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Abstract

The International Classification of Diseases
(ICD) provides a standardized way for clas-
sifying diseases, which endows each disease
with a unique code. ICD coding aims to as-
sign proper ICD codes to a medical record.
Since manual coding is very laborious and
prone to errors, many methods have been pro-
posed for the automatic ICD coding task. How-
ever, most of existing methods independently
predict each code, ignoring two important
characteristics: Code Hierarchy and Code
Co-occurrence. In this paper, we propose
a Hyperbolic and Co-graph Representation
method (HyperCore) to address the above
problem. Specifically, we propose a hyper-
bolic representation method to leverage the
code hierarchy. Moreover, we propose a
graph convolutional network to utilize the
code co-occurrence. Experimental results on
two widely used datasets demonstrate that our
proposed model outperforms previous state-of-
the-art methods.

1 Introduction

The International Classification of Diseases (ICD)
is a healthcare classification system supported by
the World Health Organization, which provides a
unique code for each disease, symptom, sign and
so on. ICD codes have been widely used for ana-
lyzing clinical data and monitoring health issues
(Choi et al., 2016; Avati et al., 2018). Due to the
importance of ICD codes, ICD coding – which as-
signs proper ICD codes to a medical record – has
drawn much attention. The task of ICD coding
is usually undertaken by professional coders ac-
cording to doctors’ diagnosis descriptions in the
form of free texts. However, manual coding is
very expensive, time-consuming and error-prone.

Automatic 
ICD

Coding 
Model

Mr.[**Known lastname
58216**] is an 87 year old
male with Parkinsons Disease,
difficulty breathing ,…,…
87 year old male presents
with severe chest tightness,
respiratory failure, and
pneumatosis coli indicative of
visceral necrosis. As the
patient was not a surgical
candidate, medical prognosis
was poor ……

Input: Clinical Text Output: Predicted ICD codes

ICD-9
Codes Disease Name

518.81 Acute respiratory failure

401.9 Essential hypertension

276.2 Acidosis

038.9 Unspecified septicemia

…… ……

Figure 1: An example of automatic ICD coding task.
The input and output of the automatic ICD coding
model are clinical text and predicted ICD codes, respec-
tively. For better understanding, we add the correspond-
ing disease name for each code.

The cost incurred by coding errors and the finan-
cial investment spent on improving coding quality
are estimated to be $25 billion per year in the US
(Lang, 2007). Two main reasons can account for
this. First, only the people who have medical expert
knowledge and specialized ICD coding skills can
handle the task. However, it is hard to train such
an eligible ICD coder. Second, it is difficult to cor-
rectly assign proper codes to the input document
even for professional coders, because one docu-
ment can be assigned multiple ICD codes and the
number of codes in the taxonomy of ICD is large.
For example, there are over 15,000 and 60,000
codes respectively in the ninth version (ICD-9) and
the tenth version (ICD-10) of ICD taxonomies.

To reduce human labor and coding errors, many
methods have been carefully designed for auto-
matic ICD coding (Perotte et al., 2013; Mullenbach
et al., 2018). For example in Figure 1, given the
clinical text of a patient, the ICD coding model
needs to automatically predict the corresponding
ICD codes. The automatic ICD coding task can be
modeled as a multi-label classification task since
each clinical text is usually accompanied by mul-
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460-519 - DISEASES OF THE RESPIRATORY SYSTEM

460 - Acute nasopharyngitis

461 - Acute sinusitis

461.0 - Maxillary

461.1 - Frontal

464 - Acute laryngitis and tracheitis

464.0 - Acute laryngitis

464.00 - Without mention of obstruction

464.01 - With obstruction

464.1 - Acute tracheitis

ICD-9 Descriptor

460-519

460 461 462

461.0 461.1 464.0 464.1

464.00 464.01

Hierarchical Structure

463 464

Figure 2: An example of ICD-9 descriptors and the de-
rived hierarchical structure.

tiple codes. Most of the previous methods handle
each code in isolation and convert the multi-label
problem into a set of binary classification problems
to predict whether each code of interest presents
or not (Mullenbach et al., 2018; Rios and Kavu-
luru, 2018). Though effective, they ignore two im-
portant characteristics: Code Hierarchy and Code
Co-occurrence, which can be leveraged to improve
coding accuracy. In the following, we will intro-
duce the two characteristics and the reasons why
they are critical for the automatic ICD coding.

Code Hierarchy: Based on ICD taxonomy, ICD
codes are organized under a tree-like hierarchical
structure as shown in Figure 2, which indicates the
parent-child and sibling relations between codes.
In the hierarchical structure, the upper level nodes
represent more generic disease categories and the
lower level nodes represent more specific diseases.
The code hierarchy can capture the mutual exclu-
sion of some codes. If code X and Y are both
children of Z (i.e., X and Y are the siblings), it
is unlikely to simultaneously assign X and Y to a
patient in general (Xie and Xing, 2018). For exam-
ple in Figure 2, if code “464.00 (acute laryngitis
without mention of obstruction)” is assigned to a
patient, it is unlikely to assign the code “464.01
(acute laryngitis with obstruction)” to the patient
at the same time. If automatic ICD coding models
ignore such a characteristic, they are prone to giv-
ing inconsistent predictions. Thus, a challenging
problem is how to model the code hierarchy and
use it to capture the mutual exclusion of codes.

Code Co-occurrence: Since some diseases are
concurrent or have a causal relationship with each
other, their codes usually co-occur in the clinical
text, such as “997.91 (hypertension)” and “429.9
(heart disease)”. In this paper, we call such charac-
teristic code co-occurrence which can capture the
correlations of codes. The code co-occurrence can
be utilized to correctly predict some codes which
are difficult to predict by only using the clinical text

itself. For example in Figure 1, the code of “acute
respiratory failure” can be easily inferred via cap-
turing apparent clues (i.e., the green bold words)
from the text. Although there are also a few clues to
infer the code of “acidosis”, they are very obscure,
let alone predict the code of “acidosis” by only
using these obscure clues. Fortunately, there is a
strong association between these two diseases: one
of the main causes of “acidosis” is “acute respira-
tory failure”. This prior knowledge can be captured
via the fact that the codes of the two diseases usu-
ally co-occur in clinical texts. By considering the
correlation, the automatic ICD coding model can
better exploit obscure clues to predict the code of
“acidosis”. Therefore, another problem is how to
leverage code co-occurrence for ICD coding.

In this paper, we propose a novel method termed
as Hyperbolic and Co-graph Representation
method (HyperCore) to address above problems.
Since the tree-likeness properties of the hyperbolic
space make it more suitable for representing sym-
bolic data with hierarchical structures than the Eu-
clidean space (Nickel and Kiela, 2017), we pro-
pose a hyperbolic representation learning method
to learn the Code Hierarchy. Meanwhile, the graph
has been proved effective in modeling data corre-
lation and the graph convolutional network (GCN)
enables to efficiently learn node representation
(Kipf and Welling, 2016). Thus, we devise a code
co-occurrence graph (co-graph) for capturing Code
Co-occurrence and exploit the GCN to learn the
code representation in the co-graph.

The contributions of this paper are threefold.
Firstly, to our best knowledge, this is the first work
to propose a hyperbolic representation method to
leverage the code hierarchy for automatic ICD cod-
ing. Secondly, this is also the first work to utilize
a GCN to exploit code co-occurrence correlation
for automatic ICD coding. Thirdly, experiments
on two widely used automatic ICD coding datasets
show that our proposed model outperforms previ-
ous state-of-the-art methods.

2 Related Work

Automatic ICD Coding. Automatic ICD coding
is a challenging and important task in the medical
informatics community, which has been studied
with traditional machine learning methods (Larkey
and Croft, 1996; Perotte et al., 2013) and neural
network methods (Koopman et al., 2015; Rios and
Kavuluru, 2018; Yu et al., 2019). Given discharge
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This was a 51 year
o l d woman who
en t e r e d v i a t h e
emergency room
after a fall. She was
transferred from an
outside hospital …
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Figure 3: The architecture of Hyperbolic and Co-graph Representation method (HyperCore). In the Poincaré ball
Bn, we show the embeded code hierarchy (i.e., tree-like hierarchical structure). The dots li (i = 1, 2, 3) on the tree-
like hierarchical structure and triangles mi (i = 1, 2, 3) in the Poincaré ball denote hyperbolic code embeddings
and hyperbolic document representations, respectively.

summaries, Perotte et al. (2013) propose a hierar-
chical SVM model to predict ICD codes. Recently,
neural network methods have been introduced to
the task. Mullenbach et al. (2018) propose an at-
tention based convolutional neural network (CNN)
model to capture important information for each
code. Xie and Xing (2018) adopt tree long short-
term memory (LSTM) to utilize code descriptions.
Though effective, they ignore the code hierarchy
and code co-occurrence.
Hyperbolic Representation. Hyperbolic space
has been applied to modeling complex networks
(Krioukov et al., 2010). Recent research on repre-
sentation learning demonstrates that the hyperbolic
space is more suitable for representing symbolic
data with hierarchical structures than the Euclidean
space (Nickel and Kiela, 2017, 2018; Hamann,
2018). In the field of natural language process-
ing (NLP), the hyperbolic representation has been
successfully applied to question answering (Tay
et al., 2018), machine translation (Gulcehre et al.,
2018) and sentence representation (Dhingra et al.,
2018). To our knowledge, this is the first work to
apply hyperbolic representation method to the au-
tomatic ICD coding task.
Graph Convolutional Networks. GCN (Kipf and
Welling, 2016) is a powerful neural network, which
operates on graph data. It yields substantial im-
provements over various NLP tasks such as seman-
tic role labeling (Marcheggiani and Titov, 2017),
multi-document summarization (Yasunaga et al.,
2017) and machine translation (Bastings et al.,
2017). Veličković et al. (2017) propose graph atten-

tion networks (GAT) to summarize neighborhood
features by using masked self-attentional layers.
We are the first to capture the code co-occurrence
characteristic via the GCN for the automatic ICD
coding task.

3 Method

We propose a hyperbolic and co-graph representa-
tion (HyperCore) model for automatic ICD coding.
Firstly, to capture the code hierarchy, we learn the
code hyperbolic representations and measure the
similarities between document and codes in the
hyperbolic space. Secondly, to exploit code co-
occurrence, we exploit the GCN to learn code co-
occurrence representations and use them as query
vectors to obtain code-aware document representa-
tions. Finally, the document-code similarity scores
and code-aware document representations are then
aggregated to predict the codes. Figure 3 shows the
overall architecture of our proposed model.

3.1 Convolution Neural Network Encoder

We first map each word into a low dimensional
word embedding space. The document can be de-
noted as X = {x1,x2, . . . ,xN}, where N is the
length of the document. Then, we exploit the CNN
to encode the clinical text due to its high computa-
tional efficiency:

hi = tanh(Wc ∗ xi:i+k−1 + bc) (1)

whereWc is the convolutional filter. bc is the bias.
k is the filter size. ∗ is the convolution operator.
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3.2 Code-wise Attention
After encoding by CNN, we obtain the document
representation H = {h1,h2, . . . ,hN}. Since we
need to assign multiple codes for each document
and different codes may focus on different sections
of the document, we employ code-wise attention
to learn relevant document representations for each
code. We first generate the code vector for each
code via averaging the word embeddings of its
descriptor:

vi =
1

Nd

∑Nd

j=1
wj , i = 1, . . . , L (2)

where vi is the code vector, Nd is the length of the
descriptor,wj is the embedding of j-th word in the
descriptor, and L is the total number of codes in the
dataset (Jouhet et al., 2012; Johnson et al., 2016).
The code vectors set is V = {v1,v2, . . . ,vL}.

Then, we generate the code-wise attention vector
via matrix-vector product:

αi = softmax(HTvi) (3)

Finally, we use the document representationH
and attention vector αi to generate the code-aware
document representation:

ci =Hαi (4)

We concatenate the ci (i = 1, . . . , L) to obtain
the code-aware document representation, denoted
as C = {c1, c2, . . . , cL} ∈ Rdc×L .

3.3 Document-Code Similarities in
Hyperbolic Space

To capture the code hierarchy, we learn the code
hyperbolic representations and measure the similar-
ities between document and codes in the hyperbolic
space. In this section, we propose a hyperbolic
code embedder to obtain code hyperbolic represen-
tations, and we also propose a hyperbolic document
projector to project the document representations
from Euclidean space to hyperbolic space. We then
compute the similarities between the document and
codes in the hyperbolic space.

3.3.1 Hyperbolic Geometry
Hyperbolic geometry is a non-Euclidean geome-
try which studies spaces of constant negative cur-
vature. Our approach is based on the Poincaré
ball model (Nickel and Kiela, 2017), which is a
particular model of hyperbolic space and is well-
suited for gradient-based optimization. In partic-
ular, let Bn = {x ∈ Rn | ||x|| < 1} be the open

n-dimensional unit ball, where || · || denotes the Eu-
clidean norm. The Poincaré ball (Bn, gx) is defined
by the Riemannian manifold, i.e., the open unit ball
equipped with the Riemannian metric tensor:

gx =

(
2

1− ||x||2

)2

gE (5)

where x ∈ Bn. gE denotes the Euclidean met-
ric tensor. Furthermore, the distance between two
points u, v ∈ Bn is given as:

d(u,v) = arcosh(1 + 2
||u− v||2

(1− ||u||2)(1− ||v||2) ) (6)

where arcosh is the inverse hyperbolic cosine func-
tion, i.e., arcosh(x) = ln(x+

√
(x2 − 1)). If we

consider the origin O and two points u, v, when
the two points moving towards the outside of the
Poincaré ball (i.e., ||u||, ||v|| → 1), the distance
d(u,v) tends to d(u,O) + d(O,v). That is, the
path between the two points converges to a path
through the origin, which can be seen as a tree-like
hierarchical structure.

3.3.2 Hyperbolic Code Embedder
The tree-likeness of the hyperbolic space makes it
natural to embed hierarchical structures. By em-
bedding code hierarchy in the Poincaré ball, the
top codes are placed near the origin and bottom
codes are near the boundary. The embedding norm
represents depth in the hierarchy, and the distance
between embeddings represents the similarity. Let
D = {(lp, lq)} be the set of parent-child relations
between code pairs. Θ = {θi}Ti=1,θi ∈ Bdp is
the corresponding code embedding set, where T
is the number of all ICD codes. In order to en-
force related codes to be closer than unrelated
codes, we minimize the following loss function
to get the code hyperbolic representations when
||θi|| < 1(i = 1, . . . , L):

J (Θ) = −
∑

(lp,lq)∈D

log
exp(−d(θp,θq))∑

lq′∈N (lp)
exp(−d(θp,θq′))

(7)

whereN (lp) = {lq′ |(lp, lq′) /∈ D}∪ {lp} is the set
of negative samples. The hyperbolic code represen-
tations in our work are denoted as ΘL = {θi}Li=1.
d(·) is the distance defined as Equation (6).

3.3.3 Hyperbolic Document Projector
To compute the similarities between document and
codes in hyperbolic space, the code-aware docu-
ment representations C = {c1, c2, . . . , cL} need
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to be projected into the hyperbolic space. We ex-
ploit the re-parameterization technique (Dhingra
et al., 2018; López et al., 2019) to implement it,
which involves computing a direction vector r and
a norm magnitude η. We use the ci as an example
to illustrate the procedure:

ri = Φdir(ci), ri =
ri
||ri||

ηi = Φnorm(ci), ηi = σ(ηi)

(8)

where Φdir : Rdc → Rdp is the direction func-
tion. We parameterize it as a multi-layer perceptron
(MLP). Φnorm : Rdc → R is the norm magnitude
function. We use a linear layer to implement it.
σ is the sigmoid function to ensure the resulting
norm ηi ∈ (0, 1). The re-parameterized document
representation is defined asmi = ηiri, which lies
in hyperbolic space Bdp .

The re-parameterization technique enables to
project the code-aware document representation
into the Poincaré ball, which enables the avoidance
of the stochastic Riemannian optimization method
(Bonnabel, 2013) to learn the parameters in the hy-
perbolic space. Instead, we can exploit the deep
learning optimization method to update the param-
eters in the entire model.

3.3.4 Compute Document-Code Similarity
Since there doesn’t exist a clear hyperbolic inner-
product, the cosine similarity is not appropriate to
be the metric. In our work, we adopt the hyper-
bolic distance function to model the relationships
between the document and codes. Since the hy-
perbolic document representation for each code
has been obtained, we just need to compute the
similarity with the corresponding hyperbolic code
embedding:

scorei = d(mi,θi)

S = [score1; score2; . . . ; scoreL]
(9)

where S ∈ RL is the document-code similarity
score. [; ] is the concatenation operation. d(·) is the
distance function defined as Equation (6).

3.4 Code-aware Document Representations
via Graph Convolutional Network

To exploit code co-occurrence, we exploit the graph
to model code co-occurrence correlation, and then
we use the GCN to learn code cooccurrence rep-
resentations. In this section, we first construct the
co-graph according to the statistics of the code co-
occurrence in the training set, and then we exploit

the GCN to encode the code co-occurrence correla-
tion.

3.4.1 Code Co-graph Construction
Given a graph with L nodes, we can represent the
graph using a L× L adjacency matrixA. To cap-
ture the co-occurrence correlations between codes,
we build the code co-occurrence graph (co-graph),
which utilizes the code co-occurrence matrix as the
adjacency matrix. If the i-th code and the j-th code
co-occur in the clinical text, there is an edge be-
tween them. Intuitively, if the i-th code co-appears
with the j-th code more often than the k-th code,
the probabilities of the i-th code and the j-th code
should have stronger dependencies. Therefore, in
our work, we use the co-appearing times between
two codes as the connection weights in the adja-
cency matrix, which can represent the prior knowl-
edge. For example, if the i-th code co-appears n
times with the j-th code, we setAij = n.

3.4.2 Code Co-occurrence Encoding via GCN
The inputs of GCN are initial representations of
codes V which are obtained via Equation (2) and
the adjacency matrixA. We use the standard con-
volution computation (Kipf and Welling, 2016) to
encode code co-occurrence:

H(l+1) = ρ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (10)

where Ã = A + I . I is the identity matrix,
D̃ii =

∑
j Ãij , H(l) ∈ RL×dc and H(0) = V .

ρ is an activation function (e.g., ReLU). After
co-occurrence correlation encoding via GCN, the
code representations enable to capture the code
co-occurrence correlations. Then, we use the code-
wise attention to obtain code-aware document rep-
resentations, denoted asD = {d1,d2, . . . ,dL}1.

3.5 Aggregation Layer
After capturing the code hierarchy and code co-
occurrence, we use an aggregation layer to fuse
document-code similarity scores S and code-aware
document representationsD for enhancing repre-
sentation with each other:

U = λWsS +DTWd (11)

where Ws and Wd are transformation matrixes.
U = {u1, u2, . . . , uL} ∈ RL are final document
representations for each code. λ is the hyper-
parameter.

1C and D are both code-aware document representations,
but D captures the code co-occurrence correlations.



3110

Model
MIMIC-III full MIMIC-III 50

AUC F1 P@N AUC F1
P@5

Macro Micro Macro Micro 8 15 Macro Micro Macro Micro
C-MemNN – – – – – – 0.833 – – – 0.420
C-LSTM-ATT – – – – – – – 0.900 – 0.532 –
CAML 0.895 0.986 0.088 0.539 0.709 0.561 0.875 0.909 0.532 0.614 0.609
DR-CAML 0.897 0.985 0.086 0.529 0.690 0.548 0.884 0.916 0.576 0.633 0.618

HyperCore
0.930 0.989 0.090 0.551 0.722 0.579 0.895 0.929 0.609 0.663 0.632
±0.001 ±0.005 ±0.003 ±0.001 ±0.002 ±0.001 ±0.003 ±0.002 ±0.001 ±0.001 ±0.002

Table 1: Comparison of our model and other baselines on the MIMIC-III dataset. We run our model 10 times and
each time we use different random seeds for initialization. We report the mean± standard deviation of each result.

3.6 Training
The prediction for each code is generated via:

ŷi = σ(ui), i = 1, . . . , L (12)

Our model is to be trained using a multi-label bi-
nary cross-entropy loss:

L =
∑L

i=1
[−yilog(ŷi)− (1− yi)log(1− ŷi)] (13)

where yi ∈ {0, 1} is the ground truth for the i-th
code.

4 Experiments

4.1 Datasets
We evaluate our proposed model on two widely
used datasets, including MIMIC-II (Jouhet et al.,
2012) and MIMIC-III (Johnson et al., 2016). Both
datasets contain discharge summaries that are
tagged by human coders with a set of ICD-9 codes.
For MIMIC-III dataset, we use the same experimen-
tal setting as previous works (Shi et al., 2017; Mul-
lenbach et al., 2018). The dataset has two common
settings: MIMIC-III full and MIMIC-III 50. For
MIMIC-III full setting, the setting consists of 8921
codes, 47719, 1631 and 3372 discharge summaries
for training, development and testing respectively.
For MIMIC-III 50 setting, the setting contains the
top 50 most frequent codes, 8067, 1574 and 1730
discharge summaries for training, development and
testing respectively. For the MIMIC-II dataset, we
use the same splits as previous works (Perotte et al.,
2013; Mullenbach et al., 2018), there are 20533
and 2282 clinical notes for training and testing, and
5031 unique ICD-9 codes in the dataset.

4.2 Metrics and Parameter Settings
Following previous work (Mullenbach et al., 2018),
we use macro-averaged and micro-averaged F1,
macro-averaged and micro-averaged AUC (area
under the ROC, i.e., receiver operating characteris-
tic curve) and Precision@N (P@N) as the metrics.

Model
AUC F1

P@8
Macro Micro Macro Micro

SVM – – – 0.293 –
HA-GRU – – – 0.366 –
CAML 0.820 0.966 0.048 0.442 0.523
DR-CAML 0.826 0.966 0.049 0.457 0.515

HyperCore
0.885 0.971 0.070 0.477 0.537
±0.001 ±0.004 ±0.002 ±0.003 ±0.003

Table 2: Experimental results are shown in means ±
standard deviations on the MIMIC-II dataset.

The P@N indicates the proportion of the correctly-
predicted labels in the top-N predicted labels.

Hyper-parameters are tuned on the development
set by grid search. The word embedding size de
is 100. The convolution filter size is 10. The size
of the filter output is 200. The dropout rate is
0.4. The λ is 0.2. The batch size is 16. Adam
(Kingma and Ba, 2014) is used for optimization
with an initial learning rate 1e-4. We pre-train the
word embeddings on the combination of training
sets of MIMIC-II and MIMIC-III datasets by using
word2vec toolkit (Mikolov et al., 2013).

4.3 Baselines

SVM: A hierarchical support vector machine
(SVM) is proposed by Perotte et al. (2013) to use
the hierarchical nature of ICD codes, which is
evaluated on the MIMIC-II dataset.
C-MemNN: A condensed memory neural network
is proposed by Prakash et al. (2017) to predict ICD
codes on the MIMIC-III 50 dataset.
C-LSTM-ATT: A character-aware LSTM based
attention model is proposed by Shi et al. (2017). It
is also evaluated on the MIMIC-III 50 dataset.
HA-GRU: A hierarchical attention gated recurrent
unit model is proposed by Baumel et al. (2018) to
predict ICD codes on the MIMIC-II dataset.
CAML & DR-CAML: The convolutional
attention network for multi-label classification
(CAML) is proposed by Mullenbach et al. (2018).
DR-CAML is an extension of CAML which
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Models
MIMIC-III full MIMIC-III 50 MIMIC-II

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1
HyperCore 0.090 0.551 0.609 0.663 0.070 0.477
w/o hyperbolic representation 0.081 0.539 0.576 0.645 0.062 0.464
w/o co-graph representation 0.085 0.541 0.582 0.637 0.055 0.453
w/o hyperbolic and co-graph representation 0.077 0.531 0.570 0.626 0.047 0.439

Table 3: Ablation study by removing the main components, where “w/o” indicates without.

incorporates the code description. They achieve
the state-of-the-art performance on the MIMIC-III
and MIMIC-II datasets.

4.4 Compared with State-of-the-art Methods

We repeat 10 times training and each time we use
different random seeds for initialization. We report
the mean± standard deviation of each result. Table
1 and Table 2 show the results on the MIMIC-III
and MIMIC-II datasets, respectively. Since some
baselines are evaluated either on MIMIC-III or
MIMIC-II, the baselines used for the two datasets
are different. Overall, we observe that:

(1) In Table 1, our method HyperCore outper-
forms all the baselines on MIMIC-III dataset. For
example, compared with the state-of-the-art model
DR-CAML, our method achieves 2.2% and 3% im-
provements of Micro-F1 score on MIMIC-III full
and MIMIC-III 50 respectively. It indicates that,
as compared to neural network based models that
handle each code in isolation, our method can bet-
ter take advantage of the rich correlations among
codes. In addition, the small standard deviations
indicate that our model obtains stable good results.

(2) As previous work (Mullenbach et al., 2018),
the Macro-F1 score of our method on MIMIC-
III full is lower than that on the MIMIC-III 50.
The reason is that MIMIC-III full has long-tail
frequency distributions, and the Macro-F1 places
more emphasis on rare code prediction. There-
fore, it is difficult to achieve a high Macro-F1 score
on MIMIC-III full. Nevertheless, our method still
achieves the best result on the Macro-F1 metric. It
indicates that our method is very effective.

(3) In Table 2, our method HyperCore also
achieves the best performance over all metrics on
the MIMIC-II. Especially, compared with the state-
of-the-art model DR-CAML, our method achieves
5.9% improvements of Macro-AUC, which indi-
cates the effectiveness of our method.

(4) As shown in Table 2, the neural network
based methods outperform the traditional model
(SVM), which indicates the limitation of human-

designed features and the advancement of neural
networks for the automatic ICD coding.

4.5 Ablation Experiment

To investigate the effectiveness of the hyperbolic
and co-graph representation, we conduct the abla-
tion studies. The experimental results are listed in
Table 3. From the results, we can observe that:

(1) Effectiveness of Hyperbolic Representa-
tion. Compared with the model removed hyper-
bolic representation, the HyperCore improves the
Micro-F1 score from 0.539 to 0.551 on MIMIC-III
full dataset. It demonstrates the effectiveness of the
hyperbolic representation.

(2) Effectiveness of Co-graph Representation.
Compared with the model removed the co-graph
representation, the HyperCore model improves
the performance, achieving 2.6% improvements
of Micro-F1 score on the MIMIC-III 50 dataset.
The great improvements indicate the co-graph rep-
resentation is very effective.

(3) Effectiveness of Hyperbolic and Co-graph
Representation. When we remove the hyperbolic
and co-graph representation, the performance drops
significantly. The Micro-F1 score drops from 0.477
to 0.439 on the MIMIC-II dataset. It indicates that
simultaneously exploiting the hyperbolic and co-
graph representation is also very effective.

4.6 Discussion

4.6.1 The Analysis of Hyperbolic Code
Embedding Dimension

Since the dimensionality of the hperbolic code em-
beddings is very important for hyperbolic repre-
sentation, we investigate its effect. The size of
hyperbolic code embeddings is set 10, 20, 50, 70
and 100. Table 4 shows the results of our model on
the MIMIC-III and MIMIC-II datasets. We have
two important observations:

(1) The best hyperbolic code embedding dimen-
sionality on MIMIC-III full is larger than it on
MIMIC-III 50 and MIMIC-II. The reason may
be that the number of codes in MIMIC-III full is
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Dimensionality
MIMIC-III full MIMIC-III 50 MIMIC-II

Macro-F1 Micro-F1 P@8 Macro-F1 Micro-F1 P@5 Macro-F1 Micro-F1 P@8
10 0.083 0.539 0.701 0.593 0.651 0.619 0.064 0.463 0.528
20 0.085 0.542 0.704 0.598 0.656 0.625 0.066 0.471 0.532
50 0.087 0.547 0.708 0.609 0.663 0.632 0.070 0.477 0.537
70 0.090 0.551 0.722 0.605 0.660 0.627 0.065 0.473 0.534

100 0.083 0.548 0.710 0.602 0.659 0.625 0.064 0.473 0.530

Table 4: Experimental results of HyperCore with different size of hyperbolic code embeddings.

ICD-9 code Norm
460-519 (Diseases of the Respiratory System) 0.455
480-488 (Pneumonia and Influenza) 0.520
487 (Influenza) 0.568
487.8 (Influenza with other manifestations) 0.928
520-579 (Diseases of the Digestive System) 0.412
550-579 (Hernia of Abdominal Cavity) 0.472
550 (Inguinal hernia) 0.590
550.0 (Inguinal hernia with gangrene) 0.902

Table 5: The first and second blocks list some codes
and their hyperbolic norms of ‘‘Diseases of the Respi-
ratory System” and “Diseases of the Digestive System”,
respectively. In each block, the disease becomes more
specific from top to bottom. The norms of codes in-
crease with the depth.

more than other two datasets, which needs higher-
dimensional hyperbolic code embedding to repre-
sent the code hierarchy.

(2) The performance does not always improve
when the hyperbolic code embedding size increases.
We guess that low dimensional embeddings can
capture the hierarchy and the network is prone to
over-fitting when high dimensional hyperbolic code
embeddings are used.

4.6.2 The Hierarchy of Hyperbolic Code
Embedding

After embedding the ICD codes into the hyperbolic
space, the top level codes will be placed near the
origin and low level codes near the boundary, which
can be reflected via their norms. Table 5 shows ex-
amples of ICD-9 codes and their hyperbolic norms.
The first and second blocks list codes of “Diseases
of the Respiratory System” and “Diseases of the
Digestive System”, respectively. As expected, the
lower level codes have higher hyperbolic norms,
and this approves that when the disease is more
specific, the hyperbolic norm is larger. For exam-
ple, code “487.8 (influenza with other manifesta-
tions)” has a higher norm than “487 (influenza)”,
and “550.0 (inguinal hernia with gangrene)” has
a higher norm than “550 (inguinal hernia)”. It in-
dicates that the hyperbolic code embeddings can

Input

Gold Label 518.81;    401.9;    276.2;    038.9

CNN+Attention 518.81;    401.9;   518.83;   518.84

HyperCore 518.81;    401.9;    276.2;    038.9

Mr. [**Known lastname 58216**] is an 87
year old male with a h/o Parkinsons Disease,
difficulty breathing, ……, 87 year old male
presents with severe chest tightness,
respiratory failure, and pneumatosis coli
indicative of visceral necrosis. As the
patient was not a surgical candidate, medical
prognosis was poor ……

Figure 4: An example to illustrate the effectiveness of
the proposed model. The green bold codes indicate
they are highly correlated. The red bold codes denote
there exists contradictions between them.

capture the code hierarchy.

4.7 Case Study

We give an example shown in Figure 4 to illus-
trate the visualization of code-wise attention and
the effectiveness of hyperbolic and co-graph rep-
resentation. (1) Code-wise attention visualiza-
tion: When the HyperCore model predicts the
code “518.81 (acute respiratory failure)”, it can
assign larger weights to more informative words,
like “respiratory failure” and “chest tightness”.
It shows the codes-wise attention enables to se-
lect the most informative words. (2) The effec-
tiveness of hyperbolic representations: Our pro-
posed model and the CNN+Attention can both cor-
rectly predict the code “518.81”. However, the
CNN+Attention model gives contradictory predic-
tions. Our proposed model can avoid the predic-
tion contradictions by exploiting code hierarchy,
which proves the effectiveness of hyperbolic rep-
resentations. (3) The effectiveness of co-graph
representation: Although there is no very obvi-
ous clue to predict the code “276.2 (acidosis)”, our
model can exploit the co-occurrence between the
code “518.81” and “276.2” to assist in inferring the
code “276.2”. It demonstrates the effectiveness of
the co-graph representation.
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5 Conclusion

In this paper, we propose a novel hyperbolic and co-
graph representation framework for the automatic
ICD coding task, which can jointly exploit code hi-
erarchy and code co-occurrence. We exploit the hy-
perbolic representation learning method to leverage
the code hierarchy in the hyperbolic space. More-
over, we use the graph convolutional network to
capture the co-occurrence correlation. Experimen-
tal results on two widely used datasets indicate that
our proposed model outperforms previous state-of-
the-art methods. We believe our method can also
be applied to other tasks that need to exploit hi-
erarchical label structure and label co-occurrence,
such as fine-grained entity typing and hierarchical
multi-label classification.
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Hyperbolic geometry of complex networks. Physi-
cal Review E, 82(3):036106.

Dee Lang. 2007. Consultant report-natural language
processing in the health care industry. Cincinnati
Children’s Hospital Medical Center, Winter, 6.

Leah S Larkey and W Bruce Croft. 1996. Combining
classifiers in text categorization. In SIGIR, pages
289–297. Citeseer.



3114
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