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Abstract

Zero-shot learning has been a tough problem
since no labeled data is available for unseen
classes during training, especially for classes
with low similarity. In this situation, transfer-
ring from seen classes to unseen classes is ex-
tremely hard. To tackle this problem, in this
paper we propose a self-training based method
to efficiently leverage unlabeled data. Tradi-
tional self-training methods use fixed heuris-
tics to select instances from unlabeled data,
whose performance varies among different
datasets. We propose a reinforcement learn-
ing framework to learn data selection strategy
automatically and provide more reliable selec-
tion. Experimental results on both benchmarks
and a real-world e-commerce dataset show that
our approach significantly outperforms previ-
ous methods in zero-shot text classification.

1 Introduction

Zero-shot learning (ZSL) is a challenging task as
no labeled data is available for unseen classes dur-
ing training. There are extensive works proposed
in zero-shot image classification task. The main
focus of these works is how to transfer knowl-
edge from seen classes to unseen classes. To as-
sociate unseen classes with seen classes, they usu-
ally resort to semantic information such as visual
attributes (Lampert et al., 2009), word embeddings
of class names (Norouzi et al., 2013) and class
hierarchy (Socher et al., 2013). For example, if
the model has not seen any instances of “hump-
back whale” in the training stage, it could still
make predictions at testing stage since “humpback
whale” is semantically close to “killer whale” and
“blue whale” in the seen class set ∗, so the model
is capable of transferring knowledge from seen

†Corresponding Author.
∗This example is taken from awa2 dataset, https://

cvml.ist.ac.at/AwA2/.

classes to unseen classes. These methods assume
that semantically similar classes share similar im-
age features, however, they may fail in the cases
where classes share low similarities.

This problem becomes even more salient in typ-
ical NLP tasks such as text classification. For ex-
ample, let us consider a 10-class emotion clas-
sification task (Yin et al., 2019), in which the
model is trained on class “sadness” while makes
predictions on instances from class “joy”. No-
tice that most emotions are relatively independent,
which means the way we express certain emotion
is pretty different from other emotions. As a result,
for an unseen class we can hardly find a similar
class in the seen class set. Transferring from seen
classes to unseen classes can be extremely hard
as matching patterns that can be shared among
classes are rare.

Essentially, ZSL methods aim to learn a match-
ing model between feature space and semantic
space, which refers to text and label in text clas-
sification task respectively. Matching patterns be-
tween text and label can be roughly classified
as class-invariant patterns and class-specific ones.
The former refers to the patterns that are shared
among classes, while the latter is dependent on
a certain class. Table 1 shows an example to il-
lustrate this definition. The string match of label
and text, which is highlighted with red color, indi-
cates a simple matching pattern that can be shared
among classes. On the contrary, the words that are
highlighted with blue color indicates a matching
pattern that is specific to a certain class and can-
not be transferred among classes easily. Imagine
if the model is trained on sentence 1, it can make
a correct prediction on sentence 2 while failing on
sentence 3 probably.

There are mainly two ways to deal with this
troublesome zero-shot learning situation, includ-
ing (1) integrating more external knowledge to
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Label Sentence
fear 1. One day, when I realized that I was alone, I felt fear of loneliness.
guilty 2. I felt guilty when I lied to my parents.

guilty 3. I wished secretly and lied to a friend because I didn’t want her to stay in my house.

Table 1: Illustration of class-invariant and class-specific matching pattern.

better describe class and build more sophisticated
connections between classes (Rios and Kavuluru,
2018; Zhang et al., 2019); (2) integrating the un-
labeled data to improve the generalization perfor-
mance. Generally, existing works mainly adopt
the former solution, while little attention is paid
to the latter one. In this paper, we focus on the lat-
ter one and propose a self-training based method
to leverage unlabeled data. The basic idea of self-
training (McClosky et al., 2006; Sagae, 2010) is to
select unlabeled instances that are predicted with
high confidence and add them into the training set.
It is straightforward to consider that if we add sen-
tence 2 to training set, the model is capable of
learning class-specific pattern as sentence 2 and
sentence 3 share the intra-class similarity. In this
way, we can mine class-specific feature through
class-invariant feature.

However, directly applying traditional self-
training method to zero-shot learning may en-
counter some problems: (1) traditional self-
training methods use manually designed heuristics
to select data, so manual adjustment of selection
strategy is costly (Chen et al., 2018). (2) due to the
severe domain shift (Fu et al., 2015), traditional
self-training method may not provide reliable se-
lection. To alleviate these problems, we present
a reinforcement learning framework to learn data
selection policy, which can select unlabeled data
automatically and provide more reliable selection.

The contributions of our work can be summa-
rized as follows:

• We propose a self-training based method to
leverage unlabeled data in zero-shot text clas-
sification. Our method is capable of allevi-
ating the domain shift problem and enabling
transferring between classes sharing low sim-
ilarities and connections.

• We propose a reinforcement learning frame-
work to learn data selection policy automat-
ically instead of using manually designed
heuristics.

• Experimental results on both benchmarks and
a real-world e-commerce dataset show that
our method outperforms previous methods
with a large margin of 15.4% and 5.4% on
average in generalized and non-generalized
ZSL respectively.

2 Related Work

2.1 Zero-shot Learning

Zero-shot learning has been widely studied in im-
age classification, in which training classes and
testing classes are disjoint (Lampert et al., 2013;
Larochelle et al., 2008; Rohrbach et al., 2011).
The general idea of zero-shot learning is to trans-
fer knowledge from seen classes to unseen classes
(Wang et al., 2019). Most methods focus on
learning a matching model between image feature
space and class semantic space, such as visual at-
tributes (Lampert et al., 2009), word embeddings
of class names (Socher et al., 2013), class hierar-
chy (Socher et al., 2013).

For zero-shot text classification, similar meth-
ods have been adopted. (Dauphin et al., 2013)
associated text with class label through semantic
space, which is learned by deep neural networks
trained on large amounts of search engine query
log data. (Nam et al., 2016) proposed an approach
to embed text and label into joint space while shar-
ing word representations between text and label.
(Pushp and Srivastava, 2017) proposed three neu-
ral networks to learn the relationship between text
and tags, which are trained on a large text cor-
pus. (Rios and Kavuluru, 2018) incorporated word
embeddings and hierarchical class structure us-
ing GCN (Kipf and Welling, 2016) for multi-label
zero-shot medical records classification. (Zhang
et al., 2019) proposed a two-phase framework to-
gether with data augmentation and feature aug-
mentation, in which four kinds of semantic knowl-
edge (word embeddings, class descriptions, class
hierarchy, and knowledge graph) were incorpo-
rated.

These works benefit from large training corpus
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and external semantic knowledge, however, none
of these works have tried to leverage unlabeled un-
seen data in zero-shot text classification, namely
transductive zero-shot learning (Xian et al., 2018).
There exists some work to utilize unlabeled data in
image classification to alleviate domain shift prob-
lem, including (Fu et al., 2012; Rohrbach et al.,
2013; Li et al., 2015; Fu et al., 2015), etc. As far
as we know, our work is the first to explore trans-
ductive zero-shot learning in text classification.

2.2 Self-training
Self-training is a widely used algorithm in semi-
supervised learning (Triguero et al., 2015). The
basic process of self-training is to iteratively se-
lect high-confidence data from unlabeled data and
add these pseudo-labeled data to training set.
Self-training has shown its effectiveness for var-
ious natural language processing tasks, including
text classification (Drury et al., 2011; Van Asch
and Daelemans, 2016), name entity recognition
(Kozareva et al., 2005), parsing (McClosky et al.,
2006, 2008; Huang and Harper, 2009). How-
ever, there are two main drawbacks of self-
training. Firstly, its data selection strategy is sim-
ply confidence-based, which may not provide re-
liable selection (Chen et al., 2011) and cause er-
ror accumulation. Secondly, self-training relies
on pre-defined confidence threshold which varies
among datasets and manual adjustment is costly.

2.3 Reinforcement Learning for Data
Selection

There have been some works applying reinforce-
ment learning to data selection in semi-supervised
learning, including active learning (Fang et al.,
2017), self-training (Chen et al., 2018), co-training
(Wu et al., 2018). These works share a simi-
lar framework which uses deep Q-Network (Mnih
et al., 2015) to learn a data selection strategy
guided by performance change of model. This
process is time-consuming as the reward is imme-
diate which means the classifier is retrained and
evaluated after each instance is selected. Rein-
forcement learning has also been applied in rela-
tion extraction to alleviate the noisy label problem
caused by distant supervision. (Feng et al., 2018;
Qin et al., 2018) proposed a policy network to au-
tomatically identify wrongly-labeled instances in
training set. Earlier, (Fan et al., 2017) proposed
an adaptive data selection strategy, enabling to dy-
namically choose different data at different train-

Figure 1: Illustration of the traditional classifier and
standard ZSL model.

ing stages.

3 Methodology

3.1 Problem Formulation and Overview
Here we first formalize the zero-shot text clas-
sification problem. Let Ys and Yu denote seen
and unseen class set respectively, where Ys ∩
Yu = ∅,Ys ∪ Yu = Y . Suppose there is
Ds = {(xsi , ysi )}Ni=1 for seen classes and Du =
{xui , yui }Mi=1 for unseen classes, where xi repre-
sents i-th text and yi represents the corresponding
label. As shown in Figure 1, ZSL method turns
a classification problem into a matching problem
between text and class label. During training,
we learn a matching model f(x, y; θ) from seen
classes Ds and then make predictions on unseen
classes:

ŷ = arg max
y∈Y

f(x, y; θ) , (1)

where θ refers to the parameter of f . For transduc-
tive ZSL, both labeled seen data Ds and unlabeled
unseen data Du = {xui }Mi=1 are available during
training.

To tackle zero-shot text classification, a rein-
forced self-training framework is developed in
this work. Figure 2 shows an overview of our
reinforced self-training framework for zero-shot
text classification. The goal of our framework is
to select high quality data from unseen classes
automatically by agent and use these data to
augment the performance of the base matching
model. Specifically, we first train the base match-
ing model on seen class data and make predictions
on unseen class data. To make it more efficient,
the agent performs data selection from a subset of
unlabeled data instead of all unlabeled data at each
iteration. We rank the instances by prediction con-
fidence and take a certain ratio of instances from
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Figure 2: Overview of our reinforced self-training
framework for zero-shot text classification.

it at each iteration. The agent is responsible for
selecting data from this subset and filter negative
instances. The reward is determined by the per-
formance of matching model in validation set. We
will introduce the details of our method in the fol-
lowing subsections.

3.2 The Base Matching Model
Our RL-based data selection framework is model-
agnostic, which means any matching model is
compatible. Here we adopt the widely recognized
pre-trained model BERT (Devlin et al., 2018) as
the base matching model. For seen classes, given
text x and label y, we generate {(x, y′)|y′ ∈ Ys}
as training instances, in which (x, y′) is a posi-
tive training instance if y′ = y. We take the text
as premise and transform the label into its corre-
sponding hypothesis provided in (Yin et al., 2019).
Therefore, the input sequence of BERT is packed
as “[CLS] x [SEP] hypotheis of y′ [SEP]”, where
[CLS] and [SEP] are special start and separator
tokens, as shown in Figure 3. BERT encoder is
composed of multi-layer bidirectional transform-
ers (Vaswani et al., 2017). We use the hidden vec-
tor cx,y′ ∈ RH corresponding to [CLS] in the final
layer as the aggregate representation. We add a
linear layer and compute loss as below:

px,y′ = σ(W T cx,y′ + b), (2)

L =

{
−log(px,y′) y′ = y
−log(1− px,y′) y′ 6= y

, (3)

where W and b are parameters of the linear layer,
W ∈ RH , b ∈ R, H is the hidden dimension size,
and px,y′ indicates the matching score between x
and y′, σ(·) is sigmoid function.

3.3 Reinforcement Learning for Self-training
The conventional self-training method simply se-
lects data predicted with high confidence, which

Figure 3: BERT as the base matching model.

is confidence-based. We formalize the data selec-
tion as a sequential decision-making process and
introduce a RL framework to combine confidence-
based strategy and performance-driven strategy.
We describe the whole process in Algorithm 1 .
The details of the RL modules are described be-
low.

3.3.1 State
For each text x, we get prediction scores
{px,y′ |y′ ∈ Yu}. The label y∗ with maximum
matching score is considered as the pseudo label.
For time step t, the current state st consists of 2
parts: the prediction confidence px,y∗ , the repre-
sentation of arriving instance cx,y∗ . We take the
hidden vector corresponding to [CLS] as the rep-
resentation of current instance (x, y∗). The policy
network takes px,y∗ and cx,y∗ as input and outputs
the probability whether to select or not.

3.3.2 Action
At each step, the agent is required to take action
for the current instance(x, y∗) – whether to select
it or not. At time step t, at = 1 means the agent
accepts the current instance and adds it to train-
ing set; at = 0 means rejection. The action value
is obtained through sampling from the policy net-
work’s output P (a|st).

3.3.3 Reward
If wrongly-labeled instances are added into train-
ing set, it will degrade the performance of the
matching model. Therefore the function of re-
ward is to guide the agent to select the instances
that are consistent with training set. The reward
is determined by the performance of the match-
ing model on validation set, which consists of 2
parts: seen validation set Dsdev and unseen valida-
tion set Dudev. Dudev comes from the pseudo la-
beled data, which guides newly-selected data to
be consistent with previously-selected data. More
specifically, after each batch of selection, we train
the matching model using the selected instances,
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and evaluate on validation set. We use macro-F1
as the evaluation metric. Assume there are N3

batches in one episode, we get two F sequences
F s = {F s1 , F s2 , ..., F sN3

} for seen validation set
and F u = {F u1 , F u2 , ..., F uN3

} for unseen valida-
tion set. For batch k, the reward is formulated as:

rk =
(F sk − µs)

σs
+ λ ·

(F uk − µu)

σu
, (4)

where λ controls the weight of seen class and un-
seen class, µ and σ represent the mean and stan-
dard deviation of F , respectively.

3.3.4 Policy Network
We adopt a multi-layer perceptron (MLP) as the
policy network. The policy network receives
states: the prediction confidence px,y∗ and the rep-
resentation of arriving instance cx,y∗ , then output
the probability for each action.

zt = ReLU(W T
1 cx,y∗ +W T

2 px,y∗ + b1), (5)

P (a|st) = softmax(W T
3 zt + b2) . (6)

We use ReLU as the activation function,
W1,W2,W3, b1, b2 are the parameters of MLP,
and P (a|st) is the probability of actions.

3.3.5 Optimization
To learn an optimal data selection policy, we aim
to maximize the expected total reward, which can
be formulated as:

J(φ) = EPφ(a|s)[R(s, a)] , (7)

where R(s, a) is the state-action value function
and φ is the parameter of policy network. We up-
date the φ via policy gradient (Sutton et al., 2000),

φ← φ+ η∇φJ̃(φ) , (8)

where η is the discount learning rate. For a batch
Bk, we sample an action at for each state st ac-
cording to policy Pφ(a|s). After one episode , we
compute rewards {rk}N3

k=1 by Equation 4. The gra-
dient can be approximated by

∇φJ̃(φ) =
rk
|Bk|

|Bk|∑
t=1

∇φlogP (at|st) , (9)

where |Bk| is the number of instances in one
batch, rk is the reward of batch Bk, the parameter
of policy network is updated after each episode.

Algorithm 1 Reinforced self-training for zero-
shot text classification
Require: labeled seen data Ds = {(xsi , ysi )}Ni=1,

unlabeled unseen data Du = {(xui )}Mi=1, seen
validation set Dsdev.

1: Initialize pseudo-labeled data Dp ← ∅
2: for i = 1→ N1 do //iteration i
3: Train matching model f with instances
4: from Ds and Dp.
5: Make prediction onDu, get confidence P .
6: Get a subset Ω from Du by ranked confi-
7: dence P .
8: for j = 1→ N2 do //episode j
9: if early stop criteria is met then

10: break
11: end if
12: Shuffle Ω = {B1, B2, ..., BN3}.
13: for k = 1→ N3 do //batch k
14: Get a batch Bk from Ω.
15: Decide action for each instance in
16: Bk, get selected instances Bp

k .
17: Train model f ′ with Bp

k .
18: Evaluate on Dsdev and Dudev,
19: get F sk , F uk .
20: end for
21: Compute rewards {rk}N3

k=1 by equa-
22: tion 4.
23: // update policy network
24: for k = 1→ N3 do
25: φ← φ+ η rk

|Bk|
∑|Bk|
t=1 ∇φlogP (at|st)

26: end for
27: end for
28: Dpi ← ∪

N3
k=1B

p
k

29: Dp ← Dp ∪ Dpi
30: Du ← Du \ Dpi
31: Dudev ← Dp.
32: end for

4 Experiments

4.1 Datasets

We use two kinds of datasets for our experiments.
The first comes from the recently released bench-
marks for zero-shot text classification (Yin et al.,
2019), including 3 datasets: topic, emotion and sit-
uation classification. Considering that some texts
in situation dataset has multiple labels, we remove
texts with multiple labels and keep single-label
texts. To keep consistent with Equation 1, “none”
type is not included in unseen classes. Datasets are
prepared with two versions of partitions with non-
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Seen class Unseen class

#Train #Valid #Test

Topic I 650000 5000 50000
II 650000 5000 50000

Emotion I 20465 2405 5101
II 14204 1419 8901

Situation I 2428 240 689
II 1747 173 1102

E-commerce I 9000 1000 5000
II 9000 1000 5000

Table 2: Statistics of text classification Datasets, where
I and II refer to two ways of partitions respectively de-
scribed in (Yin et al., 2019).

overlapping labels so as to get rid of the models
over-fitting on one of them.

To further evaluate our method in real-world
scenario, we construct a new dataset from e-
commerce platform, where texts consist of user
search queries. For seen classes Ys, it consists of
the categories of product that users click on after
searching. For unseen classes Yu, it consists of
the pre-defined user preference classes. User pref-
erence refers to the product’s attribute that users
prefer, such as the efficacy of cosmetic products,
the style of furniture. The user preference and
product category are disjoint so it can be formal-
ized as a zero-shot learning problem. We annotate
10-class user preference dataset for evaluation and
there is 1000 instances for each class. Following
(Yin et al., 2019), we created two versions of un-
seen classes each with 5 classes that do not over-
lap. The statistics of datasets are shown in Table
2.

4.2 Implementation Details
We use the BERT-Base (Devlin et al., 2018) as
our base matching model, with 12-layer trans-
former blocks, 768-dimension hidden state, 12 at-
tention heads and total 110M parameters. We
use the pre-trained BERT-Base-Uncased∗ for the
English benchmarks and BERT-Base-Chinese† for
e-commerce dataset. For training stage, we use
Adam (Kingma and Ba, 2014) for fine-tuning with
β1 as 0.9, β2 as 0.999. The max sequence length
of BERT input is set to 64. For other hyper-
parameters, we set learning rate as 5e-5, ratio
δ = size(Ω)/M as 0.2, iteration number N1 as 5
and episode number N2 as 20. We select weight λ
∗https://storage.googleapis.com/bert models/2018 10 18

/uncased L-12 H-768 A-12.zip
†https://storage.googleapis.com/bert models/2018 11 03

/chinese L-12 H-768 A-12.zip

among {1, 2, 5, 10}. For baselines, we adopt 300-
dim GloVe vectors (Pennington et al., 2014) for
English words and 300-dim word vectors from (Li
et al., 2018) for Chinese words.

Policy network pre-train is widely used by re-
inforcement learning based methods to accelerate
the training of RL agent (Silver et al., 2016; Xiong
et al., 2017; Qin et al., 2018). We use seen class
data to pre-train the agent, enabling the agent to
distinguish negative instances. We set early stop
criteria to avoid overfitting to seen class data.

4.3 Baseline Methods

We compare our method with the following base-
lines: (1) Word2vec measures how well a label
matches the text by computing cosine similarity
of their representations. Both the representations
of text and labels are average of word embed-
dings. (2) Label similarity (Veeranna et al.) uses
word embeddings to compute semantic similar-
ity as well, which computes the cosine similarity
between class label and every n-gram (n=1,2,3)
of the text, and takes the max similarity as final
matching score; (3) FC and RNN+FC refers to
the architecture 1 and architecture 2 proposed in
(Pushp and Srivastava, 2017).

We also compare multiple variants of our mod-
els: (1) BERT refers to the base matching model
without self-training and RL; (2) BERT+self-
training refers to the traditional self-training
method, which selects instances with high confi-
dence. However, confidence threshold has great
impact on performance. With different thresholds,
the number of selected instances differs, resulting
in performance change of the model. To provide
a fair comparison, we record the number of in-
stances k selected in every iteration in RL selec-
tion process. For self-training, we select top k in-
stances for every iteration. (3) BERT+RL refers
to full model of our methods.

We use macro-F1 as evaluation metric in our ex-
periments since datasets are not well balanced. We
report the results in two ZSL setting: generalized
and non-generalized. In non-generalized ZSL, at
test time we aim to assign an instance to unseen
class label (Yu). While in generalized ZSL, class
label comes from both unseen and seen classes
(Ys ∪ Yu). The harsh policy in testing (Yin et al.,
2019) is not adopted in our experiments.



3020

Topic Emotion Situation E-commerce

I II I II I II I II
Word2vec 35.50 35.33 4.77 11.45 40.67 36.33 53.09 55.47
Label similarity 34.62 36.14 10.63 16.89 54.56 37.45 59.04 55.89
FC 19.45 22.46 27.36 8.31 24.33 25.01 26.40 22.45
RNN+FC 9.68 13.41 15.45 3.15 15.58 14.09 25.76 18.15
BERT 57.07 45.50 16.86 10.21 60.23 34.15 58.05 66.47
BERT+self-training 72.21 62.90 31.96 19.72 69.00 49.30 65.14 76.72
BERT+RL 73.41 65.53 36.98 19.38 73.14 52.44 70.63 80.32

Table 3: Generalized experimental results on benchmarks and real-world e-commerce dataset, where I and II refer
to two versions of partitions respectively.

Topic Emotion Situation E-commerce

I II I II I II I II
Word2vec 38.16 49.08 18.42 12.17 59.02 37.89 59.52 70.17
Label similarity 39.36 45.70 27.43 17.81 67.73 39.96 61.90 72.73
FC 20.93 29.29 33.76 12.98 38.47 34.15 34.10 30.57
RNN+FC 31.09 28.63 33.05 19.47 32.98 25.61 32.44 26.52
BERT 67.73 60.20 29.31 11.96 75.08 51.48 70.77 79.74
BERT+self-training 73.24 67.97 33.71 20.76 76.03 53.18 73.95 82.74
BERT+RL 74.46 66.70 37.33 20.57 77.23 53.63 75.58 83.97

Table 4: Non-generalized experimental results on benchmarks and real-world e-commerce dataset, where I and II
refer to two versions of partitions respectively.

4.4 Results

Table 3 shows the experimental results on bench-
marks and real-world e-commerce dataset in gen-
eralized setting. For baseline methods, Word2vec
and Label similarity are unsupervised approaches,
which cannot get desirable results as the effec-
tiveness of these methods heavily rely on the
similarity of text and label. Therefore, it may
not perform well on dataset like emotion detec-
tion. Label similarity performs slightly better
than Word2vec, which proves that max aggrega-
tion of n-grams is better than mean aggregation in
Word2vec method. As for the supervised FC and
RNN+FC method, FC gets slightly better results
than RNN+FC in most datasets. As the number
of categories and the scale of training dataset are
small, RNN+FC may overfit on seen class data and
cannot generalize well on unseen class data.

For variants of our method, we can observe that
the full model BERT+RL outperforms all other
baselines. On average, BERT+RL achieves an im-
provement of 15.4% over BERT. To be specific,
the base matching model BERT performs better
than previous baselines, which shows good gen-

eralization results benefiting from pre-training on
large-scale corpus. For BERT+self-training, the
integration of unlabeled data augments the base
matching model and shows superior performance
than BERT. Last but not least, our full model
BERT+RL shows substantial improvement over
BERT+self-training in most datasets. Under the
condition that the number of selected instances
remains the same, reinforced selection strategy
can still yield better performance than the simply
confidence-based strategy, which proves the effec-
tiveness of our RL policy.

For non-generalized ZSL setting, we can get
similar results as presented in Table 4. On aver-
age, BERT+RL achieves an improvement of 5.4%
over BERT. However, we notice that the improve-
ment is more significant in generalized ZSL com-
pared to non-generalized ZSL. The reason is that
model trained on seen class data tends to bias to-
wards seen classes, resulting in poor performance
in generalized setting (Song et al., 2018). Our ap-
proach, however, could relieve the bias in favour
of seen classes by incorporating pseudo-labeled
unseen class data.
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(d) E-commerce

Figure 4: Performance with regards to selected instance ratio ε. One can see the RL data selection strategy does
not rely on manually-set ratio and can yield consistently better performance than the competitors in most cases.

Label BERT BERT+RL

Joy
1. Good morning joyful people. Choose happiness
to have a great day today.

1. And they all rejoiced, and embraced him and
kissed him without stopping.

2. I was filled with joy when I heard I had been
selected to come here at Kamuzu College of Nursing.

2. When I got a record as a gift from a friend.

Sadness
1. I’m sick and sad , missing out on Martini Lounge
tonight.

1. When I learned that two of my friends had a
serious car accident.

2. Crossing the bridge, leaving ocean city I’m sad . 2. Oh my god! Got in a car accident! Pray for him!

Whitening 1. Mizon Good Night White Sleeping Mask. 1. VieBeauti Dark Spot Corrector Remover.
2. Intimate Skin Whitening Cream For Face. 2. Intimate Skin lightening Cream.

Nordic
style

1.Aah Nordic modern cloth sofa size living room.
1. Fabric sofa, simple and modern apartment
living room.

2. Nordic Side Table, Modern Decoration. 2. Modern simple style living room chandelier.

Table 5: Qualitative comparison between BERT and BERT+RL. Left: texts predicted with high confidence; Right:
texts being misclassified by BERT while being correctly labeled by BERT+RL.

4.5 Impact of Selection Ratio

When selecting the same number of instances per
iteration, previous experimental results show our
reinforced selection strategy can yield better per-
formance than the greedy strategy. We define ε
as the ratio of selected instances size to all unla-
beled instances size. In this section, we vary the
selection ratio ε among {0.2, 0.4, 0.6, 0.8, 1.0} for
self-training method. For each iteration, we se-
lect top ε

N1
M instances and add them into train-

ing set. Figure 4 shows the performances with dif-
ferent selection ratios in generalized ZSL setting.
Clearly, the performance of self-training method
varies with different ratio of instances selected.
The optimal ratio of selection instances also varies
with different datasets. However, our reinforced
data selection strategy does not rely on manually-
set ratio and can yield consistently better perfor-
mance than the self-training method in most cases.

4.6 Case Study

In Table 5, we listed some examples to fur-
ther reveal the differences between BERT and

BERT+RL method. In the left part of the table,
texts predicted by BERT with highest confidence
are listed. We can easily find that these texts
share a simple matching pattern that label words
appear in the text, which is highlighted with red
color. These simple patterns are exactly class-
invariant patterns we defined previously, which
can be shared among classes. In the right part
of the table, we select the texts which are mis-
classified by BERT but are predicted correctly by
BERT+RL. We can observe that those texts are
harder to be distinguished since these matching
patterns are more class-dependent, which cannot
be directly transferred from other classes. There
is no doubt that model trained on other classes
would fail in such cases. For our method, we first
tackle the easy instances, then add these instances
into training set iteratively. With the integration
of instances with easy pattern, the model can learn
harder pattern gradually. In this way, our method
can learn to transfer between classes even with low
similarity.



3022

5 Conclusion

In this paper, we propose a reinforced self-training
framework for zero-shot text classification. To
realize the transferring between classes with low
similarity, our method essentially turns a zero-shot
learning problem into a semi-supervised learning
problem. In this way, our approach could lever-
age unlabeled data and alleviate the domain shift
between seen classes and unseen classes. Beyond
that, we use reinforcement learning to learn data
selection policy automatically, thus obviating the
need to manual adjustment. Experimental results
on both benchmarks and real-world e-commerce
dataset demonstrate the effectiveness of the inte-
gration of unlabeled data and the reinforced data
selection policy.
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