnosis inference. Specifically, a group of
PGMs with the extracted relations and weights are
ensembled towards the final predictions.

Firstly, multiple bipartite graphs between dis-
ease nodes and each type of finding nodes are de-
rived from the medical knowledge graph. For M
types of findings, there will be M bipartite graphs.
In later experiments, M = 3, i.e. (disease, symp-
tom), (disease, vital sign) and (disease, test result
finding). Based on the findings extracted from
EMR document, each bipartite graph can be in-
dependently used to infer the disease distribution.
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For Bayesian inference, we compute the posterior
probability of diseases given the findings in the
EMR document extracted by NER:

Pr(d|F+, F−) =
Pr(d, F+, F−)

Pr(F+, F−)
, d ∈ D, (7)

where F+ and F− are the sets of the positive and
the negative findings in the given EMR document,
respectively. Following Eq. (7), it is straightfor-
ward to get Pr(d|F+

sym, F
−
sym), Pr(d|F+

sign, F
−
sign)

and Pr(d|F+
test, F

−
test) w.r.t. the predictions based

on symptom alone, vital sign alone and test re-
port finding alone. To compute the joint proba-
bility Pr(d, F+, F−) and Pr(F+, F−), we refer
the readers to the QuickScore method (Heckerman,
1990) and the deduction therein. To speed up com-
putation when a disease is associated with too many
positive findings, the variational method on the
PGMs is applied (Jordan et al., 1999).

Next, we assemble these bipartite graphs in dif-
ferent ways to get three variants of PGMs (Fig. 1).

(1) Parallel. This method independently per-
forms inference with each type of finding and aver-
age their results:

Pr(d|F+, F−) = avg(Pr(d|F+
sym, F

−
sym),

Pr(d|F+
sign, F

−
sign),Pr(d|F

+
test, F

−
test)). (8)

Parallel assumes that the ways to diagnose disease
are different using different types of entities, and
their predictions can complement each other. An
extension of Parallel is to perform a weighted sum
of the three predictions. For simplicity concerns,
we experiment with equal weights in this paper.

(2) Universal. This method mixes all types of
findings together into a single network:

Pr(d|F+, F−) = (9)

Pr(d|F+
sym, F

−
sym, F

+
sign, F

−
sign, F

+
test, F

−
test).

It means that Universal does not distinguish
the types of entities and performs the type-free
Bayesian inference. Compared with the other two
PGM variants, the connections between diseases
and findings in Universal are much denser. It as-
sumes that the prediction benefits from the joint
inference by seeing more findings of multiple types
at the same time.

(3) Cascade. This method constructs the multi-
layer Bayesian networks with finding types as lay-
ers and use the output of the previous layer as the

prior probability for the current layer.

Pr(dsym) = Pr(d|F+
sym, F

−
sym)

s.t., d ∼ Pr(dCNN ),

Pr(dsign) = Pr(d|F+
sign, F

−
sign)

s.t., d ∼ Pr(dsym),

Pr(dBN ) = Pr(dtest) = Pr(d|F+
test, F

−
test)

s.t., d ∼ Pr(dsign), (10)

where Pr(dCNN ) is the disease probability distri-
bution computed by the convolutional networks
in Sec. 3.2 and d ∼ Pr(dx) means that variable d
satisfies prior probability distribution Pr(dx). Cas-
cade first infers disease with symptoms alone and
uses the disease probability from ECNN as pri-
ors. Then, it infers disease with vital signs alone
and uses the disease probability from symptom-
based inference as priors. Finally, it infers disease
with test report findings alone and uses the dis-
ease probability from the previous output as priors.
We present the cascade appraoch in such order be-
cause it shows the best results compared to those in
other orders in our experiments. Cascade assumes
that each type of entities can be used to refine the
previous predictions by incorporating additional
information.

The output of the above three PGMs are ensem-
bled, e.g. weighted sum, as the final predictions. In
all, the proposed framework takes the raw EMR
document and the NER results as input, and outputs
the diagnosis predictions.

Although we experiment with three types of en-
tities in this paper, the proposed Bayesian network
ensemble method is not limited to these types of
entities. It is easy to add more entity types in the
proposed method when applicable.

3.4 The Interpretability of BN Ensembles
One of the major contributions of this work is to
bring interpretability into automatic diagnosis by
stacking the Bayesian network ensembles on top
of the convolutional networks. We illustrate how
the predictions are explained, i.e. interpretability,
by BN with Fig. 2. We use the symptom-based
bipartite graph to illustrate for the simplicity con-
cern, and the other types of entities explain the
predictions in the same way.

In Fig. 2, if only pharyngalgia is extracted from
a patient’s EMR, then upper respiratory infec-
tion (URI) will be predicted with high probability
but the probability of pneumonia and phthisis will
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Figure 2: The example of the interpretability of
Bayesian network. The connection from disease d to
symptom s represents that d has some probability to
cause s to be present. If d is diagnosed, the detected
symptoms from EMR that are connected with d can be
used to explain the diagnosis.

be set to the minimum because both of them are
not likely to cause pharyngalgia based on their co-
occurrences in the corpus. The proposed method
can explain the prediction of URI with symptom
pharyngalgia and their co-occurrence times besides
the prediction probability.

If pharyngalgia and hemoptysis are both ex-
tracted from a patient’s EMR, then URI as well as
phthisis will be predicted with some positive prob-
ability (their rankings depend on both their prior
probability and their connection weights to pharyn-
galgia and hemoptysis), but pneumonia will be pre-
dicted with the minimum probability. This is be-
cause the noisy-OR gate is used in the Bayesian in-
ference (Heckerman, 1990). The proposed method
explains the prediction of URI with the positive
finding of symptom pharyngalgia and explains
the prediction of phthisis with the positive find-
ing of symptom hemoptysis as well as their co-
occurrences.

4 Experiments and Results

In this section, we will introduce the data sets we
experiment with and the evaluation results.

4.1 Data Sets
The proposed framework is evaluated on the real
EMR documents (mostly admission records). We
have collaborated with several top hospitals in
China and we are authorized to conduct experi-
ments with 275,797 EMR documents of two medi-
cal departments for the evaluation (see Table 3).6

6Unfortunately, we have not yet obtained the permission
from the hospitals to make the evaluation data sets public at
this moment because EMR documents are legally protected by
the Chinese laws and there is too much sensitive information
about the patients and the doctors in them. We are currently
working with the hospitals in contributing the benchmark
EMR data sets for automatic diagnosis, but it takes time due
to the legal issues. We suggest the readers to focus their
attention on the contribution of the novel automatic diagnosis
framework in this paper.
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Figure 3: The long-tail distribution of diagnosis. The x-
axis indexes the names of diagnosis. The y-axis counts
the occurrences of diagnosis in the log scale.

Table 3: The statistics of the data sets. The table rep-
resents the document counts by source. # means the
number of. “# collected” is the number of the collected
EMR documents in the our experiments.

Departments # collected # test # disease

Gynaecology 191,645 606 33
Respiration 84,152 214 21

The collected EMR documents are processed as
follows: The main diagnosis in each EMR docu-
ment is extracted as its disease label. Then, we
select the top diseases from the collected EMR doc-
uments, which results in 33 diseases from Gynae-
cology (including Salpingitis, Cervical Carcinoma,
Endometritis, Fibroid, etc) and 21 diseases from
Respiration (including Upper Respiratory Infection,
Chronic Bronchitis, Pneumonia, Asthma, Lung
Cancer, etc) that cover over 90% of all EMR doc-
uments. There is a long-tail distribution of EMR
documents by diseases as shown in Fig. 3, and each
of the selected diseases has over 100 EMR docu-
ments for training. The other diseases are discarded
in the experiments due to the lack of enough EMR
documents to train a trustworthy model. Next, in
order to ensure the validity of the disease labels in
the test set, we recruit 10 professional physicians
to review the labels by evenly sampling EMR docu-
ments under each disease. In this way, we collected
606 reviewed EMR documents for Gynaecology
and 214 for Respiration as the test set (See disease
distribution in supplemental files). The rest EMR
documents are used for training. Since we are not
given the identity of patient w.r.t. each EMR, the
training and the testing sets are considered disjoint.
In later experiments, we separately report the per-
formance under both departments. It is more im-
portant and difficult to distinguish diseases within
the same department than that across departments
due to the overlapping symptoms, signs and test
report findings among the similar diseases.
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Table 4: The accuracy of the different diagnosis meth-
ods on two medical departments. Top-k sensitivity is
used as the accuracy measurement.

Methods Gynaecology Respiration

Top-1 Top-3 Top-1 Top-3

CAML (2018) 58.6% 76.3% 60.7% 82.7%
CNN (2018) 61.0% 82.8% 61.7% 80.8%
ACNN (2018) 62.1% 83.3% 60.7% 84.6%

PGM-C 50.8% 64.6% 26.6% 47.6%
PGM-P 56.1% 69.3% 31.3% 45.3%
PGM-U 56.2% 69.6% 33.6% 57.9%
PGM-E 53.9% 70.2% 28.0% 48.1%
ECNN 68.9% 86.7% 65.8% 81.7%
ECNN-PGM-C 71.4% 88.6% 52.8% 82.7%
ECNN-PGM-U 72.9% 88.6% 59.3% 87.8%
ECNN-PGM-P 73.2% 88.4% 68.2% 87.3%
ECNN-PGM-E 73.4% 88.8% 64.0% 88.3%

4.2 Experimental Results

We conduct experiments on the collected data sets
to evaluate the performance of the framework.

4.2.1 Experimental Settings
In the experiments, we used four CNN towers
(N = 4) w.r.t. CC, HPI, PE and TR, and each
tower has three channels with kernel length 3, 4 and
5 (representing 3-grams, 4-grams and 5-grams).

We use Jieba package7 to perform Chinese
word segmentation on the training set and re-
move the punctuation from the segmentation re-
sults. The segmented word corpus is used to train
the 100-dimensional word embeddings using the
Word2Vec (Mikolov et al., 2013) method (window
as 5, min support as 5) implemented in the gensim
package8. The top 100,000 frequent segmented
words consist of the word vocabulary in the embed-
ding layer of ECNN. Thus, the size of the embed-
ding layer is (100000, 100).

Besides, the top 10,000 frequent entities (not seg-
mented words) as well as age and gender are used
to construct the one-hot feature into MLP which
consists of one hidden dense layer (128 Sigmoid
units) due to the efficiency consideration. Similar
to Kim (2014), the dropout rate is empirically set
to 0.5. By default, we use the average of all six
relation weights in the experiments. The final pre-
dictions are the average of the three PGM variants.
ECNN and PGMs are trained separately offline.

4.2.2 Performance Accuracy
Table 4 shows the Top-k sensitivity (The micro
average of the per-disease Top-k sensitivity, com-

7https://github.com/fxsjy/jieba
8https://radimrehurek.com/gensim/

monly used as the accuracy measurement in health-
care studies (Liang et al., 2019).) under two de-
partments. Generally, sensitivity is ususally used
in binary classification (mostly output yes or no).
Similarly, when we are dealing with classification
of multi-class rather than binary classification, the
proposed automatic diagnosis model outputs the
probability distribution over K diseases (classes)
for a given EMR. Suppose there are li out of ni
cases, where di is included in the Top-k predic-
tions (ranked by probability) for the ni EMRs of
disease di. The Top-k sensitivity of the proposed
model on disease di is: li

ni
. Furthermore, in the

overall evaluation of the proposed model on all dis-
eases, we use the micro average of all classes as
the overall Top-k sensitivity:

sensitivity =

∑
i li∑
i ni

. (11)

CAML (Mullenbach et al., 2018) performs the
label-wise attention on top of a CNN model.
CNN (Yang et al., 2018) concatenates CC, HPI and
TR together before sending to the multi-channel
CNN model. ACNN (Girardi et al., 2018) incorpo-
rates the gram-level attention with a CNN model.
The empirical settings of hyper parameters are se-
lected from the original papers. Besides, they share
the same training set, training epochs, learning rate
and batch size with the proposed methods.

Among the proposed methods, PGM-* (-C, -P,
-U and -E represent Cascade, Parallel, Universal
and Ensemble, respectively) are the methods that
solely relies on the Bayesian networks which use
the disease distribution in the training set as the
prior probability. ECNN is the proposed method
without the BN ensembles. ECNN-PGM-* are the
combined methods while ECNN-PGM-E is the pro-
posed method with ECNN and Bayesian network
ensembles in Figure 1. According to the results:
(1) Most of the proposed methods ECNN-PGM-*
outperform the previous automatic diagnosis meth-
ods, which shows the effectiveness of the proposed
methods. (2) ECNN outperforms CNN due to the
incorporation of medical entities. Jointly modeling
with free texts and medical entities brings extra ac-
curacy performance compared with modeling with
only either one. (3) Stacking Bayesian Networks
on top of the neural networks is very likely to fur-
ther improve the performance, especially with the
ensemble of the predictions from multiple PGMs.

https://github.com/fxsjy/jieba
https://radimrehurek.com/gensim/
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Figure 4: Top-1 sensitivity by diseases.

4.2.3 Error Analysis
Fig. 4 shows the Top-1 sensitivity on some diseases.
The performances across diseases are quite differ-
ent. For example, the Top-1 sensitivity of Salp-
ingitis is 100% but that of Endometriosis is 29%
in the evaluation. Salpingitis can be identified by
combining general symptoms and ultrasonic exam
results. However, from the perspective of physi-
cians, Endometriosis is difficult to diagnose by na-
ture because it shares common symptoms like dys-
menorrhea and irregular menstruation with other
Gynecologic diseases. These shared findings mis-
guide the classifier towards other similar diseases.
Similarly, among the respiratory diseases, patients
with Pulmonary Embolism, Respiratory Failure
and Bronchiectasia share symptom dyspnea which
makes it difficult to distinguish between them. In
contrast, Upper Respiratory Infection (URI) is easy
to diagnose because it causes throat pain and rhin-
orrhea unlike the other respiratory diseases.

Based on the analysis, the diagnosis performance
of a disease is higher if it shares less findings with
other diseases or it has more specific findings.

4.2.4 Interpretability
The interpretability is reflected on the observed
findings in the EMR that connect to the predicted
disease in the medical knowledge graph as well
as their co-occurrences. We generate the predic-
tion explanation with the following template: The
patient is diagnosed as disease d because (s)he is
suffering from symptom si, and (s)he has the vital
sign of vj , and the lab test (or PACS report) shows
(s)he has tk. Besides, si, vj and tk have been found
on the patients of d for ni, nj , nk times, respec-
tively, in the previous EMR documents that support
this diagnosis.

Since the extracted relations in the medical
knowledge graph are reviewed by the certificated
physicians, the validity of explanation is guaran-
teed from the clinical perspective. We randomly
select 50 testing samples per department whose
Top-1 diagnosis prediction is correct and generate
the explanation for the diagnosis prediction with
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Figure 5: The accuracy of ECNN-PGM-E using dif-
ferent types of features. Gyn and Res represent gynae-
cology and respiration, respectively. MI and Occ are
mutual information and occurrence, respectively.

the above template. The explanation is evaluated
by three certificated physicians. The evaluation is
subjective, but all of them agree that the prediction
is well-supported by the generated explanation.

4.2.5 Feature Importance
Figure 5 shows the accuracy performance using
different types of features. We can see that in this
evaluation, TFC, TF-IDF and the average of all fea-
tures are likely to lead to higher accuracy compared
to the other features where the accuracy of Top-3
prediction is over 88%.

In all, the above experiments prove that the pro-
posed framework can improve the accuracy of auto-
matic diagnosis and bring reasonable interpretabil-
ity into the predictions in the same time.

5 Conclusion

In this paper, we investigate the problem of auto-
matic diagnosis with EMR documents for clinical
decision support. We propose a novel framework
that stacks the Bayesian Network ensembles on
top of the Entity-aware Convolutional Neural Net-
works. The proposed design brings interpretability
into the predictions, which is very important for
the AI-empowered healthcare, without compromis-
ing the accuracy of convolutional networks. The
evaluation conducted on the real EMR documents
from hospitals validates the effectiveness of the
proposed framework compared to the baselines in
automatic diagnosis with EMR.
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