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Abstract

This paper seeks to develop a deeper under-
standing of the fundamental properties of neu-
ral text generations models. The study of ar-
tifacts that emerge in machine generated text
as a result of modeling choices is a nascent
research area. Previously, the extent and de-
gree to which these artifacts surface in gen-
erated text has not been well studied. In the
spirit of better understanding generative text
models and their artifacts, we propose the new
task of distinguishing which of several vari-
ants of a given model generated a piece of text,
and we conduct an extensive suite of diagnos-
tic tests to observe whether modeling choices
(e.g., sampling methods, top-k probabilities,
model architectures, etc.) leave detectable arti-
facts in the text they generate. Our key finding,
which is backed by a rigorous set of experi-
ments, is that such artifacts are present and that
different modeling choices can be inferred by
observing the generated text alone. This sug-
gests that neural text generators may be more
sensitive to various modeling choices than pre-
viously thought.

1 Introduction

The task of generating plausible sounding text from
large generative neural networks has garnered sig-
nificant attention recently (Zellers et al., 2019; Rad-
ford et al., 2019; Keskar et al., 2019). The study
of these models has been a keen area of interest
for many, resulting in research pertaining to the
behavior of generation methods (Holtzman et al.,
2019; Fan et al., 2018; Gu et al., 2017) as well as
modeling techniques (Radford et al., 2019; Welleck
et al., 2019; Dai et al., 2019; Radford et al., 2018).

This paper presents a focused empirical study of
text generation artifacts, i.e., detectable ‘signatures’
that originate from certain modeling or decoding

choices. There is a growing body of research that
has focused on discriminating between human and
machine generated texts (Gehrmann et al., 2019;
Bakhtin et al., 2019; Ippolito et al., 2019). There
is also extensive past research on authorship attri-
bution (Sanderson and Guenter, 2006; Stamatatos,
2009; Stamatatos et al., 2018), for which it was al-
ways assumed that the authors were humans. This
work takes a much more fine-grained approach by
learning to distinguish between text generated by
different machine variants. Do certain modeling
choices leave more artifacts than others? In short,
given a piece of generated text, can we determine
the model configuration that generated this text?

The utility of our study manifests in multiple
ways. First, the unraveling of artifacts in gener-
ated text enables better understanding of neural text
generators, revealing potential fundamental weak-
nesses in modeling or generation schemes. Our
study provides relative comparisons of the extent
to which artifacts emerge from different modeling
choices. Second, this research advances tracking
the provenance and origination of machine gener-
ated texts, which has a range of useful applications
pertaining to online trust and safety, thereby help-
ing to mitigate the overall risk of these models in
the wild. To the best of our knowledge, this is the
first systematic and fine-grained study of detectable
artifacts present in neural generated text.

Our contributions The overall contributions of
this work can be summarized as follows:

• We present a largescale analysis of generated
text with a special focus on studying artifacts
produced by large generative models.

• We propose the new task of distinguishing
between different fine-grained configurations
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based on the generated text alone. The key
idea is that classifiers performing better than
random can capture configurationspecific arti-
facts.

• Our findings show that (1) modeling choices
can be captured by simple classifiers through
artifacts that are present in generated text
alone, (2) the ease of prediction varies across
different hyperparameter configurations, (3)
word order is not that important in unravel-
ing artifacts, i.e., artifacts are probably more
related to word choice than syntax and compo-
sition and (4) distinguishing between model
variants is much harder than predicting be-
tween human-or-machine only.

2 Related Work

There are many research efforts related to machine
generated text. The work in this area can be char-
acterized into two broad categories - (1) learning
to generate better text and (2) learning to mitigate
against generated text.

In the former, large generative models such as
GPT/GPT-2 (Radford et al., 2018, 2019), CTRL
(Keskar et al., 2019) and Grover (Welleck et al.,
2019) have recently demonstrated the possibility of
generating high quality text. The study of sampling
methods for auto-regressive models has also been
active where sampling methods such as top-k (Fan
et al., 2018) and nucleus sampling (Holtzman et al.,
2019) have been proposed.

Likewise, there have also been recent ongoing ef-
forts that are targeted at distinguishing human text
from machine generated text. (Gehrmann et al.,
2019) proposed GLTR, a visual and statistical tool
for aiding the detection of machine generated text.
In a similar vein, (Bakhtin et al., 2019) proposed
energy-based models. Statistical detection of ma-
chine generated text is possible largely due to the
the presence of artifacts. To this end, the race be-
tween generators and discriminators is not entirely
de-coupled. (Welleck et al., 2019) showed that a
good generator is also a good discriminator.

Concurrent work (Ippolito et al., 2019) investi-
gates the performance of human raters on the task
of detecting machine generated text. Similarly, they
also investigate the effect of model hyperparame-
ters with respect to the ease of being detected by
human raters.

Our work is also related to the field of author-
ship attribution (Stamatatos, 2009) which tries to

identify the author behind a piece of text. A series
of shared tasks have been proposed over the years
(Stamatatos et al., 2018; Tschuggnall et al., 2017).
The tasks have primarily focused on stylometry
and text-based forensics. A key assumption is that
authors leave behind distinguishable signatures (or
artifacts) in their writings. Along a similar vein, our
work re-imagines this task by considering different
instances of generative models as authors.

The emergence of artifacts left behind by ma-
chine generated text is a peculiar and interesting
phenomena. This work takes this direction further
by studying the fine-grained artifacts produced by
different modeling choices in hopes of better un-
derstanding machine generation in general.

3 Methodology

In this section, we introduce our experimental set-
tings and setup.

3.1 Generative Model Configuration
Our experiments employ Grover (Zellers et al.,
2019) as the text generator. We consider three
generation configurations in our experiments. They
are described as follows:

• Model Sizes - Generative models often come
with pre-defined sizes that refer to the layer
widths and parameterization. For Grover, the
model size options include Base, Large, and
Mega.

• Sampling Method - The sampling function
controls the decoding process used to gener-
ate text. We explore variants of top-k (Fan
et al., 2018), top-p nucleus sampling (Holtz-
man et al., 2019), and associated p/k values.

• Conditioning - Length of initial article condi-
tioning. We define ` which is the amount of
text given to the model. The initial ` tokens is
concatenated at the end of the title sequence
for the model to start generating.

In the design of our experiments, while there are
countless possibilities to search for, we deliberately
sought out settings that are most general and/or
are considered fine-grained subtle changes. Such
subtle changes are likely to be more challenging to
detect compared to larger changes. For example,
predicting Grover parameterization subsumes the
task of distinguishing Grover versus GPT-2. We
assume that if a model is able to solve the former,
the latter becomes relatively trivial.
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3.2 Classifier Models

We train a classifier model to discriminate between
different model configurations. Generally, the task
is framed as a multi-class classification problem
where each model configuration is a class that is
predicted. Models accept a sequence of tokens as
an input. Sequences pass through a parameterized
or non-parameterized encoder which are finally
passed as input to a softmax classification layer.

In this work, we explore and benchmark the ef-
fectiveness of various encoding inductive biases
such as recurrent, convolutional, and self-attention
based models. This is primarily motivated as a
probe into the problem domain, i.e., by witness-
ing the behaviour of different encoder architec-
tures, we may learn more about the nature of these
tasks/datasets.

Inductive Biases We consider the following
encoding architectures (1) BoW (Linear) - a
simple bag-of-words (BoW) baseline that aver-
ages the word embeddings and passes the av-
erage representation into a single linear classi-
fier. Y = Softmax(W (X)). (2) BoW (MLP)
- another simple baseline that builds on top of
the Linear baseline. We add a single nonlinear
layer with ReLU activation function, i.e., Y =
Softmax(W2σr(W1(X))). (3) ConvNet - We
consider a 1D Convolution layer of filter width
3. We convolve over the input embeddings and
pass the average (representation) into a linear Soft-
max classification layer. (4) LSTM - Similar to the
CNN model, we encode the input sequence with
an LSTM layer and pass the mean-pooled repre-
sentation into a Softmax layer. (4) Transformer
Encoders - We use 4-layered multi-headed Trans-
former (Vaswani et al., 2017) encoders with multi-
head self-attention.

Task Name Classes
p-Samp (P1) p ∈ [0.95, 0.90, 0.85]
p-Samp (P2) p ∈ [0.95, 0.85, 0.75]
p-Samp (P3) p ∈ [0.95, 0.90, 0.85, 0.80, 0.75]
k-Samp (K1) k ∈ [10, 20, 30]
k-Samp (K2) k ∈ [10, 30, 50]
k-Samp (K3) k ∈ [10, 20, 30, 40, 50]

Cond (C1) ` ∈ [10, 50, 100]
Cond (C2) ` ∈ [10, 20, 30]
Cond (C3) ` ∈ [10, 20, 30, 40, 50]
Size (S1) S ∈ {Base, Large,Mega}

Table 1: List of proposed Machine Configuration Dis-
crimination (MCD) tasks.

3.3 Experimental Setup

This section outlines our experimental setup.

News Corpora As a seed corpus, we use the
CNN/Dailymail news corpus. This corpus is widely
used in other NLP tasks (Hermann et al., 2015)
such as question answering and summarization.
The CNN/Dailymail corpus comprises approxi-
mately 90K news articles. Given an initial seed
corpora of N news articles, we generate an addi-
tional collection of N machine generated articles
for each configuration.

Tasks We define ten tasks as described in Table
1. These tasks aim at predicting the correct model
configuration given the generated text. For all tasks,
we use a maximum sequence length of 500 and split
the dataset into 80%/10%/10% train, development,
and testing splits. We include an additional variant
+h which denotes that we add the humanwritten
article as an additional class to the mix.

Model Training For all models, we fix the word
embeddings to d = 64. Embeddings are trained
from scratch. All encoder hidden unit size is also
set to 64. We tuned the dimensions of models in
the range of d ∈ {16, 32, 64, 128, 256} and found
no noticable improvement beyond d = 64. We
train all models for 50 epochs with a batch size of
64. We employ early stopping with patience 3 if
validation accuracy does not improve. Final test
accuracy is reported based on the best results on
the validation set.

4 Insights and Findings

This section presents the insights and findings un-
covered by our experiments. Table 2 and Table 3
present the core of our experimental results.

(1) Artifacts are found. Our experiments show
that simple classifiers are able to distinguish fine-
grained and subtle differences between model-
ing choices (e.g., top-p probabilities or condition
length `) in generated texts. In Table 2, we observe
that all classifiers have an accuracy much higher
than random chance (almost double in some cases),
which suggests that distinguishing between differ-
ent classes is relatively straightforward. In short,
we are able to empirically conclude that all model-
ing choices leave behind some form of detectable
artifacts.
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Model P1 P2 P3 K1 K2 K3 C1 C2 C3 S1 AVG
Chance 33.3 33.3 20.0 33.3 33.3 20.0 33.3 33.3 20.0 33.3 29.3
Bow-L 55.2 69.2 55.9 54.5 62.8 38.4 42.3 34.7 22.0 43.7 47.9
Bow-M 55.2 69.7 56.9 56.1 62.7 40.0 42.9 34.6 22.7 43.2 48.4

Cnn 55.4 69.6 57.5 55.5 63.9 40.3 43.0 35.1 23.1 43.7 48.7
Lstm 54.9 68.9 54.5 55.0 62.7 40.2 45.7 34.0 23.8 43.5 48.3
Trans. 53.7 70.2 59.7 55.2 63.4 40.5 43.9 34.4 24.0 42.2 48.7

% Gain +66% +111% +199% +68% +92% +21% +37% +5% +20% +31% +66%

Table 2: Results on machine configuration detection. % gain provides a general sense of how prevalent artifacts
are for a given configuration.

Model P1 P2 P3 K1 K K3 C1 C2 C3 S1 AVG
Chance 25.0 25.0 16.7 25.0 25.0 16.7 25.0 25.0 33.3 25.0 24.2
Bow-L 67.5 76.6 63.8 73.27 78.9 57.5 47.3 46.10 33.2 58.6 60.3
Bow-M 68.0 76.7 65.6 74.1 78.9 57.2 49.2 47.5 33.9 58.2 60.9

Cnn 68.4 75.6 64.8 73.3 78.8 57.2 49.4 47.5 33.9 58.6 60.7
Lstm 69.0 77.0 68.7 74.4 78.6 57.9 50.5 48.4 34.3 58.1 61.7
Trans. 69.0 78.6 68.6 74.6 79.3 57.2 50.9 48.7 35.2 59.6 62.2
% Gain +176% +215% +312% +198% +217% +247% +104% +95% +6% +139% +157%

Table 3: Results on the machine configuration detection tasks with human articles as an additional class.

(2) Different generating choices leave behind
different amounts of artifacts. From Table 2,
the difficulty of each task generally depends on the
specific modeling choice. For example, distinguish-
ing between model size (S1) is much harder than
the top-p value. Overall, we observe that meth-
ods that directly operate at the generation level
(sampling p or k values) are much easier to predict
(i.e., leave more artifacts) than condition length
(C1, C2) or model size (S1). It is a somewhat
surprising result that varying the initial condition
length leaves artifacts in the generated text.

A secondary finding is that discriminating p or k
values that are close together is a significantly more
challenging task than those that are far apart (i.e.,
task P1 vs P2). This empirically shows that gener-
ated text moves along some form of ordering and
magnitude, i.e., s(a, b) ≤ s(b, c) if a− b > b− c
where a, b, c ∈ R and s(x, y) is the accuracy score
obtained by classifying between configurations
x, y.

(3) Word order does not matter too much. The
key observation when pitting various sequence en-
coding inductive biases against each other is to
observe if modeling sequential interactions (short-
term or long-range dependencies) and/or word or-
der helps in any of the MCD tasks. The observation
is that most complex encoders that takes into ac-
count word order do not outperform simple BoW
(bag of words) with linear classifiers. This suggests
that artifacts found in the text are mostly related
to style (e.g., word choices), as opposed to com-

positional dependencies (e.g., word order). Occa-
sionally, we observe some marginal gains when uti-
lizing ConvNet or Transformers. We hypothesize
that considering some amount of token interaction
is indeed useful, albeit very marginally. Moreover,
the recurrent model (LSTM) performs worse in
most cases, suggesting that complex compositional
relations are not necessary to capture artifacts.

(4) Discriminating between machines is harder
than human and machine. Table 3 report the
results of MCD tasks with an additional human
article class. By adding human generated articles
into the mix, the classification accuracy increases
(≈ 10%) across all tasks. Upon inspection, we
find that the model separates the human written
articles at beyond 90% accuracy, which leads to
an overall increase in performance. Hence, the
task of distinguishing between machine-machine
text is much harder than distinguishing between
human-machine text.

5 Discussion

This section discusses the implications of our re-
sults and findings.

(1) The sensitivity of neural text generation
models emerge as artifacts in the generated text.
Our results show that a state-of-the-art text gener-
ation model produces significant amounts of ar-
tifacts even when making small hyperparameter
changes (such as sampling probabilities). It is also
relatively surprising that the amount of article con-
ditioning and model size can also be predicted to a
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certain degree. We feel that this might arise from
limitations in the design of neural generation mod-
els which may warrant further study.

(2) Tracing the provenance and origination of
text generation models is easier than expected.
Given that minor changes to decoding settings
leave distinguishable signatures, we hypothesize
that it is relatively easy to trace and cluster content
produced by specific generative models.

6 Conclusion

We studied machine generated text and found that
modeling choices leave artifacts, i.e., it is possible
to predict modeling choices such as parameteri-
zation/sampling choices by looking at generated
text alone. We proposed the novel task of machine
configuration detection (MCD) which aided in the
discovery of these artifacts. We believe our work
paves the way for better understanding of neural
text generation models and understanding that mod-
eling choices reveals the model configurations is a
first crucial step.
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