
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3125–3134
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

3125

Improving Segmentation for Technical Support Problems

Kushal Chauhan ∗
ABV-IIITM, Gwalior

kushalchauhan98@gmail.com

Abhirut Gupta †
IBM Research AI

abhirut.91@gmail.com

Abstract

Technical support problems are often long and
complex. They typically contain user descrip-
tions of the problem, the setup, and steps
for attempted resolution. Often they also
contain various non-natural language text ele-
ments like outputs of commands, snippets of
code, error messages or stack traces. These
elements contain potentially crucial informa-
tion for problem resolution. However, they
cannot be correctly parsed by tools designed
for natural language. In this paper, we ad-
dress the problem of segmentation for techni-
cal support questions. We formulate the prob-
lem as a sequence labelling task, and study
the performance of state of the art approaches.
We compare this against an intuitive contex-
tual sentence-level classification baseline, and
a state of the art supervised text-segmentation
approach. We also introduce a novel com-
ponent of combining contextual embeddings
from multiple language models pre-trained
on different data sources, which achieves a
marked improvement over using embeddings
from a single pre-trained language model. Fi-
nally, we also demonstrate the usefulness of
such segmentation with improvements on the
downstream task of answer retrieval.

1 Introduction

Problems, reported by users of software or hard-
ware products - called tickets or cases, are often
long and complex. Along with a description of the
problem, users often report the setup, steps they
have tried at mitigating the problem, and explicit
requests. These problems also contain various non-
natural language elements like snippets of code or
commands tried, outputs of commands or software
tools, error messages or stack traces, contents of
log files or configuration files, and lists of key-value

∗Work done at IBM Research during a summer internship
†Now at Google

Figure 1: Various non-natural language segments la-
belled from a problem on AskUbuntu

pairs. Figure 1 shows a sample support problem
from AskUbuntu 1, where all such segments are
labeled.

While these segments are important sources of
information for the human reader, they are difficult
to handle for systems built to automatically answer
support problems. As noted in Gupta et al. (2018),
the non-natural language segments lead to parsing
mistakes, and errors in the understanding of support
problems. Correctly identifying these segments can
also augment problem understanding. For instance,
a retrieval engine with error messages and their
solutions indexed in distinct fields would return
better results with a fielded query containing just
the error message from the ticket. Specialized tools
for log analysis (He et al., 2016) could also be

1https://askubuntu.com/

https://askubuntu.com/

3126

run specifically on the identified log segment of
problems.

In this paper, we aim to address the problem of
identifying and extracting these non-natural lan-
guage segments from support tickets. In particular,
we choose to focus on the following six segment
labels which appear often in support tickets (also
shown in Figure 1):

• Command / Code: Includes terminal com-
mands and programming code snippets

• Command Output / Info Message: Includes
outputs of successful command/code execu-
tions

• Error Message / Stack Trace: Includes er-
ror traces resulting from unsuccessful com-
mand/code executions

• File Content (Not Code): Includes contents
of log files, configuration files, etc. which do
not contain programming source code

• Path / URL: Includes file paths or webpage
URLs

• Semi-Structured Information: Includes text
which is structured in the form of key-value
pairs, lists, etc., often used to convey system
configurations or lists of components

We formulate the problem as a sequence la-
belling task, with word-level tags used to encode
segments. To leverage the rich literature of super-
vised approaches in this framework, we also create
a dataset with segments tagged for questions from
AskUbuntu 2.

Our contributions are as follows -

1. We introduce a novel task towards understand-
ing technical support problems, which has im-
plications on a variety of downstream appli-
cations. We also release a tagged dataset of
problems for the task.

2. We benchmark the performance of state of
the art sequence labelling models on the task,
studying their performance and limitations.
This hopefully provides direction for future
research.

2Data available at https://github.com/kushalchauhan98/ticket-
segmentation

3. Given the relatively small size of tagged data,
we also explore pre-training based approaches.
Our model leverages activations from multiple
language models pre-trained on different data
sources, and we show how they can be used
to improve performance on the task.

2 Related Work

Understanding technical support problems is a par-
ticularly difficult task, owing to the long text of
problems. In Gupta et al. (2018), the authors
propose that understanding can be approached
by extracting attributes of the ticket that corre-
spond to the description of the problem (symp-
tom), steps taken for mitigation (attempt), and ex-
plicit requests (intent). They also propose a depen-
dency parser-based approach for extracting these
attributes. However, while this approach pays atten-
tion to the semantics of the problem, the syntactical
idiosyncrasies are ignored.

The idea of segmenting of questions for im-
provements on downstream tasks is not new. In
Wang et al. (2010), the authors propose an unsuper-
vised graph-based approach for segmenting ques-
tions from Community Question Answering (cQA)
websites into sub-questions and their related con-
text sentences. The authors demonstrate improve-
ments in question retrieval by using these segments
for more granular similarity matching. Chrupała
(2013) uses representations from a character-level
language model for segmenting code spans in Stack
Overflow posts. The author uses 〈code〉 tags in
HTML sources of posts for supervised training of
a character level sequence labelling model. How-
ever, the 〈code〉 tags in the posts usually include all
forms of non-natural language text like code snip-
pets, command outputs, error messages or stack
traces, and file paths (See Fig 2). The result-
ing level of granularity is thus insufficient for ef-
fective application in downstream tasks such as
automated problem resolution. The task of text-
segmentation in itself has been well studied in the
literature, with popular unsupervised approaches
like TextTiling (Hearst, 1997) and C99 (Choi,
2000). While, the problem of ticket segmentation,
as defined by us, involves both segmenting and
identifying segment types, we compare the perfor-
mance of a more recent supervised segmentation
approach (Koshorek et al., 2018) against our pro-
posed model.

Significant amount of work has been done on us-

https://github.com/kushalchauhan98/ticket-segmentation
https://github.com/kushalchauhan98/ticket-segmentation

3127

(a)

(b)

Figure 2: Sample problems from Ask Ubuntu with 〈code〉 tag used to present (a) an error message, and (b) contents
of a configuration file

ing sequence labelling approaches for text segmen-
tation tasks (Huang et al., 2015; Chiu and Nichols,
2016; Lample et al., 2016; Ma and Hovy, 2016;
Rei et al., 2016; Peters et al., 2017). In Wang
et al. (2018) the authors use ELMo embeddings
and a biLSTM-CRF based architecture with self-
attention for the task of neural discourse segmenta-
tion. We adopt a similar architecture, and explore
the effect of using pre-trained contextual embed-
dings on our task. Given the fact that different
segments in technical support problems have very
different vocabularies, we also explore leveraging
pre-trained Language Models on a variety of differ-
ent datasets.

3 Data

Our dataset is derived from English questions on
Ask Ubuntu. Questions posted on the website
are similar to proprietary tech support tickets (in
terms of question length, number of keywords/noun
phrases, etc). We would like to point out that while
posts on the website support the 〈code〉 HTML tag,
it is not granular enough for our downstream tasks.
These tags are also often abused to present snippets
of command outputs/error messages/file paths etc.
Figure 2 shows examples of such questions. We

Figure 3: Relative frequencies of each tag in the
dataset.

also do not use other metadata available (like turn-
based information) with the data dump because
these are not available with proprietary tickets.

Tagging is performed at the word level, and we
use the BIO tagging scheme. We have a pair of
Begin and Inside tags for each of the 6 non-natural
language segments, and natural language segments
are labelled O, totalling to 13 tags. We use the
Doccano tool 3 for labelling, which provides better
support for labelling long chunks in big documents
compared to other popular sequence labelling an-
notation tools.

We obtain labelling for 1,317 questions, totalling

3https://github.com/chakki-works/doccano

https://github.com/chakki-works/doccano

3128

#Questions Avg. #Words Avg. #Spans
Total CC CO ES FC SS PU

Dataset 1317 897.37 4.86 2.13 1.20 0.62 0.30 0.14 0.46
Train 1053 899.33 4.91 2.14 1.20 0.63 0.30 0.14 0.49
Val 131 783.43 4.67 2.17 1.04 0.66 0.26 0.19 0.36
Test 133 994.10 4.64 2.08 1.36 0.47 0.35 0.09 0.28

Table 1: Statistics of the tagged dataset for segmentation with average number of words and spans per question.
The last 6 columns contain average number of spans for each tag type - CC: Command/Code, CO: Command
Output, ES: Error Message/Stack Trace, FC: File Content, SS: Semi-structured Information, PU: Path/URL

Figure 4: Confusion Matrix to show the word-level
agreement between annotations of 2 annotators on 50
questions. The relatively large off-diagonal values rep-
resent the inherent difficulty in the task. Abbreviations
for tags - CC: Command/Code, CO: Command Output,
ES: Error Message/Stack Trace, FC: File Content, SS:
Semi-structured Information, PU: Path/URL

to 11,580 spans (including spans labelled as O)
and over 1.18 million words. We divide the data
into 80:10:10 train, val, and test splits, at random.
High-level statistics for the dataset are presented
in Table 1. Figure 3 shows the average number of
words per tag in the dataset. The tags Command
Output and Error Message are relatively infrequent
(1.2 and 0.6 per question) compared to the tag Com-
mand Code (2.1 per question), however, they cover
a much larger fraction of words because they tend
to be quite verbose.

In Figure 4 we show the inter-annotator agree-
ment between two annotators on 50 questions. Few
of the label pairs with large off-diagonal values
include -

• Command Output - Error Message, which is
understandable, as error messages are often
interspersed in successful program runs. Con-
versely, unsuccessful program runs often con-
tain a long train of success messages, only
ending in one or few error logs.

• Command Output - Semi-Structured Informa-
tion and File Content - Semi-Structured In-

formation. This kind of confusion is due to
the presence of network configurations, com-
mands to view these, and files that contain
these. They’re often stored in configuration
files as “key-value” pairs

• Command Output - File Content. This particu-
lar confusion stems from the “cat” command,
and its use to view the contents of files.

The low inter-annotator agreement (κ = 0.7637)
illustrates the inherent difficulty of the task. At this
point, it’s important to note that while there’s some
confusion in identifying labels for these segments,
the need for these separate labels stems from down-
stream tasks.

4 Model

Given a technical support question, we formulate
the segmentation problem as a sequence labelling
task. It is an intuitive choice, given its efficacy for
similar text segmentation problems like discourse
segmentation (Wang et al., 2018) and chunking (Pe-
ters et al., 2017). Figure 5 presents an overview
of our model. We explore different embeddings
for each word (character-based embeddings, pre-
trained embeddings, and pre-trained contextual em-
beddings). These word embeddings are then fed to
a bi-directional GRU for encoding context. On the
output of the GRU layer, we explore the effect of
attention. Finally, the representations are passed to
a CRF to decode the segment labels. We also study
the impact of combining pre-trained contextual em-
beddings from multiple language models, trained
on different data sources. In the rest of this section
we detail individual components of the model.

4.1 Word Embeddings

For distributed word representations, we use skip-
gram based word2vec embeddings (Mikolov et al.,
2013) trained on all the questions from Ask Ubuntu.

3129

Figure 5: Model architecture for segmenting technical
support problems.

We also look at fastText word embeddings (Bo-
janowski et al., 2017), which enrich word vectors
by using subword information, emitting plausible
word representations for unseen or rare words, giv-
ing us a significant gain. We use a 300-dimensional
embedding from both word2vec and fastText.

4.2 Character Embeddings

In addition to the word-level features we also use
bi-directional LSTM based character-level features
similar to Chiu and Nichols (2016), Lample et al.
(2016), and Ma and Hovy (2016). These features
encode rich character level information which can
improve performance, especially in syntactic tasks.
We obtain an 80-dimensional representation for
each word through the character bi-LSTM, which
is the concatenation of the last hidden state of the
forward and backward LSTMs.

4.3 Contextual Embeddings from Language
Models

Pre-trained contextual embeddings have been
shown to work well on a wide variety of NLP tasks.
In domains with relatively small task-specific train-
ing data, the gains have been substantial (McCann

et al., 2017; Akbik et al., 2018; Peters et al., 2017).
We also include contextual embeddings from the
pre-trained bi-directional language model in ELMo
(Peters et al., 2018).

We observe that the non-natural language seg-
ments exhibit wide differences in syntactic and
semantic structure, as is evident from Fig 1. We
propose contextual embeddings from multiple lan-
guage models; each trained on a different data
source - English text, code snippets, config/log file
contents. We hypothesize that combined embed-
dings from language models trained on separate
data sources can capture word relationships better
and can give richer word representations, as op-
posed to a single model trained on a large English
corpora.

For combining multiple contextual embeddings,
we explore two techniques - (1) a naive concate-
nation, and (2) a weighted sum, with weights
learned from context-independent DME (Dynamic
Meta-Embeddings) and context-dependent CDME
(Contextualised Dynamic Meta-Embeddings) self-
attention mechanisms as proposed by Kiela et al.
(2018).

4.3.1 DME and CDME
When using embeddings from n different LMs
for a training instance with s tokens {tj}sj=1, we
get contextual embeddings {wi,j}sj=1 ∈ Rdi(i =
1, 2, . . . , n).

For computing the weighted sum, the embed-
dings from multiple LMs are first projected to a
common d′-dimensional space by learned linear
functions:

w′i,j = Piwi,j + bi(i = 1, 2, . . . , n) (1)

where Pi ∈ Rd′×di and bi ∈ Rd′ . The projected
embeddings are then combined with a weighted
sum

wDME
j =

n∑
i=1

αi,jw
′
i,j (2)

where αi,j = g({w′i,j}sj=1) are scalar weights. In
DME, they are learned with the self-attention mech-
anism:

αi,j = g
(
w′i,j

)
= φ

(
a ·w′i,j + b

)
(3)

where a ∈ Rd′ and b ∈ R are learned parameters
and φ is the softmax function.

For CDME, the self-attention mechanism is
made context-dependent:

αi,j = g
(
{w′i,j

}s
j=1

)
= φ (a · hj + b) (4)

3130

where hj ∈ R2m is the jth hidden state of a bi-
directional LSTM which takes {w′i,j}sj=1 as input,
a ∈ R2m and b ∈ R. m is the number of hidden
units in this LSTM, and it is set to 2 as in the
original paper.

4.3.2 Data Sources for pre-trained LMs
In addition to the pre-trained ELMo model, we
train three additional language models on different
data sources. Each of these are also trained with the
ELMo architecture. The pre-trained model emits
word embeddings of size 1024, while each of our
domain-specific models emit embeddings of size
256.

• Code LM: This LM was trained on a con-
catenation of all text inside the 〈code〉 tags
of Ask Ubuntu, Super User, and Unix Stack
Exchange posts. The total size of this corpus
was approximately 400 MB.

• Prog LM: This LM was trained on a corpus
containing programming source code that was
compiled from various code repositories on
GitHub. Approximately 275 MB in size, it
includes sources in most popular languages
such as C, C++, Python, Java, Go, JavaScript,
and Bash.

• Config LM: This LM was trained on a corpus
of configuration and log files present in the
system folders of Mac OS and Ubuntu instal-
lations. The total size of the corpus was about
60 MB.

4.4 Attention

In Wang et al. (2018), the authors experiment
with a restricted attention mechanism on top of
the LSTM hidden representations. This is not ap-
propriate for our task since the questions are fairly
long (averaging around 900 words) and signals
indicating the start or end of a segment might ap-
pear far away. Since RNNs are known to be poor
at modelling very long-distance dependencies, we
also experiment with the inclusion of the Scaled
Dot-Product Attention layer (Vaswani et al., 2017)
on top of the bi-directional GRU. This attention
layer requires the computation of 3 matrices (Key,
Query, Value) from the RNN hidden states, which
entails a large number of extra parameters to be
learned. Therefore, we also try a version of atten-
tion where all the three matrices are set equal to

the hidden states of the GRU. We call these two ap-
proaches “weighted” and “un-weighted” attention,
in our experiments.

5 Experimental Setup

With the setup above, we study the performance of
various model components on the task of segment-
ing support problems. To put the performance in
perspective, we also compare against three base-
lines detailed in Section 5.1. The evaluation metrics
are carefully selected, avoiding an exact evaluation
of such long and noisy segments, and rewarding
partial retrieval of segments. The chosen evalua-
tion metric is discussed in Section 5.2. Finally, to
demonstrate the usefulness of the task, we evaluate
the performance of answer retrieval with segmenta-
tion (Section 5.3).

All baselines and sequence labelling models are
trained on the train split, and fine-tuned on the
validation split. For the baselines, we only tune the
regularization strength parameter. For the sequence
labelling model, we tune the dropout and recurrent
dropout parameters, as well as the learning rate.
Our best performing models have a dropout of 0.3,
recurrent dropout of 0, and learning rate of 1e-3.
All results are then reported on the test split.

5.1 Baseline

The task of segmenting technical support problems
can be thought to be comprised of two distinct sub-
tasks - (1) segmentation of text, (2) identification of
the segment label. With these in mind, we propose
3 baseline methods -

1. Sentence Only Baseline - Segmentation is
done trivially with newlines and sentence
boundaries serving as segment boundaries.
The label for a segment is determined using
just the current sentence as input.

2. Sentence Context Baseline - Segmentation is
done identically to the Sentence Only baseline.
The label for a segment is determined using
the immediate neighbouring sentences along
with the current sentence as input.

3. Supervised Text Segmentation Baseline - Seg-
ments are identified with the supervised al-
gorithm for segmenting text as described in
Koshorek et al. (2018). The label for each seg-
ment is identified with all the text contained
in it as input.

3131

For training the supervised text segmentation
model from Koshorek et al. (2018) we use the
whole data dump from AskUbuntu, with the 〈code〉
and 〈/code〉 html tags serving as segment bound-
aries.

For identifying segments (in all three baselines)
we use a Logistic Regression classifier with repre-
sentation from ELMo as input features. Segment
representations are created by mean pooling the
contextual representation of the comprising words
from ELMo.

5.2 Evaluation Metrics
Segments in our dataset are typically quite long,
therefore evaluation based on an exact match is
quite harsh. Keeping this in mind, we resort to soft
precision and recall metrics. We adopt proportional
overlap based metrics, used for the task of opinion
expression detection, as proposed by Johansson
and Moschitti (2010).

Towards the calculation of soft precision and
recall, consider two spans s and s′ with labels l and
l′ respectively. The span coverage, c, is defined as
how well s′ is covered by s:

c
(
s, s′

)
=
|s ∩ s′|
|s′|

if l = l′, 0 otherwise (5)

Using span coverage, the span set coverage of a
set of spans S with respect to another set of spans
S′ is computed as follows:

C
(
S,S′) = ∑

sj∈S

∑
s′k∈S

′

c
(
sj , s

′
k

)
(6)

Using the span set coverage, we can now define
the soft precision P and recall R of a predicted set
of spans Ŝ with respect to the gold standard set of
spans S:

P (S, Ŝ) =
C(S, Ŝ)

|Ŝ|
R(S, Ŝ) =

C(Ŝ,S)

|S|
(7)

In this equation, the operator | · | counts the no.
of spans in the span set.

5.3 Retrieval
An important task in the automation of technical
support is the retrieval of the most relevant an-
swer document for a given ticket (from a corpus
of product documentation, FAQ docs, frequent pro-
cedures). In this experiment we demonstrate the
usefulness of segmenting support tickets towards

this goal. We index the text of about 250,000 an-
swers from AskUbuntu with ElasticSearch 4. An-
swers with a large number of downvotes, and very
short answers are ignored. We use questions from
our annotated dataset as search queries. We then
compare the retrieval performance of querying with
the whole question against a query with separate
fields corresponding to each segment. In the fielded
query, we set different boost values for the iden-
tified segments. Boosting a specific segment of
the question with a higher value causes it to have
more significance in the relevance score calcula-
tion in ElasticSearch. To decide the boost values,
we calculate the average percentage word overlap
between a segment in the question and its correct
answer from AskUbuntu on the train and val sets.
To compare retrieval performance, we evaluate the
Mean Reciprocal Rank (MRR) of the correct an-
swer for questions in the test set.

6 Results

Table 2 presents evaluation metrics for the three
baselines against three variants of our sequence
labelling model. The first variant does not use
pre-trained embeddings from language models,
the second uses just pre-trained ELMo, while the
third combines pre-trained embeddings from multi-
ple language models using CDME. All three vari-
ants use fastText for word embeddings (refer Sec-
tion 6.1), character-based embeddings, and do not
have attention mechanism before the final CRF
layer (refer Section 6.2).

As one would expect, the Context Baseline per-
forms much better than the Sentence Only Baseline.
The sequence labelling models, however, outper-
form both the baselines by a huge margin, demon-
strating the effectiveness of the model on the task.
Specifically, the best performance is achieved by
combining pre-trained embeddings from multiple
language models trained on different data sources.
It significantly outperforms the model using embed-
dings from a single pre-trained model on English
(explored in Section 6.3).

In the following section we present results from
the various model components we explored.

6.1 Effect of fastText

Row 1 and 4 in Table 3 presents the compari-
son between models using word embeddings from

4https://www.elastic.co/products/elasticsearch

https://www.elastic.co/products/elasticsearch

3132

Model P R F1
Sent. Only Baseline 47.77 31.75 38.15
Sent. Context Baseline 52.52 34.03 41.3
Supervised Text Segmentation Baseline 44.13 40.43 42.20

SL w/o LM embeddings 74.57 75.51 75.04
SL + pre-trained ELMo 76.88 74.49 75.67
SL + CDME combined pre-trained Embeddings 78.30 79.29 78.80

Table 2: Results comparing the three baselines against variants of our sequence labelling model. The best perform-
ing variant uses CDME to combine pre-trained embeddings from multiple language models trained on different
datasources.

Model P R F1
Word2Vec (w/o Attn) 65.20 58.59 61.72

+ weighted Attn. 62.34 57.0 59.55
+ un-weighted Attn. 69.21 56.15 62.0

fastText 74.57 75.51 75.04

Table 3: Results for experiments between using
Word2Vec and fastText embeddings. Also includes
results of using attention on top of the model with
Word2Vec. Since attention results were not promising,
we did not repeat them with fastText.

word2vec and fastText. Both word2vec and fast-
Text embeddings are trained on all posts in the Ask
Ubuntu dataset. As we can see, fastText gives a
marked improvement over using embeddings from
word2vec. This is probably due to the nature of
the vocabulary in our task. Since large portions of
questions are spans of command output or error
messages a lot of tokens appear very rarely. In
fact, out of the 62,501 unique tokens in the dataset,
57% appear just once, and 78% appear 3 or fewer
times. However, the characters in these tokens are
probably very informative (for example “http” in a
token would signal that the token is a URL). There-
fore, fastText, which uses n-grams from a token to
compute embeddings, would emit more meaningful
representations.

As a simple experiment, we check the simi-
larity of two URLs from the dataset that appear
just once - http://paste.ubuntu.com/1403448/ and
http://paste.ubuntu.com/14545476/. While the co-
sine similarity of Word2Vec vectors for the two is
−0.07, the similarity between the fastText vectors
is 0.99.

6.2 Effect of Attention

Given the long tickets in our dataset, and un-
reasonably long lengths of spans for labels like

command output or error messages, we explored
the usefulness of attention in our model. We used
the Scaled Dot-Product Attention as in (Vaswani
et al., 2017). Rows 2 and 3 in Table 3 present the
results of using attention. We find that weighted
attention actually hurts performance. This could
be because of the large number of extra parameters
introduced in the calculation of Key, Value, and
Query matrices. While the un-weighted version
gets around this by using the bi-directional GRU
hidden states as all 3 matrices, it doesn’t improve
results significantly either.

6.3 Effect of Contextual Pre-Trained
Embeddings

As detailed in Section 4.3, we explore the impact
of pre-trained contextual embeddings. We also test
our hypothesis, that combining pre-trained embed-
dings from different data sources would perform
better on our task than using embeddings from a
language model trained on a single data source.
The combination is also performed in two ways -
naive concatenation of embeddings from all lan-
guage models, and weighted combination using
DME and CDME as in Kiela et al. (2018).

Table 4 summarizes these results. For the sim-
ple concatenation method, we present results for
the best n-way combination of embeddings from
different data sources, for each n (1, 2, 3, and 4).
We find that combining embeddings from multiple
language models trained on different data sources
considerably outperforms using embeddings from a
single pre-trained model (using both the naive con-
catenation and CDME). This is an artifact of the
support problems containing large sections of non-
natural language text. We also find that contextual
weighting does better than a simple concatenation.

3133

Model P R F1
No Pretraining 74.57 75.51 75.04
Simple Concat - 1 (en) 76.88 74.49 75.67
Simple Concat - 2 (en
+ config)

77.67 76.12 76.89

Simple Concat - 3 (en
+ code + config)

79.64 77.72 78.67

Simple Concat - 4
(ALL)

76.05 76.65 76.35

DME 77.42 75.82 76.61
CDME 78.30 79.29 78.80

Table 4: Results comparing the models using various
pre-trained embeddings. The en data source is the
downloaded pre-trained ELMo model. For simple con-
catenation, we present the results for the best model
at each n combinations of data sources. For example,
when concatenating any 2 datasources, the en + config
combination gives the best performance.

Method MRR
Full Question 0.292
Segmented Question - Gold 0.300
Segmented Question - Predicted 0.298

Table 5: Retrieval results, comparing the performance
of querying with the full question against segmented
question (gold segments and predicted segments)

6.4 Retrieval of the Correct Answer

Table 5 presents results for the retrieval experiment.
We show that weighing identified segments of the
question with separate weights improves retrieval
of the correct answer over a query with all tokens
from the question. We also present results from the
gold annotations of segments for these questions, as
an upper-bound of the performance improvement
we can hope to achieve.

7 Conclusion

In this paper, we introduce and address an im-
portant problem towards a better understanding
of support tickets - segmentation of various non-
natural language segments. We create an annotated
dataset for the task, on questions from the publicly
available website, Ask Ubuntu. We also study the
performance of the most recent Recurrent Neural
Network-based approaches to sequence labelling,
on this task. In the end, we propose the novel
idea of combining pre-trained embeddings from
language models trained on different data sources,
which substantially improves performance. We

also demonstrate the usefulness of the task with
improvements in retrieval of the correct answer.
Our future research direction includes a thorough
study of differences in this dataset with actual tick-
ets, and potential for transfer. It is still valuable to
study models on open datasets, however, as these
are readily available to the community.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jason P.C. Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. Trans-
actions of the Association for Computational Lin-
guistics, 4:357–370.

Freddy Y. Y. Choi. 2000. Advances in domain inde-
pendent linear text segmentation. In Proceedings of
the 1st North American Chapter of the Association
for Computational Linguistics Conference, NAACL
2000, page 2633, USA. Association for Computa-
tional Linguistics.

Grzegorz Chrupała. 2013. Text segmentation with
character-level text embeddings. Workshop on Deep
Learning for Audio, Speech and Language Process-
ing, ICML 2013, Atlanta, United States.

Abhirut Gupta, Anupama Ray, Gargi Dasgupta, Gau-
tam Singh, Pooja Aggarwal, and Prateeti Mohapatra.
2018. Semantic parsing for technical support ques-
tions. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 3251–
3259, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu.
2016. Experience report: system log analysis for
anomaly detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (IS-
SRE), pages 207–218.

Marti A. Hearst. 1997. TextTiling: Segmenting text
into multi-paragraph subtopic passages. Computa-
tional Linguistics, 23(1):3364.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
arXiv e-prints, page arXiv:1508.01991.

Richard Johansson and Alessandro Moschitti. 2010.
Syntactic and semantic structure for opinion expres-
sion detection. In Proceedings of the Fourteenth

https://www.aclweb.org/anthology/C18-1139
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.1162/tacl_a_00104
https://www.aclweb.org/anthology/A00-2004
https://www.aclweb.org/anthology/A00-2004
http://arxiv.org/abs/1309.4628
http://arxiv.org/abs/1309.4628
https://www.aclweb.org/anthology/C18-1275
https://www.aclweb.org/anthology/C18-1275
https://ieeexplore.ieee.org/document/7774521
https://ieeexplore.ieee.org/document/7774521
https://www.aclweb.org/anthology/J97-1003/
https://www.aclweb.org/anthology/J97-1003/
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1508.01991
https://www.aclweb.org/anthology/W10-2910
https://www.aclweb.org/anthology/W10-2910

3134

Conference on Computational Natural Language
Learning, CoNLL 10, page 6776, USA. Association
for Computational Linguistics.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1466–1477, Brussels, Bel-
gium. Association for Computational Linguistics.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text segmentation
as a supervised learning task. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 469–473, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Proceedings of the
31st International Conference on Neural Informa-
tion Processing Systems, NIPS17, page 62976308,
Red Hook, NY, USA. Curran Associates Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1756–1765, Vancouver,
Canada. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Marek Rei, Gamal Crichton, and Sampo Pyysalo. 2016.
Attending to characters in neural sequence label-
ing models. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 309–318, Os-
aka, Japan. The COLING 2016 Organizing Commit-
tee.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Kai Wang, Zhao-Yan Ming, Xia Hu, and Tat-Seng
Chua. 2010. Segmentation of multi-sentence ques-
tions: Towards effective question retrieval in CQA
services. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR 10, page
387394, New York, NY, USA. Association for Com-
puting Machinery.

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018.
Toward fast and accurate neural discourse segmen-
tation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 962–967, Brussels, Belgium. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/D18-1176
https://doi.org/10.18653/v1/N18-2075
https://doi.org/10.18653/v1/N18-2075
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
http://dl.acm.org/citation.cfm?id=3295222.3295377
http://dl.acm.org/citation.cfm?id=3295222.3295377
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/P17-1161
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://www.aclweb.org/anthology/C16-1030
https://www.aclweb.org/anthology/C16-1030
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/1835449.1835515
https://doi.org/10.1145/1835449.1835515
https://doi.org/10.1145/1835449.1835515
https://www.aclweb.org/anthology/D18-1116
https://www.aclweb.org/anthology/D18-1116

