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Abstract

We propose a deep and interpretable prob-
abilistic generative model to analyze glyph
shapes in printed Early Modern documents.
We focus on clustering extracted glyph images
into underlying templates in the presence of
multiple confounding sources of variance. Our
approach introduces a neural editor model that
first generates well-understood printing phe-
nomena like spatial perturbations from tem-
plate parameters via interpertable latent vari-
ables, and then modifies the result by generat-
ing a non-interpretable latent vector responsi-
ble for inking variations, jitter, noise from the
archiving process, and other unforeseen phe-
nomena associated with Early Modern print-
ing. Critically, by introducing an inference
network whose input is restricted to the vi-
sual residual between the observation and the
interpretably-modified template, we are able
to control and isolate what the vector-valued
latent variable captures. We show that our
approach outperforms rigid interpretable clus-
tering baselines (Ocular) and overly-flexible
deep generative models (VAE) alike on the
task of completely unsupervised discovery of
typefaces in mixed-font documents.

1 Introduction

Scholars interested in understanding details related
to production and provenance of historical docu-
ments rely on methods of analysis ranging from the
study of orthographic differences and stylometrics,
to visual analysis of layout, font, and printed char-
acters. Recently developed tools like Ocular (Berg-
Kirkpatrick et al., 2013) for OCR of historical docu-
ments have helped automate and scale some textual
analysis methods for tasks like compositor attri-
bution (Ryskina et al., 2017) and digitization of
historical documents (Garrette et al., 2015). How-
ever, researchers often find the need to go beyond

Figure 1: We desire a generative model that can be
biased to cluster according to typeface characteristics
(e.g. the length of the middle arm) rather than other
more visually salient sources of variation like inking.

textual analysis for establishing provenance of his-
torical documents. For example, Hinman (1963)’s
study of typesetting in Shakespeare’s First Folio
relied on the discovery of pieces of damaged or
distinctive type through manual inspection of every
glyph in the document. More recently, Warren et al.
(2020) examine pieces of distinctive types across
several printers of the early modern period to posit
the identity of clandestine printers of John Milton’s
Areopagitica (1644). In such work, researchers
frequently aim to determine whether a book was
produced by a single or multiple printers (Weiss
(1992); Malcolm (2014); Takano (2016)). Hence,
in order to aid these visual methods of analyses,
we propose here a novel probabilistic generative
model for analyzing extracted images of individ-
ual printed characters in historical documents. We
draw from work on both deep generative modeling
and interpretable models of the printing press to
develop an approach that is both flexible and con-
trollable – the later being a critical requirement for
such analysis tools.

As depicted in Figure 1, we are interested in iden-
tifying clusters of subtly distinctive glyph shapes
as these correspond to distinct metal stamps in
the type-cases used by printers. However, other
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sources of variation (inking, for example, as de-
picted in Figure 1) are likely to dominate conven-
tional clustering methods. For example, power-
ful models like the variational autoencoder (VAE)
(Kingma and Welling, 2014) capture the more visu-
ally salient variance in inking rather than typeface,
while more rigid models (e.g. the emission model
of Ocular (Berg-Kirkpatrick et al., 2013)), fail to
fit the data. The goal of our approach is to account
for these confounding sources of variance, while
isolating the variables pertinent to clustering.

Hence, we propose a generative clustering model
that introduces a neural editing process to add ex-
pressivity, but includes interpretable latent vari-
ables that model well-understood variance in the
printing process: bi-axial translation, shear, and
rotation of canonical type shapes. In order to make
our model controllable and prevent deep latent vari-
ables from explaining all variance in the data, we
introduce a restricted inference network. By only
allowing the inference network to observe the vi-
sual residual of the observation after interpretable
modifications have been applied, we bias the poste-
rior approximation on the neural editor (and thus
the model itself) to capture residual sources of vari-
ance in the editor – for example, inking levels, ink
bleeds, and imaging noise. This approach is related
to recently introduced neural editor models for text
generation (Guu et al., 2018).

In experiments, we compare our model with
rigid interpretable models (Ocular) and powerful
generative models (VAE) at the task of unsuper-
vised clustering subtly distinct typeface in scanned
images early modern documents sourced from
Early English Books Online (EEBO).

2 Model

Our model reasons about the printed appearances
of a symbol (say majuscule F) in a document via a
mixture model whose K components correspond
to different metal stamps used by a printer for the
document. During various stages of printing, ran-
dom transformations result in varying printed man-
ifestations of a metal cast on the paper. Figure 2
depicts our model. We denote an observed image
of the extracted character by X . We denote choice
of typeface by latent variable c (the mixture com-
ponent) with prior π. We represent the shape of
the k-th stamp by template Tk, a square matrix
of parameters. We denote the interpretable latent
variables corresponding to spatial adjustment of

Figure 2: Proposed generative model for clustering im-
ages of a symbol by typeface. Each mixture component
c corresponds to a learnable template Tk. The λ vari-
ables warp (spatially adjust) the original template T to
T̃ . This warped template is then further transformed
via the z variables to T̂ via an expressive neural filter
function parametrized by θ.

the metal stamp by λ, and the editor latent vari-
able responsible for residual sources of variation
by z. As illustrated in Fig. 2, after a cluster compo-
nent c = k is selected, the corresponding template
Tk undergoes a transformation to yield T̂k. This
transformation occurs in two stages: first, the inter-
pretable spatial adjustment variables (λ) produce
an adjusted template (§2.1), T̃k = warp(Tk, λ),
and then the neural latent variable transforms the
adjusted template (§2.2), T̂k = filter(T̃k, z). The
marginal probability under our model is

p(X) =
∑
k

πk

∫
p(X|λ, z;Tk)p(λ)p(z)dzdλ,

where p(X|λ, z;Tk) refers to the distribution over
the binary pixels of X where each pixel has a
bernoulli distribution parametrized by the value
of the corresponding pixel-entry in T̂k.

2.1 Interpretable spatial adjustment

Early typesetting was noisy, and the metal pieces
were often arranged with slight variations which
resulted in the printed characters being positioned
with small amounts of offset, rotation and shear.
These real-valued spatial adjustment variables are
denoted by λ = (r, o, s, a), where r represents the
rotation variable, o = (oh, ov) represents offsets
along the horizontal and vertical axes, s = (sh, sv)
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denotes shear along the two axes. A scale fac-
tor, ã = 1.0 + a, accounts for minor scale vari-
ations arising due to the archiving and extraction
processes. All variables in λ are generated from a
Gaussian prior with zero mean and fixed variance
as the transformations due to these variables tend
to be subtle.

In order to incorporate these deterministic trans-
formations in a differentiable manner, we map λ to
a template sized attention map Hij for each output
pixel position (i, j) in T̃ as depicted in Figure 3.
The attention map for each output pixel is formed
in order to attend to the corresponding shifted (or
scaled or sheared) portion of the input template
and is shaped according to a Gaussian distribution
with mean determined by an affine transform. This
approach allows for strong inductive bias which
contrasts with related work on spatial-VAE (Bepler
et al., 2019) that learns arbitrary transformations.

Figure 3: Translation operation: The mode of the at-
tention map is shifted by the offset values for every out-
put pixel in T̃ . Similar operations account for shear,
rotation, and scale.

2.2 Residual sources of variations

Apart from spatial perturbations, other major
sources of deviation in early printing include ran-
dom inking perturbations caused by inconsistent
application of the stamps, unpredictable ink bleeds,
and noise associated with digital archiving of the
documents. Unlike in the case of spatial pertur-
bations which could be handled by deterministic
affine transformation operators, it is not possible to
analytically define a transformation operator due to
these variables. Hence we propose to introduce a
non-interpretable real-valued latent vector z, with
a Gaussian prior N (0, I) , that transforms T̃ into
a final template T̂ via neurally-parametrized func-
tion filter(T̃ , z; θ) with neural network parameters
θ. This function is a convolution over T̃ whose
kernel is parametrized by z, followed by non-linear
operations. Intuitively, parametrizing the filter by
z results in the latent variable accounting for varia-
tions like inking appropriately because convolution
filters capture local variations in appearance. Sri-
vatsan et al. (2019) also observed the effectiveness
of using z to define a deconvolutional kernel for
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z Inference  
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Figure 4: Inference network for z conditions on the
mixture component and only the residual image left
after subtracting the λ-transformed template from the
image. This encourages z to model variance due to
sources other than spatial adjustments.

font generation.

2.3 Learning and Inference
Our aim is to maximize the log likelihood of the
observed data ({Xd | d ∈ N, d < n}) of n images
wrt. model parameters:

LL(T1,...,k, θ) = max
T,θ

∑
d

log
[∑

k

πk∫
p(Xd|λd, zd;Tk, θ)p(λd)p(zd)dzddλd

]
During training, we maximize the likelihood wrt.
λ instead of marginalizing, which is an approxima-
tion inspired by iterated conditional modes (Besag,
1986):

max
T,θ

∑
d

log
∑
k

max
γk,d

πk

∫
p(Xd|λd = γk,d, zd;

Tk, θ)p(λd = γk,d)p(zd)dzd

However, marginalizing over z remains intractable.
Therefore we perform amortized variational infer-
ence to define and maximize a lower bound on
the above objective (Kingma and Welling, 2014).
We use a convolutional inference neural network
parametrized by φ (Fig. 4), that takes as input, the
mixture component k, the residual image Rk =
X − T̃k, and produces mean and variance parame-
ters for an isotropic gaussian proposal distribution
q(z | Rk, k;φ). This results in the final training
objective:

max
T,θ,φ

∑
d

log
∑
k

Eq(zd|Rd,k,k;φ)

[
max
γk,d

(
πk

p(Xd|λ = γk,d, zd;Tk, θ)p(λ = γk,d)
)]

−KL
(
q(zd|Rd,k, k;φ)||p(z)

)
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We use stochastic gradient ascent to maximize this
objective with respect to T, γ, θ and φ.

3 Experiments

We train our models on printed occurrences of 10
different uppercase character classes that schol-
ars have found useful for bibliographic analysis
(Warren et al., 2020) because of their distinctive-
ness. As a preprocessing step, we ran Ocular (Berg-
Kirkpatrick et al., 2013) on the grayscale scanned
images of historical books in EEBO dataset and ex-
tracted the estimated image segments for the letters
of interest.

3.1 Quantitative analysis
We show that our model is superior to strong base-
lines at clustering subtly distinct typefaces (using
realistic synthetic data), as well as in terms of fit-
ting the real data from historical books.

3.1.1 Baselines for comparison
Ocular: Based on the emission model of Ocu-
lar that uses discrete latent variables for the ver-
tical/horizontal offset and inking variables, and
hence has limited expressivity.
λ-only: This model only has the interpretable con-
tinuous latent variables pertaining to spatial adjust-
ment.
VAE-only: This model is expressive but doesn’t
have any interpretable latent variables for explicit
control. It is an extension of Kingma et al. (2014)’s
model for semi-supervised learning with a continu-
ous latent variable vector in which we obtain tighter
bounds by marginalizing over the cluster identities
explicitly. For fair comparison, the encoder and
decoder convolutional architectures are the same
as the ones in our full model. The corresponding
training objective for this baseline is:

max
T,θ,φ

∑
d

log
∑
k

Eq(zd|Xd,k;φ)

[
πkp(Xd|zd;Tk, θ)

]
−KL

(
q(zd|Xd, k;φ)||p(z)

)
No-residual: The only difference from the full
model is that the encoder for the inference network
conditions the variational distribution q(z) on the
entire input image X instead of just the residual
image X − T̃ .

3.1.2 Font discovery in Synthetic Data
Early modern books were frequently composed
from two or more type cases, resulting in docu-
ments with mixed fonts. We aim to learn the dif-

V-measure Mutual Info F&M NLL

Ocular 0.42 0.45 0.61 379.21
λ-only 0.49 0.51 0.70 322.04
VAE-only 0.22 0.29 0.38 263.45
No-residual 0.54 0.58 0.73 264.27
Our Model 0.73 0.74 0.85 257.92

Table 1: (a) Clustering results on synthetic data (V-
measure, Mutual Info, F&M). (b) Test negative log
likelihood (NLL) on real data from historical docu-
ments, or negative ELBO bound for intractable models
(NLL).

ferent shapes of metal stamps that were used as
templates for each cluster component in our model.
Data: In order to quantitatively evaluate our
model’s performance, we experiment with syntheti-
cally generated realistic dataset for which we know
the ground truth cluster identities in the follow-
ing manner: For each character of interest, we
pick three distinct images from scanned segmented
EEBO images, corresponding to three different
metal casts. Then we randomly add spatial perur-
bations related to scale, offset, rotation and shear.
To incorporate varying inking levels and other dis-
tortions, we randomly either perform erosion, di-
lation, or a combination of these warpings using
OpenCV (Bradski, 2000) with randomly selected
kernel sizes. Finally, we add a small Gaussian noise
to the pixel intensities and generate 300 perturbed
examples per character class.
Results: We report macro-averaged results
across all the character classes on three differ-
ent clustering measures, V-measure (Rosenberg
and Hirschberg, 2007), Mutual Information and
Fowlkes and Mallows Index (Fowlkes and Mal-
lows, 1983). In Table 1, we see that our model
significantly outperforms all other baselines on ev-
ery metric. Ocular and λ-only models fail because
they lack expressiveness to explain the variations
due to random jitters, erosions and dilations. The
VAE-only model, while very expressive, performs
poorly because it lacks the inductive bias needed
for successful clustering. The No-residual model
performs decently but our model’s superior perfor-
mance emphasizes the importance of designing a
restrictive inference network such that z only fo-
cuses on extraneous sources of variation.

3.1.3 Fitting Real Data from Historical Books
For the analysis of real books, we selected three
books from the EEBO dataset printed by different
printers. We modeled each character class for each
book separately and report the macro-aggregated
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upper bounds on the negative log likelihood (NLL)
in Table 1. We observe that adding a small amount
of expressiveness makes our λ-only model better
than Ocular. The upper bounds of other inference
network based models are much better than the
tight1 bounds of both the interpretable models. Our
model has the lowest upper bound of all the models
while retaining interpretability and control.

3.2 Qualitative analysis

We provide visual evidence of desirable behavior of
our model on collections of character extractions
from historical books with mixed fonts. Specif-
ically, we discus the performance of our model
on the mysterious edition of Thomas Hobbes’
Leviathan known as “the 25 Ornaments” edition.
(Hobbes, 1651 [really 1700?]). The 25 Ornaments
Leviathan is an interesting test case for several rea-
sons. While its title page indicates a publisher
and year of publication, both are fabricated (Mal-
colm, 2014). The identities of its printer(s) remain
speculative, and the actual year of publication is
uncertain. Further, the 25 Ornaments exhibits two
distinct fonts.

3.2.1 Quality of learned templates

X

T̂

T Learned Template parameters 

Transformed 
Templates

Observations

Figure 5: The learned templates for F and R and the
transformed templates T̂ for four examples of F are
shown. Our model is able to learn desirable templates
based on underlying glyph structure.

Our model is successful in discovering distinctly
shaped typefaces in the 25 Ornaments Leviathan.
We focus on the case study of majuscule letters F
and R, each of which have two different typefaces
mixed in throughout. The two typefaces for F dif-
fer in the length of the middle arm (Fig. 1), and the
two typefaces for R have differently shaped legs. In
Fig. 5, we show that our model successfully learns
the two desired templates T1 and T2 for both the
characters which indicates that the clusters in our

1For Ocular and λ-only models, we report the upper
bound obtained via maximization over the interpretable la-
tent variables. Intuitively, these latent variables are likely to
have unimodal posterior distributions with low variance, hence
this approximation is likely tight.

model mainly focus on subtle differences in under-
lying glyph shapes. We also illustrate how the la-
tent variables transform the model templates T to T̂
for four example F images. The model learns com-
plex functions to transform the templates which go
beyond simple affine and morphological transfor-
mations in order to account for inking differences,
random jitter, contrast variations etc.

3.2.2 Interpretable variables (λ) and Control

1 2 3 Avg.

Unaligned raw Images

Aligned Images

Figure 6: Result of alignment on Leviathan extrac-
tions using the interpretable λ variables along with their
pixelwise average images. Aligned average image is
much sharper than the unaligned average image.

Finally, we visualize the ability of our model
to separate responsibility of modelling variation
among the interpretable and non-interpretable vari-
ables appropriately. We use the inferred values of
the interpretable (λ) variable for each image in the
dataset to adjust the corresponding image. Since
the templates represent the canonical shape of the
letters, the λ variables which shift the templates to
explain the images can be reverse applied to the
input images themselves in order to align them by
accounting for offset, rotation, shear and minor size
variations. In Fig. 6, we see that the input images
(top row) are uneven and vary by size and orienta-
tion. By reverse applying the inferred λ values, we
are able to project the images to a fixed size such
that they are aligned and any remaining variations
in the data are caused by other sources of variation.
Moreover, this alignment method would be cru-
cial for automating certain aspects of bibliographic
studies that focus on comparing specific imprints.

4 Conclusion

Beyond applications to typeface clustering, the gen-
eral approach we take might apply more broadly to
other clustering problems, and the model we devel-
oped might be incorporated into OCR models for
historical text.

5 Acknowledgements

This project is funded in part by the NSF under
grants 1618044 and 1936155, and by the NEH
under grant HAA256044-17.



2959

References
Tristan Bepler, Ellen Zhong, Kotaro Kelley, Edward

Brignole, and Bonnie Berger. 2019. Explicitly disen-
tangling image content from translation and rotation
with spatial-vae. In Advances in Neural Information
Processing Systems, pages 15409–15419.

Taylor Berg-Kirkpatrick, Greg Durrett, and Dan Klein.
2013. Unsupervised transcription of historical docu-
ments. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 207–217, Sofia, Bul-
garia. Association for Computational Linguistics.

Julian Besag. 1986. On the statistical analysis of dirty
pictures. Journal of the Royal Statistical Society: Se-
ries B (Methodological), 48(3):259–279.

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools.

Edward B Fowlkes and Colin L Mallows. 1983. A
method for comparing two hierarchical clusterings.
Journal of the American statistical association,
78(383):553–569.

Dan Garrette, Hannah Alpert-Abrams, Taylor Berg-
Kirkpatrick, and Dan Klein. 2015. Unsupervised
code-switching for multilingual historical document
transcription. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 1036–1041, Denver, Col-
orado. Association for Computational Linguistics.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. Transactions of the Association
for Computational Linguistics, 6:437–450.

Charlton Hinman. 1963. The printing and proof-
reading of the first folio of Shakespeare, volume 1.
Oxford: Clarendon Press.

Thomas Hobbes. 1651 [really 1700?]. Leviathan, or,
the matter, form, and power of a common-wealth ec-
clesiastical and civil. By Thomas Hobbes of Malmes-
bury. Number R13935 in ESTC. [false imprint]
printed for Andrew Crooke, at the Green Dragon in
St. Pauls Church-yard, London.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In 2nd International
Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Con-
ference Track Proceedings.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Advances
in neural information processing systems, pages
3581–3589.

Noel Malcolm. 2014. Editorial Introduction. In
Leviathan, volume 1. Clarendon Press, Oxford.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In Proceedings of the 2007
joint conference on empirical methods in natural
language processing and computational natural lan-
guage learning (EMNLP-CoNLL), pages 410–420.

Maria Ryskina, Hannah Alpert-Abrams, Dan Garrette,
and Taylor Berg-Kirkpatrick. 2017. Automatic com-
positor attribution in the first folio of shakespeare. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 411–416, Vancouver, Canada.
Association for Computational Linguistics.

Nikita Srivatsan, Jonathan Barron, Dan Klein, and Tay-
lor Berg-Kirkpatrick. 2019. A deep factorization
of style and structure in fonts. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2195–2205, Hong Kong,
China. Association for Computational Linguistics.

Akira Takano. 2016. Thomas Warren: A Printer of
Leviathan (head edition). Annals of Nagoya Univer-
sity Library Studies, 13:1–17.

Christopher N. Warren, Pierce Williams, Shruti Rijh-
wani, and Max G’Sell. 2020. Damaged type and
Areopagitica’s clandestine printers. Milton Studies,
62.1.

Adrian Weiss. 1992. Shared Printing, Printer’s Copy,
and the Text(s) of Gascoigne’s ”A Hundreth Sundrie
Flowres”. Studies in Bibliography, 45:71–104.

A Character wise quantitative analysis

The quantitative experiments were performed on
the following character classes: A, B, E, F, G, H,
M, N, R, W.

V-measure Mutual Info F&M NLL

λ-only 0.77 0.82 0.89 264.90
VAE-only 0.33 0.38 0.5 230.45
No-residual 0.79 0.85 0.90 231.45
Our Model 0.78 0.86 0.89 226.25

Table 2: Results for character A

V-measure Mutual Info F&M NLL

λ-only 0.37 0.39 0.59 261.1
VAE-only 0.15 0.2 0.32 229.1
No-residual 0.37 0.39 0.58 228.1
Our Model 0.68 0.73 0.81 226.25

Table 3: Results for character B
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V-measure Mutual Info F&M NLL

λ-only 0.33 0.36 0.55 282.4
VAE-only 0.17 0.19 0.30 253.2
No-residual 0.33 0.35 0.56 251.45
Our Model 0.65 0.70 0.76 234.05

Table 4: Results for character E

V-measure Mutual Info F&M NLL

λ-only 0.09 0.10 0.55 258.40
VAE-only 0.03 0.05 0.31 218.2
No-residual 0.12 0.09 0.59 208.1
Our Model 0.81 0.56 0.94 204.48

Table 5: Results for character F

V-measure Mutual Info F&M NLL

λ-only 0.60 0.62 0.73 268.40
VAE-only 0.28 0.38 0.40 250.8
No-residual 0.64 0.66 0.77 244.5
Our Model 0.60 0.62 0.73 240.84

Table 6: Results for character G

V-measure Mutual Info F&M NLL

λ-only 0.72 0.71 0.79 313.75
VAE-only 0.32 0.32 0.40 254.2
No-residual 0.90 0.97 0.94 258.8
Our Model 0.92 1.01 0.96 249.81

Table 7: Results for character H

V-measure Mutual Info F&M NLL

λ-only 0.62 0.64 0.78 392.06
VAE-only 0.29 0.38 0.40 323.5
No-residual 0.70 0.83 0.74 329.25
Our Model 0.75 0.84 0.87 323.04

Table 8: Results for character M

V-measure Mutual Info F&M NLL

λ-only 0.65 0.70 0.73 331.6
VAE-only 0.30 0.45 0.40 265.2
No-residual 0.74 0.81 0.82 270.11
Our Model 0.69 0.75 0.75 264.23

Table 9: Results for character N

V-measure Mutual Info F&M NLL

λ-only 0.07 0.08 0.55 330.6
VAE-only 0.03 0.04 0.34 247.1
No-residual 0.06 0.07 0.53 251.32
Our Model 0.46 0.32 0.78 246.02

Table 10: Results for character R

V-measure Mutual Info F&M NLL

λ-only 0.65 0.71 0.79 418.01
VAE-only 0.31 0.45 0.42 364.2
No-residual 0.72 0.78 0.82 369.5
Our Model 0.72 0.79 0.84 364.21

Table 11: Results for character W


