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Abstract

Pooling is an important technique for learning
text representations in many neural NLP mod-
els. In conventional pooling methods such as
average, max and attentive pooling, text rep-
resentations are weighted summations of the
L1 or L∞ norm of input features. However,
their pooling norms are always fixed and may
not be optimal for learning accurate text rep-
resentations in different tasks. In addition, in
many popular pooling methods such as max
and attentive pooling some features may be
over-emphasized, while other useful ones are
not fully exploited. In this paper, we propose
an Attentive Pooling with Learnable Norms
(APLN) approach for text representation. Dif-
ferent from existing pooling methods that use
a fixed pooling norm, we propose to learn
the norm in an end-to-end manner to auto-
matically find the optimal ones for text rep-
resentation in different tasks. In addition, we
propose two methods to ensure the numeri-
cal stability of the model training. The first
one is scale limiting, which re-scales the in-
put to ensure non-negativity and alleviate the
risk of exponential explosion. The second one
is re-formulation, which decomposes the ex-
ponent operation to avoid computing the real-
valued powers of the input and further accel-
erate the pooling operation. Experimental re-
sults on four benchmark datasets show that our
approach can effectively improve the perfor-
mance of attentive pooling.

1 Introduction

In recent years, neural network based methods
are widely used in the natural language process-
ing (NLP) field to learn text representations (Yang
et al., 2016; Peters et al., 2018). In these methods,
pooling is a core technique to build the text repre-
sentation vector from a collection of input feature
vectors by summarizing their information (Lai
et al., 2015). Thus, an effective pooling method

Sentiment Classification

Average Pooling The movie is good, but not to my taste

Max Pooling The movie is good, but not to my taste

Attentive Pooling The movie is good, but not to my taste

News Topic Classification

Average Pooling Fire on Queensland Island Takes Heavy Toll on Wildlife

Max Pooling Fire on Queensland Island Takes Heavy Toll on Wildlife

Attentive Pooling Fire on Queensland Island Takes Heavy Toll on Wildlife

Figure 1: The pooling weights of several different pool-
ing methods on the representations produced by an
LSTM network. Darker colors indicate higher weights.

that can select salient features accurately will fa-
cilitate many NLP methods (Ma et al., 2017).

Among existing pooling methods, average pool-
ing is a representative one which takes the aver-
age of the L1 norm of input features (Tang et al.,
2014, 2015a,b). However, average pooling equally
regards the input representation vector at each po-
sition and ignores their different informativeness
for learning text representation, which may not
be optimal (Johnson and Zhang, 2015). Thus,
other pooling methods such as max pooling (Col-
lobert et al., 2011; Kim, 2014) and attentive pool-
ing (Yang et al., 2016; Zhou et al., 2016; Cui et al.,
2017; Devlin et al., 2019; Wu et al., 2019b) are
widely used in neural NLP models. For example,
Kim (2014) proposed to apply max pooling to the
contextual word representations learned by CNN
networks to build the representations of the entire
sentence. Yang et al. (2016) proposed to use at-
tentive pooling at both word and sentence levels
to learn informative sentence and document repre-
sentations by selecting important words and sen-
tences. However, these pooling methods use fixed
average norms, i.e., L1 norm for average and at-
tentive pooling and L∞ norm for max pooling, to
build text representations, which may not be opti-
mal when handling different tasks.

Our work is motivated by the following obser-
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vations. First, different contexts usually have dif-
ferent informativeness for learning text represen-
tations. For example, in Fig. 11, the word “but”
is very important for inferring the sentiment po-
larity of this sentence, while “The” is uninforma-
tive. Thus, modeling the different informative-
ness of contexts and attending to them differently
may help learn more informative text representa-
tions. Second, different tasks and even different
datasets have different characteristics. For exam-
ple, in Fig. 1, sentiment and negation words may
be the key clues for inferring the sentiment po-
larity of the first sentence, while the global con-
texts may be useful for understanding the topic of
the second sentence. Thus, using a fixed pooling
norm for universal text representation learning is
probably not optimal. Third, in popular pooling
methods such as max pooling and attentive pool-
ing, some contexts may be over-emphasized, and
other useful contextual information is not fully-
respected. For example, as shown in Fig. 1, the
sentiment word “good” is highlighted, but other
useful clues such as “but” and “not” do not gain
sufficient attentions, which may not be optimal for
learning accurate text representations. Thus, a dy-
namically learnable degree of “hard” or “soft” for
pooling may benefit text representation learning.

In this paper, we propose an Attentive Pooling
with Learnable Norms (APLN) approach to en-
hance the learning of text representations2. In-
stead of manually setting a fixed pooling norm,
we propose to automatically learn it in a unified
framework, which can find the optimal values to
learn text representations for different tasks in an
end-to-end manner. In addition, since the learn-
ing of pooling norm may be numerically unstable
in some cases due to the exponent operation, we
propose two methods to improve its computational
stability. The first one is limiting the scale of input
features, which aims to ensure their non-negativity
and avoid exponential explosion. The second one
is a re-formulation method, which aims to avoid
computing the real-valued power of input features
by decomposing the exponent operation into three
safe and fast atomic operations. We conducted ex-
periments on four benchmark datasets, and the re-
sults show that our approach can effectively im-
prove the learning of text representation.

1The visualized weights of max pooling are summations
of the maximum elements over time for each word.

2https://github.com/wuch15/ACL2020-APLN

2 Related Work

Neural networks are widely used to learn text
representations from contexts (Peng et al., 2018).
Pooling is usually an essential step in these meth-
ods to build contextual representations by sum-
marizing the information of input features (LeCun
et al., 2015). The simplest pooling method is aver-
age pooling, which is used in many approaches to
construct text representations (Tang et al., 2014,
2015a,b). For example, Tang et al. (2015a) pro-
posed to apply average pooling to the output of
CNN filters to capture global contexts in a sen-
tence. In addition, they also proposed to aver-
age the sentence representations learned by par-
allel CNN networks with different window sizes.
In their another work (Tang et al., 2015b), they
proposed to apply average pooling to the sequence
of sentence representations to build the represen-
tations of an entire document. Although aver-
age pooling is computationally efficient, it cannot
distinguish important contexts from unimportant
ones, which may not be optimal for learning accu-
rate text representations.

There are also other popular pooling methods
that can select salient features to learn more in-
formative text representations, such as max pool-
ing (Kim, 2014; Zhang et al., 2015) and atten-
tive pooling (Yang et al., 2016), which are em-
ployed by many neural NLP methods (Collobert
et al., 2011; Kim, 2014; Huang et al., 2012; Yang
et al., 2016; Chen et al., 2016; Zhou et al., 2016;
Du et al., 2017; Li et al., 2018; Wu et al., 2019a;
Tao et al., 2019; Devlin et al., 2019; Wu et al.,
2019b). For example, Collobert et al. (2011) pro-
posed to learn representations of contexts within
each window using feed forward neural networks,
and used max pooling to build final text repre-
sentations. Kim (2014) proposed to apply max
pooling over time to the contextual word repre-
sentations learned by multiple CNN filters. Huang
et al. (2012) proposed to build representations of
the entire document using the summation of word
representations weighted by their TF-IDF scores.
Yang et al. (2016) proposed a hierarchical atten-
tion network to first learn sentence representa-
tions from words and then learn document repre-
sentations from sentences. They proposed to ap-
ply attentive pooling at both word and sentence
levels to select informative words and sentences
for more informative representation learning. Wu
et al. (2019b) proposed a hierarchical user and
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(a) Average pooling.
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(b) Max pooling.
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(c) Attentive pooling.

Figure 2: Comparisons of several popular pooling methods.

item representation model with three-tier atten-
tion, which applies attentive pooling to simulta-
neously select important words, sentences and re-
views. However, the pooling norms of max and
attentive pooling are always fixed, which may not
be optimal for universal text representation learn-
ing since the characteristics of different tasks may
be different. In addition, both pooling methods
may over-emphasize the most salient features, and
other useful contextual information is not fully ex-
ploited, which may also be sub-optimal. There are
a few methods to adapt the pooling norms in dif-
ferent tasks. For example, Gulcehre et al. (2014)
explored the influence of selecting different pool-
ing norms on the performance of different im-
age classification tasks. However, the norms in
their method are manually tuned, which are usu-
ally very time-consuming and may not be opti-
mal. Different from all aforementioned methods,
our approach can automatically optimize pooling
norms in an end-to-end manner, and can effec-
tively select important contexts to learn informa-
tive text representations. Extensive experiments
on four datasets with different characteristics vali-
date the effectiveness of our approach.

3 Preliminaries

In this section, we will first present a brief intro-
duction to several popular pooling methods, i.e.,
average, max and attentive pooling. To make it
easier to understand, we present an intuitive com-
parison of the mechanisms of these different pool-
ing methods in Fig. 2.

Average Pooling. Average pooling is used
to build contextual representations by taking the
arithmetic mean of input features, as shown in
Fig. 2(a). It uses the L1 norm of the input. Denote
the input sequence of hidden representations as
[h1,h2, ...,hN ], where N is the sequence length.

The output representation is computed as:

r =
1

N

N∑
i=1

hi. (1)

Max Pooling. Max pooling aims to build
contextual representations by selecting the most
salient features via max-over-time operations, as
shown in Fig. 2(b). It utilizes the L∞ norm at the
time dimension of input features. Denote rj as the
j-th value in the vector r, which is computed as:

rj = max(hj1,h
j
2, ...,h

j
N ), (2)

where hji represents the j-th value in the feature
vector hi.

Attentive Pooling. As shown in Fig. 2(c), atten-
tive pooling usually builds contextual representa-
tions by selecting important input features, which
can also be regarded as a kind of L1 norm aver-
age. It computes an attention weight αi for the in-
put at each position to indicate its informativeness,
which is formulated as follows:

αi =
exp[qT f(hi)]∑N
j=1 exp[q

T f(hj)]
, (3)

where f(·) is a non-linear function, q is the atten-
tion query vector. Following Yang et al. (2016),
we apply the tanh operation to the linear trans-
formation of hi to form the function f(·). The
final contextual representation r is the summation
of input representation vectors weighted by their
attention weight as follows:

r =

N∑
i=1

αihi. (4)
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Figure 3: Architecture of our Attentive Pooling with
Learnable Norms (APLN) approach.

4 Attentive Pooling with Learnable
Norms

In this section, we will introduce the details of our
Attentive Pooling with Learnable Norms (APLN)
approach. In the aforementioned pooling meth-
ods, the pooling norm is always fixed (i.e., L1
or L∞). However, the characteristics of different
NLP tasks and even different datasets should have
some differences, and it may not be optimal to use
a fixed pooling norm for universal text representa-
tion learning. In addition, tuning the pooling norm
manually is usually very time-consuming, and it
may also be sub-optimal. Thus, it is an intuitive
idea to automatically learn the pooling norm in an
end-to-end manner to alleviate the efforts on hy-
perparameter searching and learn more informa-
tive text representations. The architecture of our
APLN approach is shown in Fig. 3. We will intro-
duce its details as follows.

Since different contexts usually have different
importance, modeling their informativeness may
help learn more informative text representations.
Thus, similar to the vanilla attentive pooling, in
our APLN approach, we also compute an atten-
tion score for the input at each position. However,
instead of using the simple weighted summation
to build the contextual representation r, we pro-
pose to compute the Lp norm3 average of the input
feature vectors weighted their attention weights,
which is formulated as follows:

r = [
1∑N
i=1 α

p
i

N∑
i=1

(αihi)
p]

1
p , (5)

3It should be noticed that when p < 1, this definition is
not a norm since it does not obey the triangle inequality. But
we still call it “norm” for consistency.

Figure 4: Illustration of the influence of p on the shape
of the function y = xp.

where p is a learnable parameter. In this way, our
model will automatically find appropriate values
of pooling norms for learning text representations
in different tasks.

To show the influence of p on the inputs of the
APLN module, we vary the value of p and illus-
trate the shape of the function y = xp in Fig. 4.
According to Fig. 4, we can see when p is larger,
the attention of APLN is sharper and sparser since
small values of αihi will be suppressed, which in-
dicates the attentive pooling is “harder”. In con-
trast, if p is smaller, the attentions are more dis-
tributed, which indicates the attentive pooling is
“softer”. Thus, in this manner, our APLN model
can automatically explore how “hard/soft” the at-
tention should be when constructing text represen-
tations, which may help recognize important con-
texts and avoid the problem of over-emphasizing
some features and not fully respecting other use-
ful ones, both of which are important for learning
accurate text representations.

Unfortunately, in most cases the training of
APLN is unstable if we directly use it for pooling.
Thus, we propose two methods to ensure the nu-
merical stability of the model training. The first
one is scale limiting, which is used to limit the
range of the elements of αihi. The second one is
Re-formulation, which is used to avoid the direct
computation of the real-valued powers of the input
features and accelerate the pooling operation. We
will introduce the two methods as follows.

4.1 Scale Limiting

According to Eq. (5), to ensure the values of r are
real, the elements of αihi must be non-negative.
Thus, we apply a ReLU function to αihi to keep
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αihi ≥ 0. However, there are still some risks if
there exist elements with αih

j
i > 1, since the gra-

dients may explode when p > 1 due to the ampli-
fication of the exponent, which are also observed
in our practice. To solve this problem, we propose
to clip the values of αihi as follows:

0 ≤ αihji ≤ 1. (6)

In this way, the input features is re-scaled to a
“safe” range. We also explored other kinds of
re-scaling methods such as normalization, but we
find there are no significant differences in the
model performance. Thus, we simply use the clip-
ping operation for its efficiency.

4.2 Re-formulation

However, there are still some problems in our ap-
proach. We find the training of our approach is not
numerically stable (e.g., NAN problem) when im-
plemented by several popular deep learning frame-
works such as Tensorflow. In addition, com-
puting the real-value powers of input features is
quite time-consuming. Thus, we propose a re-
formulation strategy by converting the exponent
computation in Eq. (5). For instance, the expo-
nent xp is re-formulated as follows:

xp = elog(x
p) = ep log(x) ≈ ep log(x+ε), (7)

where ε = 10−7 is a protection value. In this way,
the computation of the power of x is divided into
three atomic operations, i.e., logarithm, multipli-
cation and exponent, all of them are fast4 and nu-
merically stable in our approach. Thus, using the
re-formulation strategy can enhance the numerical
stability and accelerate the pooling operation.

5 Experiments

5.1 Datasets and Experimental Settings

Our experiments are widely conducted on four
benchmark datasets with different characteristics.
The first one is AG’s News5, which is a news topic
classification dataset. Following (Zhang et al.,
2015), we only use the title and description fields
in this dataset. The second one is IMDB6 (Diao
et al., 2014), which is a dataset with movie reviews
and ratings. The third one is Amazon Electronics

4In experiments on a machine with a GTX1080ti GPU,
the computation of xp is accelerated by more than 10 times.

5https://www.di.unipi.it/en/
6https://github.com/nihalb/JMARS

Figure 5: Class distributions of datasets. For IMDB,
Amazon and Yelp, darker colors indicate higher ratings.

(denoted as Amazon) (He and McAuley, 2016),
which contains reviews on electronics. The fourth
one is Yelp 2015 (denoted as Yelp), which is a
restaurant review dataset. The latter three datasets
are all for sentiment classification. Since the orig-
inal Amazon and Yelp datasets are too large, we
sampled 50,000 reviews to form each dataset. The
detailed statistics are shown in Table 1. The class
distributions of the AG’s News and Yelp are bal-
anced, but are imbalanced on IMDB and Amazon,
as shown in Fig. 5. In addition, AG’s News is
a sentence-level classification dataset, while the
others are document-level. Since the AG’s News
dataset only contains the training and test sets, we
randomly sampled 10% of news in the training set
for validation. For the other three datasets, we
used 80% of samples for training, 10% for vali-
dation and the rest 10% for test.

Dataset # Train # Val. # Test # Classes Balanced
AG’s News 108,000 12,000 7,600 4 X

IMDB 108,535 13,567 13,567 10 ×
Amazon 40,000 5,000 5,000 5 ×

Yelp 40,000 5,000 5,000 5 X

Table 1: Statistics of our datasets.

In our experiments, the word embeddings were
300-dimensional and initialized by Glove (Pen-
nington et al., 2014)7. In our comparative exper-
iments, the CNN networks had 400 filters, and
their window size was 3. The dimension of LSTM
hidden states was 200. The attention query vec-
tors were 200-dimensional. The initial pooling
norm p was set to 1, which is consistent with
the vanilla attentive pooling. Adam (Kingma and
Ba, 2014) was used as the optimizer, and the

7We do not use language models such as ELMo and BERT
since our work focuses on facilitating the pooling technique
rather than boosting the performance of our approach against
the state-of-the-art methods.
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Methods AG’s News IMDB Amazon Yelp
Accuracy Macro-F Accuracy Macro-F Accuracy Macro-F Accuracy Macro-F

CNN-Avg 91.55 91.52 49.96 38.88 64.73 36.68 55.41 54.78
CNN-Max 92.10 92.07 50.53 40.96 66.24 43.80 59.19 59.14
CNN-Att 92.32 92.30 51.24 42.24 66.79 44.01 59.22 59.19

CNN-APLN 92.48 92.45 51.63 43.57 66.86 45.80 59.97 59.95
LSTM-Last 91.65 91.62 48.96 38.32 64.55 39.62 55.20 54.88
LSTM-Avg 91.10 91.07 48.65 38.67 62.09 40.09 55.76 54.92
LSTM-Max 92.01 91.99 50.94 40.94 66.80 43.63 59.63 59.26
LSTM-Att 92.20 92.18 51.12 41.83 67.07 43.70 59.87 59.44

LSTM-APLN 92.45 92.43 51.77 43.65 67.39 45.55 60.21 60.01
HAN - - 52.05 42.81 67.22 45.01 60.18 59.72

HAN-APLN - - 52.59 44.01 67.95 46.01 60.55 60.35

Table 2: The performance of different methods on the four benchmark datasets.

batch size was 64. We applied dropout (Srivas-
tava et al., 2014) techniques to the word embed-
dings, CNN networks or LSTMs to mitigate over-
fitting, and the dropout ratio was 0.2. These hy-
perparameters were tuned on the validation set. In
classification tasks the metrics were accuracy and
macro-F scores, and in regression tasks the per-
formance was evaluated by rooted mean squared
error (RMSE). We reported the average results of
10 independently repeated experiments.

5.2 Performance Evaluation

We compare the performance of different neural
text classification models with different pooling
methods to evaluate the performance of our ap-
proach. The methods to be compared include:
(1) CNN-Avg (Tang et al., 2015b), applying av-
erage pooling to the representations learned by
CNN to build contextual text representations; (2)
CNN-Max (Kim, 2014), using a combination of
CNN and max pooling; (3) CNN-Att (Gong and
Zhang, 2016), using a combination of CNN and
vanilla attentive pooling; (4) CNN-APLN, combin-
ing CNN with our APLN approach; (5) LSTM-
Last (Hochreiter and Schmidhuber, 1997), using
the last hidden state in an LSTM network; (6)
LSTM-Avg (Zhao et al., 2016), using average pool-
ing after LSTM; (7) LSTM-Max (Johnson and
Zhang, 2016), using max pooling after LSTM;
(8) LSTM-Att (Zhou et al., 2016), using attentive
pooling after LSTM; (9) LSTM-APLN, combin-
ing LSTM with APLN; (10) HAN (Yang et al.,
2016), a hierarchical LSTM network with both
word-level and sentence-level attentive pooling;
(11) HAN-APLN, using APLN at both word and
sentence levels. In methods based on LSTM, we
used two parallel LSTMs to scan the input in both

directions. The results of these methods are sum-
marized in Table 2, which reveal several findings.

First, the methods based on average pooling
are usually inferior to those using other pooling
methods in our experiments. This is probably
because average pooling equally regards different
features and cannot distinguish their informative-
ness. Thus, modeling the importance of different
features has the potential to improve text repre-
sentation learning. Second, the methods based on
attentive pooling outperform their variants based
on max pooling. This may be because attentive
pooling can model the informativeness of con-
texts for text representation, while max pooling
only selects the most salient features, which may
be sub-optimal. Third, our APLN approach can
consistently outperform other pooling methods,
and further hypothesis test results show that the
improvement brought by our approach is signif-
icant (p < 0.01). This may be because vanilla
max pooling and attentive pooling methods use a
fixed pooling norm for universal text representa-
tion learning, and the differences in the character-
istics of different tasks and datasets are not con-
sidered, which may also be sub-optimal. Our ap-
proach can dynamically adapt the pooling norm in
different scenarios, which may facilitate text rep-
resentation learning. In addition, we find the ad-
vantage in Macro-F score of our approach over
other methods is more significant on the datasets
with imbalanced class distributions. This may be
because our approach can build text representation
in a softer manner, which may help neural models
avoid focusing on the clues of major classes only
and alleviate their dominance. Fourth, we find hi-
erarchical models (HAN and HAN-APLN) outper-
form flatten models (e.g., LSTM-APLN) for doc-
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Methods IMDB Amazon Yelp
CNN-Avg 1.388 0.920 0.847
CNN-Max 1.322 0.908 0.834
CNN-Att 1.292 0.899 0.824

CNN-APLN 1.271 0.886 0.801
LSTM-Last 1.316 0.896 0.822
LSTM-Avg 1.343 0.911 0.830
LSTM-Max 1.269 0.890 0.815
LSTM-Att 1.257 0.878 0.799

LSTM-APLN 1.233 0.865 0.784
HAN 1.230 0.866 0.789

HAN-APLN 1.214 0.858 0.776

Table 3: The performance of different methods on rat-
ing regression. Lower RMSE scores indicate better per-
formance.

ument representation learning. This may be be-
cause modeling documents in a hierarchical man-
ner can better utilize the structure of documents.
In addition, since our approach can be applied at
both word and sentence levels in HAN, text repre-
sentation may be learned more accurately. These
results validate the effectiveness of our approach.

To further validate the generality of our ap-
proach in regression tasks8, we also conduct ex-
periments on the IMDB, Amazon and Yelp datasets
by formulating the task as a rating regression prob-
lem, and the results in terms of RMSE are shown
in Table 3. From the results, we find our APLN
approach can also bring consistent improvements
to many existing methods in the regression task.

5.3 Influence of Scale Limiting and
Re-formulation

In this section, we will explore the influence of
the scale limiting and re-formulation techniques
on the stability and relative pooling speed of our
approach. The results are summarized in Ta-
ble 4. From these results, if the limitation of non-
negativity is removed, the model training is usu-
ally unstable, which is intuitive. In addition, if the
scale limitation (≤ 1) is removed, our model occa-
sionally does not converge. This may be because
when p > 1, our model has the risk of gradient ex-
plosion. Thus, the scale of input features should be
limited. Besides, the re-formulation method also
has critical impacts on our approach. This is prob-
ably because directly computing the real-valued

8We find that the regression labels need to be normalized,
or the performance may be sub-optimal.

exponents of input features may be numerically
unstable. In our approach we decompose the expo-
nents into three stable operations, which is robust
to numerical errors. In addition, the pooling speed
can be effectively improved, since the computa-
tional costs of these atomic operations are usually
small. These results validate the effectiveness of
our approach.

Stability Speed
-SL (≥ 0) × 1.001
-SL (≤ 1) ◦ 1.001
-RF × 0.116
APLN X 1.000

Table 4: Influence of the scale limiting (abbreviated as
SL) and re-formulation (abbreviated as RF) on the sta-
bility and relative pooling speed of APLN. The symbol
◦ represents the model training is unstable on occasion.

5.4 Influence of Norm Initialization
In this section, we study the influence of a small
but very important step, i.e., the initialization of
the trainable pooling norm p, on the performance
of our approach. We compare the performance of
LSTM-APLN by varying the initialized values of
p. The results are shown in Fig. 6. From Fig. 6,
we find the performance of our approach increases
when the initialized value of p increases. This is
intuitive because when p is too small, the attention
network may not be capable of recognizing impor-
tant contexts effectively, which is not optimal for
learning accurate text representations. In addition,
when p is initialized with a too large value, the
performance will start to decline. This is proba-
bly because a large value of p will lead to sharp
attentions on critical contexts, and other useful in-
formation is not fully exploited. Thus, the perfor-
mance is also not optimal. These results show that
a moderate value (e.g., 1.0) is the most appropri-
ate for initializing the pooling norm p, which is
also consistent with standard attentive pooling.

5.5 Parameter Analysis
In this section, we analyze a critical parameter
learned by our model, i.e., the pooling norm p in
the APLN module. The evolution of the values
of p learned by LSTM-APLN on the four bench-
mark datasets during model training is portrayed
in Fig. 7. From the results, we have several in-
teresting observations. First, the pooling norms
learned by our model are consistently less than
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Figure 6: The influence of the initialization of the pool-
ing norm p on our approach.
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Figure 7: The evolution of the pooling norm p learned
by our model on different datasets. The required train-
ing epochs to achieve the best performance are marked
as the grey region.

1, which indicates that our norm-wise attention is
“softer” than vanilla attention. This may be be-
cause L1 norm is not optimal for attentive pool-
ing, and a softer attention manner may be more
suitable for learning accurate text representations.
Second, we find it is interesting that the norm
p consistently decreases when the training epoch
increases. This may be because the model may
tend to take the global contexts into considera-
tion rather than focus on important ones. Third,
a moderate norm p is more appropriate for our ap-
proach. This may be because when p is too large,
the attentions may be too sparse and useful con-
textual information is not fully exploited. When p
is too small, the attention networks cannot effec-
tively distinguish informative contexts from unin-
formative ones, which may also be sub-optimal for
learning text representations. Fourth, we observe
that the norm p learned on datasets with imbal-
anced class distributions is lower than those with
balanced distributions. This may be because on
imbalanced dataset, if p is too large, the clues

I really liked the case , at first . 
It protects well , holds the iPad firmly .
The stand is convenient and well angled . 
After a few weeks , the plastic casing started to split .
That really soured me on the case .

really liked case
protects well

I the , at first .
, It holds the iPad firmly .

.The 
After 
That really soured me on the case .

stand is convenient and well angled
a few weeks , the plastic casing started to split .

(a) Attention weights in HAN. Predicted rating is 4.

I really liked the case , at first . 
It protects well , holds the iPad firmly .
The stand is convenient and well angled . 
After a few weeks , the plastic casing started to split .
That really soured me on the case .

really liked case
protects well

I the , at first .
, It holds the iPad firmly .

.The 
After 
That really soured me on the case .

stand is convenient and well angled
a few weeks , the plastic casing started to split .

(b) Attention weights in HAN-APLN. Predicted rating is 3.

Figure 8: Visualization of the word-level and sentence-
level attention weights in HAN and HAN-APLN on a
randomly selected review in the Amazon dataset, whose
gold rating score is 3. Darker colors indicate higher
attention weights. The visualized attention weights of
APLN are αp

i of words and sentences, under p = 0.885
at the word level and p = 0.892 at the sentence level.

of the majority classes may be over-emphasized,
and other useful information is not fully respected.
Thus, the performance of our APLN approach is
better when it learns a moderate pooling norm.

5.6 Case Study

In this section, we conducted several case stud-
ies to further explore the effectiveness of our
APLN approach. We visualize the word-level
and sentence-level attention weights in HAN and
HAN-APLN of a randomly selected review to com-
pare their differences, and the results are portrayed
in Fig. 8. According to the results, we have several
observations. First, both HAN and HAN-APLN
can recognize important words and sentences. For
example, the word “liked” and the sentence “I re-
ally liked the case, at first.” are highlighted since
they are important for modeling the opinions con-
densed by this review. Second, the attentions of
HAN are sparse, which indicates that HAN tends
to focus more on some contexts in a review such
as the first and the third sentence, and pays little at-
tentions to the useful information in other contexts
such as the fourth and fifth sentences. In addition,
HAN wrongly classifies the rating of this review.
This is probably because the rating of a review
is usually a synthesis of all opinions conveyed by
it. Thus, it may not be optimal for learning accu-
rate text representations if only salient contexts are
considered. Third, different from HAN, the atten-
tions of HAN-APLN are smoother. This is proba-
bly because the pooling norm learned by our ap-
proach is less than 1, which encourages our model



2969

to attend to important contexts in a softer manner.
In addition, HAN-APLN can classify this review
correctly. This is probably because our approach
can effectively take global contextual information
into consideration, and does not over-emphasize
critical contexts. Thus, our APLN approach can
learn more accurate text representations than the
methods based on vanilla attentive pooling. These
results show the effectiveness of our approach.

6 Conclusion and Future Work

In this paper, we propose an Attentive Pooling
with Learnable Norms (APLN) approach for text
representation. Instead of using a fixed pooling
norm for universal text representation learning, we
propose to learn the norm in an end-to-end frame-
work to automatically find the optimal ones for
learning text representations in different tasks. In
addition, we propose two methods to ensure the
numerical stability of the model training. The first
one is scale limiting, which limits the scale of in-
put representations to ensure their non-negativity
and avoid potential exponential explosion. The
second one is re-formulation, which decomposes
the exponent operation into several safe atomic op-
erations to avoid computing the real-valued pow-
ers of input features with less computational cost.
Extensive experiments on four benchmark datasets
validate the effectiveness of our approach.

In our future work, we will explore several po-
tential directions. First, we plan to explore why the
model prefers “soft” attentions rather than “hard”
ones, which is different from the findings in sev-
eral prior works based on hard attention. Sec-
ond, we plan to study how to model the dif-
ferences on the characteristics of different sam-
ples and use different pooling norms, which may
have the potential to further improve our approach.
Third, we will explore how to generalize our ap-
proach to other modalities, such as images, audios
and videos, to see whether it can facilitate more
attention-based methods.
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