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Abstract

Missing sentence generation (or sentence in-
filling) fosters a wide range of applications in
natural language generation, such as document
auto-completion and meeting note expansion.
This task asks the model to generate interme-
diate missing sentences that can syntactically
and semantically bridge the surrounding con-
text. Solving the sentence infilling task re-
quires techniques in natural language process-
ing ranging from understanding to discourse-
level planning to generation. In this paper,
we propose a framework to decouple the chal-
lenge and address these three aspects respec-
tively, leveraging the power of existing large-
scale pre-trained models such as BERT and
GPT-2. We empirically demonstrate the effec-
tiveness of our model in learning a sentence
representation for generation and further gen-
erating a missing sentence that fits the context.

1 Introduction

Generating a span of missing tokens in a text chunk,
known as “text infilling,” has attracted many atten-
tions recently (Zhu et al., 2019; Song et al., 2019;
Liu et al., 2019; Ippolito et al., 2019; Joshi et al.,
2020). Here we study the related but somewhat dif-
ferent task of “sentence infilling.” Specifically, as
illustrated in Figure 1, intermediate sentences (or
chunks of text) are removed from long-form text
(e.g., paragraphs, documents), and the task is to
generate the missing pieces that can smoothly blend
into and fit the context both syntactically and se-
mantically. The generation can be either based only
on context, or based on both context and side in-
formation such as constraint keywords. Compared
with text infilling, sentence infilling requires the
model to handle inter-sentential correlation and to
reason about missing semantic information. Devel-
oping models for sentence infilling can potentially

∗These authors contributed equally to this work.

She was extremely happy with our hotel and we had a 
complimentary buffet.

...
The food was just phenomenal! I can’t recall what everything 
was called, but we rolled out of there stuffed and happy. My 
husband had the rib eye dumpling as an appetizer and he said 
it was the best dumpling he has ever had.

Beautiful beachside boutique hotel with great views and 
modern decoration. My favorite part about this hotel is 
definitely the restaurant, UVA. I recently visited UVA to 
attend a friend’s birthday party.
...

Figure 1: Sentence infilling: generating an intermedi-
ate sentence that provides a smooth semantic transition
from the preceding to the following context. This ex-
ample is generated by our model on the TripAdvisor
dataset. The colors mark the correspondence between
the generated sentence and the context.

facilitate many text generation applications. Possi-
ble scenarios include, but are not limited to: docu-
ment auto-completion by detecting and suggesting
missing bridging sentences in the surrounding con-
text; collaborative document writing by modifying
and unifying different writing styles from multiple
authors; meeting note expansion by extending a set
of keywords (lexical constraints) to a full sentence,
leveraging the surrounding context.

There are many challenges associated with this
long-form sentence infilling task, which is typi-
cally a one-to-many problem in that the possible
outputs can be diverse. As the generated sentence
should connect separate text pieces in a syntacti-
cally and semantically smooth and coherent man-
ner, the task requires a wide range of understand-
ing, planning, and generation techniques. Large-
scale pre-trained language models such as BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019) have dramatically enhanced the understand-
ing and generation modules. However, how to in-
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tegrate them in a holistic manner, and to analyze
and establish the long-range dependence structure
by high-level semantic planning is still challeng-
ing and yet to explore, as semantic appropriateness
is usually subtler than syntactic appropriateness,
which can be well characterized by autoregressive
language models.

Several works have been done in this direction.
MASS (Song et al., 2019) obtains sentence repre-
sentations by predicting a span of missing tokens.
It can be used to generate missing text, but the miss-
ing span length needs to be pre-specified. Other
related works (Liu et al., 2019; Joshi et al., 2020)
also require knowledge of the span length as an in-
put to their models, and thus are different from our
work. Text infilling (Zhu et al., 2019) sequentially
generates tokens for the missing part of a sentence
until an end-of-blank token is generated. Its genera-
tion can be of arbitrary length. By design, all these
previous approaches operate at the token level, and
thus arguably focus more on lexical appropriate-
ness than the global semantics.

In this paper, we propose INter-SEntential Trans-
former (INSET), a novel approach to sentence in-
filling. Our model first produces sentence-level
semantic features that capsulate the missing high-
level information. Then, grounded on the predicted
semantic features, the model generates the syntac-
tic and lexical features to embody the predicted
sentence. Specifically, understanding, planning,
and generation are handled by three modules in a
synergistic manner:
• a BERT-based encoder to map each sentence

to the latent semantic space.
• a sentence-level semantic planner to infer the

missing information that can bridge the se-
mantics of preceding and following context.
• a GPT-based generator (decoder) to map se-

mantic features back to the text domain.
The main contributions and advantages of this

work are summarized as follows:
• We study the task of sentence infilling, which

requires the model to handle inter-sentential
correlation and to predict missing semantic
information. This goes beyond text infilling
(Zhu et al., 2019), which asks the model to fill
in the missing part of a single sentence.
• Our approach decouples understanding, plan-

ning, generation, and leverages existing large-
scale pre-trained understanding and genera-
tion models (BERT, GPT-2). The components

of our model can be separately examined and
improved with additional data.
• Our model predicts a feature vector in the

latent semantic space for the missing sentence
and maps the vector to text. Thus, it takes care
of semantic smoothness and appropriateness.
• Our model allows the generation to be of arbi-

trary length, as in (Zhu et al., 2019).
• Compared with directly processing text, our

approach significantly reduces computation
time and memory usage during training, as
(after pre-computing sentence features) the
sequence length is the number of sentences
rather than that of tokens.

2 Related Work

Pre-Trained Language Model. Language mod-
els pre-trained on a large corpus improve natural
language understanding and generation through
transferable contextualized word representations
(Devlin et al., 2019; Lample et al., 2019) and mod-
els (Howard and Ruder, 2018). Large transformer
models (Vaswani et al., 2017) like GPT-2 (Rad-
ford et al., 2019), Megatron (https://github.
com/NVIDIA/Megatron-LM), and T5 (Raffel
et al., 2019) can achieve state-of-the-art results
without training on any particular language mod-
eling benchmark. (Keskar et al., 2019) proposes
a conditional generation model, trained to condi-
tion on control codes that govern style, content,
and other task-specific properties. Different from
them, our model builds sentence representations
via autoencoding with a pair of BERT and GPT-2.

Context-Aware Text Generation. There are
some related works on context-aware text genera-
tion (Mikolov and Zweig, 2012; Tang et al., 2016;
Mangrulkar et al., 2018). Most previous works
on language modeling with contextual informa-
tion (Wang and Cho, 2016; Wang et al., 2018; Sor-
doni et al., 2015b; Wen et al., 2015; Vinyals and
Le, 2015) treat the preceding sentences as context.
Compared with these sequential generation tasks,
our task is constrained by bidirectional context, and
is more challenging.

Text infilling (Zhu et al., 2019) aims at filling in
the missing part, given the rest of a sentence. (Liu
et al., 2019) proposes an iterative inference algo-
rithm based on gradient search for text infilling. For
story infilling, (Ippolito et al., 2019) first predicts
rare words in the missing span, and then generates
text conditioned on these words. SpanBERT (Joshi

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
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et al., 2020) masks random contiguous spans and
(pre-)trains a language model to predict tokens in
the span. XL-Editor (Shih et al., 2019) adapts XL-
Net (Yang et al., 2019) to text infilling and other
editing tasks.

(Kang and Hovy, 2019) models logic connec-
tions between sentences and generates intermedi-
ate sentences grounded on inter-sentential “flow.”
(Bhagavatula et al., 2020) formulates abductive
commonsense reasoning as a natural language in-
ference task to decide the appropriate reason that
could explain the observation in one sentence given
the background described by another sentence.
(Cheng et al., 2020) proposes a text style trans-
fer task to translate a sentence in the context of a
paragraph into the desired style. These three works
study generation tasks that address inter-sentential
relationship, and thus may be conceptually related
to our motivation.

Compared with (Zhu et al., 2019; Liu et al., 2019;
Ippolito et al., 2019; Joshi et al., 2020; Shih et al.,
2019; Kang and Hovy, 2019; Bhagavatula et al.,
2020; Cheng et al., 2020), our approach is clearly
different. We fully exploit existing large-scale pre-
trained models BERT and GPT-2 to learn smooth
sentence embeddings in the latent semantic space,
and then process sentence-level information in this
space.

Hierarchical Text Generation. Hierarchical
text generation with high-level semantic planning
has been studied in many previous works. (Sor-
doni et al., 2015a) presents a hierarchical recurrent
encoder-decoder architecture for context-aware
query suggestion. (Zhang et al., 2019) proposes a
framework to infer semantic features for response
generation using self-supervised learning. Previ-
ous works have used multi-level LSTM encoders
(Yang et al., 2016; Hu et al., 2020) and hierarchical
autoencoders (Li et al., 2015) to learn hierarchical
representations for long text. (Shen et al., 2019)
uses a variational autoencoder to encode an entire
paragraph into a single latent variable, from which
the paragraph can be generated hierarchically. In
comparison, our task is to generate intermediate
sentences in the surrounding context.

3 Tasks and Methods

3.1 Task Definition

The task of sentence infilling is formally de-
fined as follows. Consider a dataset of N

paragraphs {p(k)}Nk=1. Each paragraph p(k) =

(s
(k)
1 , s

(k)
2 , . . . , s

(k)
Mk

) consists of Mk consecu-
tive sentences. For each k, we are given a
positive integer mk ≤ Mk and the context
(s

(k)
1 , s

(k)
2 , . . . , s

(k)
mk−1, s

(k)
mk+1, . . . , s

(k)
Mk

), but the

mk’th sentence s
(k)
mk is missing. The task is to gen-

erate a sentence ŝ
(k)
mk in the missing position such

that it fits the context. For simplicity and without
any confusion, we drop the index k from now on
(note that M and m may depend on k).

The criteria for successful generation are:
• The sentence ŝm is fluent and meaningful.
• Inserting the generated sentence into the con-

text, we obtain a semantically coherent para-
graph (s1, s2, . . . , sm−1, ŝm, sm+1, . . . , sM ).
• ŝm is written in the same style as contextual

sentences {sj}j 6=m.
Since there could be multiple semantically dif-

ferent sentences that fit the same context well, it is
not necessary for ŝm to be close to the ground truth
sm. Rather, ŝm is considered successful as long as
it satisfies the criteria above.

3.2 INSET: Inter-Sentential Transformer
Model Overview. At a high level, our model con-
sists of two components: a (denoising) autoencoder
and a sentence-level transformer. The former maps
each sentence to a fixed-length feature vector in
the latent semantic space, and reconstructs the sen-
tence from the representation. The latter predicts
the semantic features of the missing sentence from
those of contextual sentences. We call our model
INter-SEntential Transformer (INSET).

Formally, let (E ,D) be an autoencoder, where E
(D) is the encoder (decoder) such that E ◦ D and
D ◦ E are supposed to be identity maps. Let T
be a sentence-level transformer with positional en-
coding P . The transformer T takes the contextual
information as input and outputs a hypothetical rep-
resentation of the missing sentence. Specifically,

ŝm = D
(
T (f1 + P(1), f2 + P(2), . . . ,

fm−1 + P(m− 1),~0 + P(m),

fm+1 + P(m+ 1), . . . , fM + P(M))[m]
)
, (1)

where fj = Esj is the encoding of the sentence sj ,
~0 is the zero vector representing the missing sen-
tence, and T (· · · )[m] is output of the transformer
T in the missing position m.

The autoencoder and the sentence-level trans-
former can be trained separately. We first train the
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[CLS] w1 w2 [MASK] w4 · · · wl [SEP]

Transformer encoder E from BERT

f [SOS] w1 w2 w3 · · · wl−1 wl

Transformer decoder D from GPT-2

[SOS] w1 w2 w3 w4 · · · wl [EOS]

s1 s2 s3 s5 s6 s7

E E E E E E

f1 f2 f3 ~0 f5 f6 f7

Sentence-level transformer T

f̂4

Figure 2: Model overview. Left panel: Denoising autoencoder. The encoder E takes a corrupted sentence (with
each token wi for i = 1, 2, . . . , l masked randomly) as input and outputs a representation of the sentence. The
decoderD should reconstruct the original uncorrupted sentence. The training parameters of E andD are initialized
with those of BERT and GPT-2 , respectively. Right panel: Sentence-level transformer. Using the encoder E , we
obtain the representation of every contextual sentence. These sentence representations are fed into a sentence-level
transformer T , which outputs a representation of the missing sentence.

former on individual sentences. Then, we precom-
pute and save the feature vectors of all sentences.
While training the latter, it is not necessary to load
the former. This makes training more efficient.

Sentence Representation Learning via Denois-
ing Autoencoding. Large-scale pre-training ap-
proaches (e.g., BERT) lead to superior performance
in many language understanding tasks related
to sentence representation learning (Reimers and
Gurevych, 2019). However, the features learned by
BERT (or fine-tuned on downstream tasks) cannot
be directly used for generation tasks, as the masked
language model objective of BERT does not en-
force the reconstruction of the original sentence
from the extracted features. Instead of directly
using BERT features, we learn sentence represen-
tations via autoencoding. This naturally integrates
BERT and GPT-2, and combines sentence repre-
sentation learning and generation.

As shown in the left panel of Figure 2, we pad the
[CLS] token at the beginning of each sentence sj .
We initialize the encoder E with BERT, and extract
the output fj corresponding to the [CLS] token as
the embedding of sj . We initialize the decoder D
with GPT-2, and feed fj as the embedding of the
zeroth token. Then, we haveD generate a sequence
of tokens in the hope that the sequence matches sj
(padded with special tokens [SOS] at the beginning
and [EOS] at the end). To train the autoencoder,
we use teacher forcing and minimize the negative
log-likelihood loss by (fine-)tuning the parameters
of E and D jointly.

An autoencoder embeds sentences into vectors
in the latent space. We hope that the embedding
is smooth in the sense that semantically similar

sentences are mapped to vectors that are close to
each other. In particular, interpolation between two
points in the latent space should correspond to a
smooth semantic transition in the text domain. To
this end, we use the following two tricks.

First, we employ a denoising autoencoder, which
is known to yield a smoother embedding (Vincent
et al., 2008). To add noise, we randomly mask each
token in sj with probability 15% by replacing the
masked tokens with a special token [MASK]. Dur-
ing training, we use the “noisy” sj with masks as
input to the encoder, and use the “clean” sj without
masks to compute the loss function. Of course, one
could try more sophisticated noise-adding strate-
gies (Lewis et al., 2019).

Second, we use early stopping. In our experi-
ments, we observe that as training proceeds, the
validation loss of the autoencoder keeps decreas-
ing. In the absence of masks, presumably it would
eventually decay to zero so that the autoencoder
perfectly reconstructs every sentence. However,
this does not necessarily imply that the embedding
is smooth. On the contrary, an overtrained autoen-
coder often tries to remember every individual to-
ken and thus fails to achieve smoothness in the
latent semantic space. Moreover, it can catastrophi-
cally forget some of the information in the initial
pre-trained model (GPT-2) and partially lose the
power of generating fluent sentences. In practice,
we select a checkpoint by monitoring its valida-
tion performance on sentence interpolation. Some
examples of sentence interpolation are shown in
Table 1.

Sentence Feature Prediction. After encoding
sentences into feature vectors, we use a sentence-
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level transformer T to predict the feature vector
of the missing sentence from those of contextual
sentences. This is analogous to the task of predict-
ing masked tokens for (pre-)training BERT (Devlin
et al., 2019), but now it is at the sentence level. In-
deed, sentence feature vectors in T correspond to
token embeddings in BERT, and sentence position
ID in T corresponds to position ID in BERT.

We train the transformer T with the objective

LSentTrans = 1− cos(fm, T (· · · )[m]), (2)

where cos(· · · ) is the cosine similarity between
the ground truth sentence feature vector fm and
the prediction T (· · · )[m] in Eq. (1). Note that
cos(· · · ) is a good similarity measure only when
its arguments are unit vectors. This is guaranteed
by the technical trick of fixing the parameters of the
last LayerNorm of the transformers E and T , i.e.,
do not compute the gradients of these parameters
in backpropagation.

Generating Sentences from Features. At test
time, we use the decoder D to generate the missing
sentence by mapping the predicted feature vector
to the text domain. Note that standard generation
schemes such as top-k sampling, beam search, and
nucleus sampling (Holtzman et al., 2020) can be
used without additional modeling effort.

Computational Efficiency. Compared with
vanilla GPT-2, our model can process and analyze
a document containing many sentences at the
discourse level with dramatically lower time and
space complexity. To estimate quantitatively, sup-
pose that a document contains Ns sentences, each
of which has Nt tokens. Then, the time complexity
is reduced from O(N2

sN
2
t ) to O(N2

s + NsN
2
t ).

Moreover, sentence features can be precomputed
once and then reused for every epoch or even
in other tasks on the same dataset. If sentence
features have been precomputed and are already
directly available, the time complexity is further
reduced to O(N2

s ).

3.3 Sentence Infilling with Lexical
Constraints

We further introduce a related task called sentence
infilling with lexical constraints, which is the same
as sentence infilling except that now we are given
some keywords of the missing sentence as an addi-
tional input to hint the generation. The keywords
are treated as soft constraints (aka priming): The

generated sentence is not directly enforced to con-
tain the exact keywords. It may contain a synonym
or share some semantics with the keywords.

We expect that the presence of keyword con-
straints makes the task more difficult rather than
easier, although incorporating keywords can signif-
icantly improve the BLEU score of the generation
with respect to the ground truth. Intuitively, key-
words force the model to speculate the semantics of
the ground truth sentence, and significantly reduce
the number of possible solutions. In the absence of
keywords, the model has the freedom of complet-
ing the task according to its own way of thinking.

To handle keyword constraints, we introduce a
new component called the constraint feature en-
coder to our architecture. It is a transformer en-
coder K that maps a set S of keywords to a feature
vector that lives in the same latent space of sentence
embeddings. We train K with knowledge distilla-
tion (Kim and Rush, 2016). The teacher model
is the sentence encoder E , which maps a sentence
containing the keywords in S to a feature vector.
We use the cosine similarity loss between these two
feature vectors to teach the student model K.

For implementation details, suppose we have
two keywords w1 and w2. Then, the input to K is
three tokens ([CLS], w1, w2). We replace the zero
vector in Eq. (1), which represents the missing
sentence, with the output of K above the [CLS]
token. We do not use positional encoding in K
because keywords do not have order.

4 Experiments

4.1 Experimental Setup

We evaluate our model on two datasets (TripAdvi-
sor and Recipe). We have released the source code
to facilitate future research (https://github.
com/dreasysnail/INSET).

Dataset and Preprocessing. We conduct experi-
ments on the TripAdvisor and Recipe datasets. For
the TripAdvisor dataset of hotel reviews (Wang
et al., 2010), we partially follow the preprocessing
in (Cho et al., 2019). Our preprocessing includes,
but is not limited to: (i) discarding reviews con-
taining non-English tokens; (ii) removing duplicate
reviews so that only one copy is retained. We set
the maximum number of tokens in a sentence to
be 32 and the minimum number of sentences in
a review to be 7 (so that the context is not too
short). Any review with longer sentences or having

https://github.com/dreasysnail/INSET
https://github.com/dreasysnail/INSET
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a smaller number of sentences is discarded.
We use the following strategy to mask sentences.

For a paragraph consisting of M ≥ 7 consecutive
sentences, we split it into M−6 data points, each of
which has exactly 7 sentences. The j’th data point
spans from the j’th to the (j + 6)’th sentence (in-
clusive) of the paragraph, for j = 1, 2, . . . ,M − 6.
We mask the middle (i.e., 4th) sentence for each
data point so that the masking rate is 1/7 ≈ 14.3%,
which is close to that (15%) of BERT. After prepro-
cessing, the size of the dataset (training, validation,
test) is (1108134, 62543, 533) data points.

Our strategy of always masking the middle sen-
tence out of 7 sentences is not only the simplest
but also without loss of generality. Our model is
directly applicable to the situation where we ran-
domly mask, e.g., 3 out of 20 sentences. However,
the quality of human evaluation may be affected
because the patience and attention of human evalu-
ators may decrease as the context length increases.
For the effectiveness of human evaluation, we use
the simplest strategy to mask sentences.

The Recipe dataset is obtained from (https:
//commoncrawl.org), where the metadata is
formatted according to Schema.org (https://
schema.org/Recipe). We use the same pre-
processing as that of the TripAdvisor dataset except
that instructions with less than 5 sentences are dis-
carded. After preprocessing, the size of the dataset
(training, validation, test) is (1073886, 56055, 500)
data points. Recipe instructions usually describe
a time-ordered procedure, and thus are ideal for
testing the reasoning capability of the model.

Evaluation Metrics. Following (Galley et al.,
2019; Zhang et al., 2020), we perform automatic
evaluation using standard machine translation met-
rics, including BLEU (Papineni et al., 2002), NIST
(Doddington, 2002), and METEOR (Lavie and
Agarwal, 2007). As a variant of BLEU, NIST
weights n-gram matches by their information gain,
and thus penalizes uninformative n-grams. We
also use Entropy (Zhang et al., 2018) and Dist-n
(Li et al., 2016) to evaluate lexical diversity. See
(Galley et al., 2019) for more details.

BLEU, NIST, and METEOR measure the sim-
ilarity between the generated sentence and the
ground truth. They are not ideal scores for our
task because a sentence that is semantically very
different from the ground truth could possibly fit
the context perfectly. However, it may still be help-
ful to compute these commonly used scores. It

is an important and challenging open problem to
design an automatic score that faithfully measures
the overall quality of the generation in our task.

Baseline. Our baseline is the self-attention model
for text infilling (Zhu et al., 2019). It is a trans-
former language model with novel positional en-
coding. The traditional approach of encoding the
absolute position of each token is not directly ap-
plicable to our task because we do not know in
advance the absolute positions of contextual tokens
after the missing sentence. To resolve this issue,
(Zhu et al., 2019) divides the text into segments.
In the case of only one masked sentence, the first
(third) segment consists of contextual tokens be-
fore (after) the mask, and the second corresponds
to the mask. Then, each token is indexed by its
segment ID and its position ID within the segment.
The missing tokens are sequentially generated from
these IDs and the current surrounding context.

Training the baseline model on our dataset, we
use the same set of hyperparameters as in the origi-
nal reference except that the batch size is set to 250
(it is 400 in (Zhu et al., 2019)). This avoids out-of-
memory errors. Note that we are handling much
longer sequences (usually > 100 tokens) than (Zhu
et al., 2019), in which the maximum number of
tokens in a sequence is only 16.

The baseline model is trained for a sufficient
number (30) of epochs until the validation (negative
log-likelihood) loss and perplexity clearly saturate.
We report the results of the checkpoint with the
smallest validation loss and perplexity. Note that
we observe that other checkpoints in the saturation
regime behave very similarly on the test set.

Keyword Extraction. In the task of sentence in-
filling with lexical constraints, we need to extract
keywords from the masked sentence. Keyword
extraction is a classical problem in information re-
trieval. Standard methods include, but are not lim-
ited to, tf-idf (term frequency–inverse document
frequency) (Ramos, 2003). We have tried tf-idf, but
it does not work well for the TripAdvisor dataset
of hotel reviews. One reason is that this dataset
has quite a few typos, and unfortunately tf-idf fa-
vors them because typos occur less frequently than
normal words. This issue can be resolved by manu-
ally filtering out all typos. After the fix, however,
we observe that the quality of extracted keywords
remains unsatisfactory.

We use the following strategy to extract key-

https://commoncrawl.org
https://commoncrawl.org
https://schema.org/Recipe
https://schema.org/Recipe
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words. We first define a list of stop words. To this
end, we use the stop word list from NLTK (Bird
et al., 2009) and manually add a number of words
(e.g., “hotel”) that are not very informative for the
particular dataset of hotel reviews. For each sen-
tence, we select non-stop words that appear most
frequently in the entire dataset. We usually select
two keywords per sentence, but occasionally select
one or even zero if few words remain after filtering
out stop words and typos. We observe that the key-
words extracted with this strategy can pivot the gist
of most sentences well.

Model Size and Hyperparameters. Our archi-
tecture has several components. The encoder E and
the sentence-level transformer T have the same
size as BERT BASE. The decoder D has the same
size as GPT-2 (117M). In the presence of lexical
constraints, the constraint feature encoder K has
the same size as BERTBASE. During decoding, we
use beam search with beam size 5.

4.2 Experimental Results
Sentence Representation Learning. We first
qualitatively evaluate the smoothness of the latent-
space sentence embeddings learned via denoising
autoencoding. Table 1 shows two examples of sen-
tence interpolation on the TripAdvisor dataset. In
each example, the first and last sentences are inputs
by hand, and the 3 intermediate ones are interpo-
lations generated by our (denoising) autoencoder.
We observe that the interpolations not only com-
bine words from input sentences, but are readable,
meaningful, and show a smooth semantic transition
from the first to the last sentence. We speculate
that the power of generating fluent and semanti-
cally coherent sentence interpolations is derived
from BERT and GPT-2. Inherited from these large-
scale pre-trained models, the latent-space sentence
embedding is reasonably smooth as our sentence
interpolation results show.

Automatic Evaluation. Table 2 shows the
BLEU, NIST, METEOR, Entropy, Dist-n scores,
and the average length (number of words) of the
generated sentences. For the TripAdvisor dataset,
we also present results in the presence of keyword
constrains.

Table 2 compares the baseline (Zhu et al., 2019),
our results, and the ground truth. In the absence of
keyword constraints, INSET outperforms the base-
line in terms of all scores on both datasets. This
indicates that our results are semantically closer

example 1

A The pool area was nice and sunbathing was great.
- The pool area was nice and staff was great.
- The pool area staff was nice and very helpful.
- Front desk staff were very helpful and friendly.
B Front desk staff were very nice and helpful.

example 2

A The service was attentive and we had the best food in town.
- The service was attentive and we had a great room with plenty of

food.
- The room was spacious with good service and we had a queen bed.
- The room was very spacious with queen beds.
B The room was very spacious with 2 queen beds.

Table 1: Sentence interpolation. “A” and “B” are two
sentences in the test set. The intermediate sentences
are generated by interpolating between the latent-space
representations of A and B.

to the ground truth and are more diverse than the
baseline. In terms of the average generation length,
our results are much closer to the ground truth than
the baseline is.

Table 2 also presents two ablation studies. The
first shows the performance decrease with less con-
text. Recall that each data point in the TripAdvisor
dataset has 6 contextual sentences (full context).
We train INSET on the same set of data points but
truncate the context to 4 sentences (less context).
The second ablation study shows the effect of con-
text in the presence of keywords. We compare two
models. The first (INSET w/ context) is the model
described in Subsection 3.3. Its generation is based
on both keywords and context. The second model
(INSET w/o context) is D ◦ K, which directly de-
codes the output of the constraint feature encoder
K using the decoderD. Its generation is only based
on keywords but not context. We observe that the
scores of the first model are higher than those of
the second. Both ablation studies show that our
model can make full use of context to improve the
generation.

Human Evaluation. We performed human eval-
uation of our method on the TripAdvisor dataset.
We used a crowd evaluation platform to compare
two systems and assess their fluency, informative-
ness, and relevance to the surrounding context (co-
herence) on 500 random samples from the test set.
Following recommended best practices, each sam-
ple was evaluated by five judges. We performed
simple spam detection by excluding judges that
were too fast or performed too low on a gold set.
To avoid bias, we randomized the position of each
system while asking judges to compare our systems
(with and without keywords) with the ground truth
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Dataset NIST BLEU MET- Ent. Dist Len.
Method N-2 N-4 B-2 B-4 EOR E-4 D-1 D-2

Trip

Without keyword constraints:
baseline 0.54 0.54 4.29% 0.54% 5.85% 3.10 1.32% 2.23% 6.97

INSET (full context) 1.23 1.23 6.08% 0.96% 7.04% 8.13 16.30% 46.64% 10.70
INSET (less context) 1.02 1.02 4.74% 0.51% 5.83% 7.85 12.98% 41.39% 11.26
With keyword constraints:

INSET (w/ context) 3.09 3.15 20.14% 6.57% 16.48% 8.34 22.61% 63.60% 11.23
INSET (w/o context) 3.00 3.04 19.47% 6.07% 16.00% 8.16 20.51% 57.41% 11.12
ground truth (human) - - - - - 8.40 33.96% 79.84% 11.36

Recipe
baseline 0.67 0.68 3.91% 0.88% 5.23% 3.12 0.37% 0.47% 15.32

INSET (ours) 1.36 1.37 7.24% 1.33% 7.07% 7.99 20.12% 55.13% 9.63
ground truth (human) - - - - - 8.22 29.21% 74.97% 10.55

Table 2: Automatic evaluation. “w/ context” indicates that the generation is based on both keywords and context.
“w/o context” indicates that the generation is only based on keywords but not context. “Ent.” and “Len.” stand for
Entropy and the average generation length, respectively.

system A system B criterion prefer A (%) same (%) prefer B (%)

coherence 54.16 13.76 32.07
INSET (ours) baseline fluency 43.38 26.98 29.64

informativeness 53.48 18.79 27.72

coherence 27.87 15.69 56.44
INSET (ours) ground truth fluency 21.78 31.38 46.84

informativeness 27.49 21.92 50.59

INSET coherence 18.50 23.45 58.04
w/ keywords ground truth fluency 17.82 29.78 52.39
w/ context informativeness 20.54 26.13 53.33

INSET INSET coherence 37.71 37.62 24.68
w/ keywords w/ keywords fluency 36.16 37.87 25.97
w/ context w/o context informativeness 35.93 39.86 24.21

INSET INSET coherence 34.97 17.06 47.97
w/ keywords w/o keywords fluency 29.30 28.04 42.65
w/ context w/ context informativeness 31.73 23.24 45.03

Table 3: Human evaluation. “w/(w/o) keywords” and “w/(w/o) context” indicate whether the generation is based
on keywords and context, respectively. All numbers are percentages.

and the text infilling baseline (Zhu et al., 2019).

Table 3 shows the human evaluation results. The
judges strongly prefer our results (without key-
words) to the baseline in all aspects: coherence,
fluency, and informativeness. They also strongly
prefer the ground truth to our results. Moreover, our
results with keywords and context are compared
with three other systems: (i) the ground truth; (ii)
our results with keywords but not context; (iii) our
results with context but not keywords. The second
comparison shows that in the presence of keywords,
our model can use context to improve all aspects
of the generation. The third comparison shows
that the presence of keywords reduces the perfor-
mance of our model, probably because keywords
are constraints that the model must take care of.

Generated Examples. To qualitatively demon-
strate the effectiveness of our model, Table 4 shows
some examples from the TripAdvisor and Recipe
datasets. We observe that the baseline (Zhu et al.,
2019) tends to generate generic sentences, while
our results (either with or without keywords) are
more informative and can fit the surrounding con-
text reasonably well. Table 5 shows examples gen-
erated by our model in the same context but with
different keywords. Our model can extend key-
words to a full sentence, adapting to the context.
More examples generated by our model on both
datasets are given in Appendix A.

5 Conclusions and Outlook

We study the task of sentence infilling, which is
analogous to the masked language modeling task
for (pre-)training BERT, but now it is at the sen-
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example from the TripAdvisor dataset example from the TripAdvisor dataset example from the Recipe dataset

preceding
context

It was such a pleasure to see somthing new
every night. It was not very crowded so we
were able to get great seats at either the pool
or the beach. The VIP sevice was great for
dinner reservations and pillow service.

The walls are very thin. Since this is a
family vacation type of hotel, people are
up at the pool/bbq area/hallways during all
hours of the night. Do not stay here if you
need a quite night of sleep.

After another 15 minutes or so the mixture
should thicken up. The mixture will con-
tinue to thicken as it cools.

following
context

Enjoyed the shrimp coctail and seafood
salad delivered to us while enjoying the pool.
All of us would not want to stay at another
resort and are planning to go back again. En-
joy and Hola!Karen and FriendsMilford, CT

You have to take multiple elevators to go
all the way to the 5th floor. My other com-
plaint is that the hotel staff seemed a bit un-
professional. Not what I’m used to when I
stay at Marriot properties.

Sterilize your jars and lids and while still
hot fill with the jam leaving about a 1/2 inch
headspace. Place lids onto the jars and boil
in a water bath with jars covered by 3 inches
of water for 10 minutes.

ground truth We did bring a lot of $1 for tipping and of
course the service stepped up a notch more.

Also, the elevator situation is weird. Remove from the heat and stir in your
amaretto.

baseline The staff was friendly and helpful. The rooms are very clean and well kept. Add the flour mixture to the dry ingredients
and mix well.

INSET The buffet dinner was amazing and we had
the best food in the resort.

There is only one elevator block in the ho-
tel.

Carefully remove the jars from hot water
and keep going until a thick sauce is formed.

+ keywords $, service elevator, situation -

INSET (w/
keywords)

Service fee for the buffet dinner was $5.00
and we paid $5.00 extra for food service.

The elevator situation is extremely frustrat-
ing.

-

Table 4: Examples generated by our model and the baseline.

preceding context My room was a very good size. Tiled floors and woodchip painted walls. The tv did not work - so what.

following context Great places to eat close by and very reasonable. No air con -so summer could be sticky. My concern is the left luggage room not
supervised.

human oracle The location is terrific beside Sevilla metro stn so only 2 to get by metro all the way to airport.

+ (walk, shopping) Walking distance to shopping mall and Circular Quay.

+ (internet, $) Internet cost $20.00 per day.

Table 5: Examples generated by our model in the same context but with different keywords. “+ (· · · )” is keywords.

tence level. Sentence infilling requires the model to
handle long-range inter-sentential correlation and
to process high-level semantic information. It is
complementary to (token-level) masked language
modeling, which focuses more on syntactic appro-
priateness and short-range correlation. We pro-
pose a framework called INSET to decouple three
aspects of the task (understanding, planning, and
generation) and address them in a unified manner.
We demonstrate the effectiveness of our approach
using automatic and human evaluation.

Our approach can be modified or extended in
some ways. (i) We use a denoising autoencoder to
obtain sentence embeddings. One can try to use
a variational autoencoder (Kingma and Welling,
2014) instead. A large-scale pre-trained variational
autoencoder (Li et al., 2020) could possibly im-
prove the smoothness of sentence embeddings. (ii)
Our model predicts a feature vector for the missing
sentence. This vector can be fed into and serve as a
guide to token-level models including the baseline
(Zhu et al., 2019).

Since sentence infilling is analogous to masked
language modeling, we expect that it can also be
used as a pre-training task. For example, in ma-

chine translation of long texts, it is often the case
that sentences are translated independently from
each other. This sometimes leads to incoherence
or even inconsistency between the translated sen-
tences. A post-editor to fix the issue (Voita et al.,
2019) should be able to understand inter-sentential
relationship and to generate fluent sentences in the
surrounding context, both of which can be learned
from sentence infilling.

Note. After this paper was posted on arXiv, some
related works appeared. (Shen et al., 2020) pro-
poses Blank Language Model for text infilling and
other tasks. (Donahue et al., 2020) trains (fine-
tunes) a language model (GPT-2) for text and sen-
tence infilling. (Li et al., 2020) pre-trains a large-
scale variational autoencoder with a pair of BERT
and GPT-2. (Ippolito et al., 2020) uses a sentence-
level language model, which operates on sentence
embeddings obtained from BERT, to predict story
endings.
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example 1 example 2

preceding
context

I went in October to meet with their FABULOUS wedding coordina-
tor Summer Laetari. Their property is very beautiful, it’s extremely
green and lush. Parrot Key has 4 pools.

Good Location if traveling for business or you have a car! Got this
hotel thru a discount travel company and paid $65.00 american a
night. Excellent deal at this price.

following
context

Their cottages are brand new, very clean and well appointed. If you
are looking for a place to have a destination wedding I would recom-
mend Parrot Key! My family and I have already planned another trip
to visit next month.

Unfortunetly the view is going to be partly blocked with yet another
“Glass tower” going in. The room was spacious and clean. No tub in
our room.

ground truth It’s very colorful and unique. We had a terrific view from the 16th floor.

INSET There is also a beach resort with lots of loungers. We had a room on the upper floor which overlooks the lobby.

example 3 example 4

preceding
context

My family stayed here for 5 nights in August 2011. The resort is
beautiful and the grounds are immaculately manicured. The kitchen
is great for the family.

We stayed in 2 interconnecting rooms as we are a family of 5. We
started off with a bad start, as the check in was not aware that we
were with 3 kids. I booked directly with them and got a confirmation
via email for 2 rooms for 2 adults.

following
context

We would just pack a cooler and head out in our rental car and ex-
plore the island. The pools at the resort were fabulous and the staff
was attentive. We used the grills(kept very clean) several nights.

Obviously this was not reflected in the paper work check-in had. We
could only add an extra bed for an extra charge, but I refused to pay
for this as I had phoned them before. The check-in lady would not
bend, and we had to go for 2 rooms with 2 seperate beds.

ground truth We were able to keep essentials in the room which made those early
morning excursions more enjoyable.

Before we arrived I called reservations to change this into 2 adults
and 3 children.

INSET We have plenty of kitchen utensils and the beach was a nice place to
stay.

When we checked in we were told that we had to request another
room on the 2nd floor due to the extra charges.

example 5 example 6

preceding
context

It was such a pleasure to see somthing new every night. It was not
very crowded so we were able to get great seats at either the pool
or the beach. The VIP sevice was great for dinner reservations and
pillow service.

My intentions were to expect the worst which made my stay there
that much better than everyone elses. If everyone thought they were
staying at the Hyatt, no wonder they thought so negatively about the
place. I am in my late twenties and wanted a place where I could
walk to local bars, restaurants, etc.

following
context

Enjoyed the shrimp coctail and seafood salad delivered to us while
enjoying the pool. All of us would not want to stay at another re-
sort and are planning to go back again. Enjoy and Hola!Karen and
FriendsMilford, CT

This was the perfect place for me. As far as the accomodations,
the beds were small (but so was everywhere else in Europe) and the
showers were unusual. Otherwise it was worth the money for a prime
time location in the heart of the night life area.

ground truth We did bring a lot of $1 for tipping and of course the service stepped
up a notch more.

without struggling to find my way home at night.

INSET The buffet dinner was amazing and we had the best food in the resort. So I had no reason to stay in the HOTEL itself.

Table 6: Generated examples by our model on the TripAdvisor dataset
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example 1 example 2

preceding
context

Roll up rectangles width-wise and pinch ends to seal. Bake for 12
minutes or until the tops begin to brown.

Drizzle each potato cup with 1 teaspoon browned butter. Cover muf-
fin tin tightly with aluminium foil and place in oven.

following
context

Best when served warm. For added flavor, serve with strawberry
jelly.

Remove from oven and turn broiler on high. Sprinkle potato rounds
evenly with remaining parmesan cheese.

ground truth Let cool on baking sheet. Bake for 25 minutes.

INSET Cool on wire rack and remove. Bake for 20 minutes or until potatoes are tender.

example 3 example 4

preceding
context

Preheat oven to 425 degrees Fahrenheit. Line a baking sheet with a
SILPAT mat.

Heat the oil in a pan at medium. Add the mushrooms and saute until
tender, about 7-10 minutes.

following
context

With a pastry cutter, cut in the coconut oil and the butter. Make a well
and add in the milk 1/2 cup at a time, stirring gently with a wooden
spoon.

Add the reserved water and simmer at medium-high until reduced by
half, about 10 minutes. Meanwhile cook the pasta as directed on the
package.

ground truth In a bowl, mix the flour, baking powder, baking soda and sea salt. Add shallots, garlic, thyme, salt and pepper and saute for 2 minutes.

INSET In a medium bowl, mix together the flour, baking powder, sugar, salt
and cinnamon.

Add the garlic and sautee until fragrant, about 2 minutes.

example 5 example 6

preceding
context

After another 15 minutes or so the mixture should thicken up. The
mixture will continue to thicken as it cools.

Bake the graham cracker crust for 10 minutes. Remove from oven
and allow to cool to room temperature.

following
context

Sterilize your jars and lids and while still hot fill with the jam leaving
about a 1/2 inch headspace. Place lids onto the jars and boil in a water
bath with jars covered by 3 inches of water for 10 minutes.

Stir in the lime zest and lime juice. Stir until mixture is smooth and
begins to slightly thicken.

ground truth Remove from the heat and stir in your amaretto. Meanwhile, combine the egg yolks and condensed milk in a medium
bowl.

INSET Carefully remove the jars from hot water and keep going until a thick
sauce is formed.

In a medium bowl, combine the cream cheese and powdered sugar,
stirring until smooth.

Table 7: Generated examples by our model on the Recipe dataset

preceding context Also has a safe. The hotel is in a good location, beside the City Centre and there are a nice selection of shops within the Monte Carlo.
Service was very good but avoid the concierge in the morning when people are booking tours, the queues are long.

following context No wi-fi in the room which is a bit annoying but they have it in the foodcourt by Starbucks and McDs. Also we were disappointed
to see the $15/night resort fee was charged to our credit card after our stay. I don’t recall them mentioning this at check-in.

human oracle CVs is next door and it’s 24/7 so you can buy snacks and anything else you fancy.

+ (breakfast, cereal) Breakfast is included with cereal, muffins and breads.

+ (food, expensive) Prices are expensive but food in the hotel is very cheap.

Table 8: Examples generated by our model in the same context but with different keywords. “+ (· · · )” is keywords.


