
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2370–2380
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2370

MultiQT: Multimodal Learning
for Real-Time Question Tracking in Speech

Jakob D. Havtorn Jan Latko Joakim Edin Lasse Borgholt Lars Maaløe
Lorenzo Belgrano Nicolai F. Jacobsen Regitze Sdun Željko Agić
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Abstract

We address a challenging and practical task
of labeling questions in speech in real time
during telephone calls to emergency medi-
cal services in English, which embeds within
a broader decision support system for emer-
gency call-takers. We propose a novel mul-
timodal approach to real-time sequence label-
ing in speech. Our model treats speech and
its own textual representation as two separate
modalities or views, as it jointly learns from
streamed audio and its noisy transcription into
text via automatic speech recognition. Our re-
sults show significant gains of jointly learn-
ing from the two modalities when compared to
text or audio only, under adverse noise and lim-
ited volume of training data. The results gen-
eralize to medical symptoms detection where
we observe a similar pattern of improvements
with multimodal learning.

1 Introduction

Our paper addresses the challenge of learning to
discover and label questions in telephone calls to
emergency medical services in English. The task
is demanding in two key aspects:

1. Noise: A typical phone call to an emergency
medical service differs significantly from data
within most standard speech datasets. Most im-
portantly, emergency calls are noisy by nature
due to very stressful conversations conveyed over
poor telephone lines. Automatic speech recogni-
tion (ASR) and subsequent text processing quickly
becomes prohibitive in such noisy environments,
where word error rates (WER) are significantly
higher than for standard benchmark data (Han et al.,
2017). For this reason, we propose a sequence la-
beler that makes use of two modalities of a phone
call: audio and its transcription into text by utiliz-
ing an ASR model. Hereby we create a multimodal

Figure 1: A speech sequence from our phone call
dataset. Two audio segments are highlighted: a ques-
tion (in blue) and a reported symptom (in yellow).

architecture that is more robust to the adverse con-
ditions of an emergency call.
2. Real-time processing: Our model is required
to work incrementally to discover questions in real
time within incoming streams of audio in order to
work as a live decision support system. At runtime,
no segmentation into sub-call utterances such as
phrases or sentences is easily available. The lack
of segmentation coupled with the real-time pro-
cessing constraint makes it computationally pro-
hibitive to discover alignments between speech and
its automatic transcription. For these reasons, we
cannot utilize standard approaches to multimodal
learning which typically rely on near-perfect cross-
modal alignments between short and well-defined
segments (Baltrušaitis et al., 2018).

Context and relevance. Learning to label se-
quences of text is one of the more thoroughly
explored topics in natural language processing.
In recent times, neural networks are applied not
only to sequential labeling like part-of-speech tag-
ging (Plank et al., 2016) or named entity recogni-
tion (Ma and Hovy, 2016), but also to cast into a
labeling framework otherwise non-sequential tasks
such as syntactic parsing (Gómez-Rodrı́guez and
Vilares, 2018; Strzyz et al., 2019).

By contrast, assigning labels to audio sequences
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of human speech is comparatively less charted out.
When addressed, speech labeling typically adopts
a solution by proxy, which is to automatically tran-
scribe speech into text, and then apply a text-only
model (Surdeanu et al., 2005; Mollá et al., 2007; Ei-
delman et al., 2010). The challenge then becomes
not to natively label speech, but to adapt the model
to adverse conditions of speech recognition error
rates. Such models typically feature in end-to-end
applications such as dialogue state tracking (Hen-
derson et al., 2014; Ram et al., 2018). Recent ad-
vances in end-to-end neural network learning offer
promise to directly label linguistic categories from
speech alone (Ghannay et al., 2018). From another
viewpoint, multimodal learning is successfully ap-
plied to multimedia processing where the modal-
ities such as text, speech, and video are closely
aligned. However, contributions there typically fea-
ture classification tasks such as sentiment analysis
and not finer-grained multimedia sequence label-
ing (Zadeh et al., 2017).

Our contributions. We propose a novel neural
architecture to incrementally label questions in
speech by learning from its two modalities or views:
the native audio signal itself and its transcription
into noisy text via ASR.

1. Our model utilizes the online temporal align-
ment between the input audio signal and its raw
ASR transcription. By taking advantage of this
fortuitous real-time coupling, we avoid having
to learn the multimodal alignment over the en-
tire phone call and its transcript, which would
violate the real-time processing constraint that
is crucial for decision support.

2. We achieve consistent and significant improve-
ments from learning jointly from the two modal-
ities compared to ASR transcriptions and audio
only. The improvements hold across two inher-
ently different audio sequence labeling tasks.

3. Our evaluation framework features a challeng-
ing real-world task with noisy inputs and real-
time processing requirements. Under this adver-
sity, we find questions and medical symptoms
in emergency phone calls with high accuracy.
Our task is illustrated in Figure 1.

2 Multimodal speech labeling

We define the multimodal speech labeler MultiQT
as a combination of three neural networks that we
apply to a number of temporal input modalities.

In our case, we consider speech and associated
machine transcripts as the separate modalities or
views. The model is illustrated in Figure 2.

To obtain temporal alignment between speech
and text, we propose a simple approach that uses
the output of an ASR system as the textual repre-
sentation. Here, we take the ASR to be a neural
network trained with the connectionist temporal
classification (CTC) loss function (Graves et al.,
2006). Given audio, it produces a temporal soft-
max of length Ts with a feature dimension defined
as a categorical distribution, typically over charac-
ters, words or subword units, per timestep.

We refer to a sequence of input representations
of the audio modality as (x

(t)
a )t∈[1..Ta] and of the

textual modality as (x
(t)
s )t∈[1..Ts]. From the input

sequences we compute independent unimodal rep-
resentations denoted by z

(t)
a and z

(t)
s by applying

two unimodal transformations denoted by fa and
fs, respectively. Each of these transformations is
parameterized by a convolutional neural network
with overall temporal strides sa and ss and recep-
tive fields ra and rs. With Tm as length of the
resulting unimodal representations:

z(t)a = fa

((
x(i)
a

)sat+ra,r

i=sat−ra,l

)
z(t)s = fs

((
x(i)
s

)sst+rs,r

i=sst−rs,l

)
,

(1)

for t ∈ [1..Tm], where ra,l, ra,r, rs,l and rs,r are
the left and right half receptive fields of fa and
fs, respectively. For fa, ra,l = b(ra − 1)/2c and
ra,r = d(ra − 1)/2e and similarly for fs. For
i < 1 and i > Ta we define x

(i)
a and x

(i)
s by zero

padding, effectively padding with half the receptive
field on the left and right sides of the input. This
then implies that Tm = bTa/sac = bTs/ssc which
constrains the strides according to Ta and Ts and
functions as “same padding”. This lets us do convo-
lutions without padding the internal representations
for each layer in the neural networks, which in turn
allows for online streaming.

To form a joint multimodal representation from
z
(t)
a and z

(t)
s we join the representations along the

feature dimension. In the multimodal learning lit-
terature such an operation is sometimes called fu-
sion (Zadeh et al., 2017). We denote the combined
multimodal representation by z

(t)
m and obtain it in a

time-binded manner such that for a certain timestep
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Figure 2: MultiQT model illustration for two timesteps
i and j. We depict the convolutional transformations
fa and fs of the audio and character temporal softmax
inputs into the respective modality encodings z

(i)
a and

z
(i)
s , along with the corresponding receptive fields and

strides: ra, sa and rs, ss. The convolutions are fol-
lowed by multimodal fusion and finally dense layers
g and h to predict the question labels ŷ(i) and ŷ(j).

z
(t)
m only depends on z

(t)
a and z

(t)
s ,

z(t)m = fusion
(
z(t)a , z(t)s

)
. (2)

In our experiments fusion(·) either denotes a sim-
ple concatenation, [z

(t)
a ; z

(t)
s ], or a flattened outer

product, [1 z
(t)
a ]⊗ [1 z

(t)
s ]. The latter is similar to

the fusion introduced by Zadeh et al. (2017), but
we do not collapse the time dimension since our
model predicts sequential labels.

Finally, z(t)m is transformed before projection into
the output space:

z(t)y = g
(
z(t)m

)
, (3)

ŷ(t) = h
(
z(t)y

)
, (4)

where g is a fully connected neural network and
h is a single dense layer followed by a softmax
activation such that ŷ(t) ∈ RK is a vector of prob-
abilities summing to one for each of the K output
categories. The predicted class is arg max(ŷ(t)).

2.1 Objective functions

In general, the loss is defined as a function of all
learnable parameters Θ and is computed as the
average loss on M examples in a mini-batch. We
denote by {Xa,Xs} a dataset consisting of N pairs
of input sequences of each of the two modalities.
As short-hand notation, let X(n)

a refer to the n’th
audio sequence example in Xa and similarly for

X
(n)
s . The mini-batch loss is then

L
(

Θ;
{
X(n)

a ,X(n)
s

}
n∈Bi

)
=

1

M

∑
n∈Bi

L(n)
(

Θ;X(n)
a ,X(n)

s

)
,

(5)

where Bi is an index set uniformly sampled from
[1..N ] which defines the i’th batch of size |Bi| =
M .

The loss for each example, L(n), is computed as
the time-average of the loss per timestep,

L(n)
(

Θ;X(n)
a ,X(n)

s

)
=

1

T

T∑
t=1

L(n,t)
(

Θ;X(n,ta)
a ,X(n,ts)

s

)
,

(6)

where ta = [sat− ra,l .. sat+ ra,r] and similarly
for ts since the dependency of the loss per timestep
is only on a limited timespan of the input. The
loss per timestep is defined as the categorical cross-
entropy loss between the softmax prediction ŷ(t)

and the one-hot encoded ground truth target y(t),

L(n,t)
(

Θ;X(n,ta)
a ,X(n,ts)

s

)
=

K∑
k=1

y
(t)
k log(ŷ

(t)
k ).

The full set of learnable parameters Θ is jointly op-
timized by mini-batch stochastic gradient descent.

2.2 Multitask objective
In addition to the loss functions defined above, we
also consider multitask training. This has been
reported to improve performance in many different
domains by including a suitably related auxiliary
task (Bingel and Søgaard, 2017; Martı́nez Alonso
and Plank, 2017).

For the task of labelling segments in the input se-
quences as pertaining to annotations from among a
set ofK−1 positive classes and one negative class,
we propose the auxiliary task of binary labelling of
segments as pertaining to either the negative class
or any of the K − 1 positive classes. For question
tracking, this amounts to doing binary labelling of
segments that are questions of any kind. The hope
is that this will make the training signal stronger
since the sparsity of each of the classes, e.g. ques-
tions, is reduced by collapsing them into one shared
class.

We use the same loss function as above, but with
the number of classes reduced to K = 2. The total
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Label Description Example Count Fraction

Q1 Question about the address of the incident. What’s the address? 663 26.3%
Q2 Initial question of the call-taker to begin assessing the situation. What’s the problem? 546 21.6%
Q3 Question about the age of the patient. How old is she? 537 21.3%
Q4 All questions related to patient’s quality of breathing. Is she breathing in a normal pattern? 293 11.6%
Q5 All question about patient’s consciousness or responsiveness. Is he conscious and awake? 484 19.2%

Table 1: Explanation and prevalence of the questions used for the experiments.

multitask loss is a weighted sum of the K-class
loss and the binary loss:

L(n,t)MT = βL(n,t)binary + (1− β)L(n,t). (7)

The tunable hyperparameter β ∈ [0, 1] interpolates
the task between regular K-class labeling for β =
0 and binary classification for β = 1.

3 Data

Our dataset consists of 525 phone calls to an
English-speaking medical emergency service. The
call audio is mono-channel, PCM-encoded and
sampled at 8000 Hz. The duration of the calls has
the mean of 166 s (st. dev. 65 s, IQR 52 s). All calls
are manually annotated for questions by trained na-
tive English speakers. Each question is annotated
with its start and stop time and assigned with one
of 13 predefined question labels or an additional
label for any question that falls outside of the 13
categories. Figure 1 illustrates these annotations.
We observe an initial inter-annotator agreement of
α = 0.8 (Krippendorff, 2018). Each call has been
additionally corrected at least once by a different
annotator to improve the quality of the data. On
average it took roughly 30 minutes to annotate a
single call. For our experiments, we choose the
five most frequent questions classes, which are
explained in Table 1. Out of 24 hours of calls,
the questions alone account for only 30 minutes
(roughly 2%) of audio. For the experiments we use
5-fold cross-validation stratified by the number of
questions in each call, such that calls of different
lengths and contents are included in all folds.

We test our model on an additional speech se-
quence labeling challenge: tracking mentions of
medical symptoms in incoming audio. By using
another task we gauge the robustness of MultiQT
as a general sequence labeling model and not only
a question tracker, since symptom utterances in
speech carry inherently different linguistic features
than questions. As our question-tracking data was
not manually labeled for symptoms, we created
silver-standard training and test sets automatically

by propagating a list of textual keywords from the
ground truth human transcripts back onto the audio
signal as time stamps with a rule-based algorithm.
The initial list contained over 40 medical symp-
toms, but in the experiment we retain the most
frequent five: state of consciousness, breathing,
pain, trauma, and hemorrhage.

The utterances that we track are complex phrases
with a high variance: There are many different
ways to express a question or a medical symptom
in conversation. This linguistic complexity sets
our research apart from most work in speech label-
ing which is much closer to exact pattern match-
ing (Salamon and Bello, 2017).

4 Experiments

4.1 Setup

Inputs. The audio modality is encoded using 40
log-mel features computed with a window of 0.02 s
and stride 0.01 s.

The textual modality is formed by application
of an ASR system to the audio modality. In all re-
ported experiments, only ASR outputs are used and
never human transcriptions, both in training and
evaluation. The audio input to the ASR is encoded
in the same way as described above. The ASR
available to us has a purely convolutional architec-
ture similar to the one in (Collobert et al., 2016)
with an overall stride of 2. For MultiQT, this means
that Ta = 2Ts. The ASR is trained on 600 hours of
phone calls to medical emergency services in En-
glish from the same emergency service provider as
the question and symptoms tracking datasets. Both
of these are contained in the ASR test set. The
ASR is trained using the connectionist temporal
classification (CTC) loss function (Graves et al.,
2006) and has a character error rate of 14 % and
a word error rate of 31 %. Its feature dimension
is 29 which corresponds to the English alphabet
including apostrophe, space and a blank token for
the CTC loss.
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Systems. The basic version of MultiQT uses a
single softmax cross-entropy loss function and
forms a time-bound multimodal representation by
concatenating the unimodal representations. We
then augment this model in three ways:

1. MultiQT-TF: tensor fusion instead of concate-
nation following Zadeh et al. (2017),

2. MultiQT-MT: auxiliary binary classification
with β = 0.5,

3. MultiQT-TF-MT: combination of 1 and 2.

Baselines. MultiQT can easily be adapted to a
single modality by excluding the respective con-
volutional transformation fa or fs. For example,
MultiQT can be trained unimodally on audio by
removing fs and then defining z

(t)
m = z

(t)
a instead

of concatenation or tensor fusion. We baseline
the multimodal MultiQT models against versions
trained unimodally on audio and text. We also
compare MultiQT to two distinct baseline models:

1. Random forest (RF)
2. Fully connected neural network (FNN)

Contrary to MultiQT, the baselines are trained to
classify an input sequence into a single categori-
cal distribution over the labels. At training, the
models are presented with short segments of call
transcripts in which all timesteps share the same
label such that a single prediction can be made.
The baselines are trained exclusively on text and
both models represent the windowed transcript as a
TF-IDF-normalized bag of words similar to Zhang
et al. (2015). The bag of words uses word uni- and
bigrams, and character tri-, four- and five-grams
with 500 of each selected by χ2-scoring between
labels and transcripts on the training set.

Hyperparameters. We use 1D convolutions for
fa and fs. For fa we use three layers with kernel
sizes of 10, 20 and 40, filters of 64, 128 and 128
units and strides of 2, 2 and 2 in the first, second
and third layer, respectively. For fs we use two
layers with kernel sizes of 20 and 40, filters of
128 and 128 units and strides of 2 and 2. Before
each nonlinear transformation in both fa and fs
we use batch normalization (Ioffe and Szegedy,
2015) with momentum 0.99 and trainable scale
and bias, and we apply dropout (Srivastava et al.,
2014) with a dropout rate of 0.2. For g we use
three fully connected layers of 256 units each and
before each nonlinear transformation we use batch
normalization as above and apply dropout with a

dropout rate of 0.4. We l2 regularize all learnable
parameters with a weighting of 0.1.

The FNN model uses the same classifier as is
used for g in MultiQT with a dropout rate of 0.3
and an l2 regularization factor of 0.05.

All neural models are trained with the Adam op-
timizer (Kingma and Ba, 2015) using a learning
rate of 1 × 10−4, β1 = 0.9 and β2 = 0.999 and
batch size 6 except for those with tensor fusion
which use a batch size of 1 due to memory con-
straints. Larger batch sizes were prohibitive since
we use entire calls as single examples but results
were generally consistent across different batch
sizes. All hyperparameters were tuned manually
and heuristically. It takes approximately one hour
to train the base MultiQT model on one NVIDIA
GeForce GTX 1080 Ti GPU card.

Evaluation. For each model we report two F1
scores with respective precisions and recalls macro-
averaged over the classes.

– TIMESTEP: For each timestep, the model predic-
tion is compared to the gold label. The metrics
are computed per timestep and micro-averaged
over the examples. This metric captures the
model performance in finding and correctly clas-
sifying entire audio segments that represent ques-
tions and is sensitive to any misalignment.

– INSTANCE: A more forgiving metric which cap-
tures if sequences of the same label are found
and correctly classified with acceptance of mis-
alignment. Here, the prediction counts as correct
if there are at least five consecutive correctly la-
beled time steps within the sequence, as a heuris-
tic to avoid ambiguity between classes. This
metric also excludes the non-question label.

The baseline models are evaluated per TIMESTEP

by labeling segments from the test set in a sliding
window fashion. The size of the window varies
from 3 to 9 seconds to encompass all possible
lengths of a question with the stride set to one
word. Defining the stride in terms of words is pos-
sible because the ASR produces timestamps for the
resulting transcript per word.

4.2 Results
Labeling accuracy. The results are presented in
Table 2. They show that for any model variation,
the best performance is achieved when using both
audio and text. The model performs the worst when
using only audio which we hypothesize to be due
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INSTANCE TIMESTEP

Model Modality P R F1 P R F1

RF-BOW T 61.8±3.5 88.5±0.9 72.2±2.2 39.3±1.1 70.4±1.0 48.1±1.0
FNN-BOW T 42.2±1.4 92.8±0.6 57.5±1.3 38.1±0.7 71.0±1.7 46.9±0.8

MultiQT A 87.4±1.9 60.6±4.0 70.3±3.1 79.2±1.3 57.8±3.3 65.0±2.4
MultiQT T 84.2±1.6 78.5±2.8 81.1±2.0 78.8±1.2 69.4±2.0 73.5±1.3
MultiQT A+T 83.6±2.2 83.3±2.5 83.3±1.6 75.7±2.2 73.8±2.3 74.5±1.3

MultiQT-MT A 84.6±5.1 57.4±3.9 66.2±2.9 77.7±5.6 56.0±2.8 62.8±2.0
MultiQT-MT T 81.9±1.1 80.6±2.8 81.0±1.8 75.9±1.5 71.2±2.4 73.3±1.7
MultiQT-MT A+T 85.2±2.7 83.2±1.2 84.1±2.0 78.5±2.5 74.0±0.7 76.0±1.1

MultiQT-TF A+T 85.0±1.8 83.3±2.6 83.9±1.7 78.9±2.1 75.2±2.3 76.7±1.2
MultiQT-TF-MT A+T 85.1±3.2 83.1±1.6 83.8±1.7 78.7±3.7 75.0±1.6 76.5±1.4

Table 2: Question tracking results on audio (A) and text (T) modalities with variations of MultiQT using modality
concatenation (MultiQT) or tensor fusion (MultiQT-TF) and the auxiliary task (MultiQT-MT). The evaluation
metrics are precision (P), recall (R), and (F1) at the macro level per TIMESTEP or INSTANCE. We report means and
standard deviations for five-fold cross-validation runs. All F1 differences are statistically significant at p < 0.001,
save for between MulitQT [T] & MulitQT-MT [T], and MulitQT [A+T] & MulitQT-TF-MT [A+T] (p ≈ 0.64). We
employ the approximate randomization test with R = 1000 and Bonferonni correction (Dror et al., 2018). Bold
face indicates the highest F1 score within each metric and MultiQT model group.

to the increased difficulty of the task: While speech
intonation may be a significant feature for detecting
questions in general, discerning between specific
questions is easier with access to transcribed key-
words.

Including the auxiliary binary classification task
(MultiQT-MT) shows no significant improvement
over MultiQT. We hypothesize that this may be due
to training on a subset of all questions such that
there are unlabelled questions in the training data
which add noise to the binary task.

Applying tensor fusion instead of concatenating
the unimodal representations also does not yield
significant improvements to MultiQT contrary to
the findings by Zadeh et al. (2017). Since tensor-
fusion subsumes the concatenated unimodal repre-
sentations by definition and appends all element-
wise products, we must conclude that the multi-
modal interactions represented by the element-wise
products either already exist in the unimodal repre-
sentations, by correlation, are easily learnable from
them or are too difficult to learn for MultiQT. We
believe that the interactions are most likely to be
easily learnable from the unimodal representations.

Comparing any MultiQT variant with INSTANCE

and TIMESTEP F1 clearly shows that INSTANCE is
more forgiving, with models generally achieving
higher values in this metric. The difference in per-
formance between different combinations of the
modalities is generally higher when measured per

INSTANCE as compared to per TIMESTEP.
The RF and FNN baseline models clearly under-

perform compared to MultiQT. It should be noted
that both RF and FNN achieve F1-scores of around
85 when evaluated per input utterance, correspond-
ing to the input they receive during training. On
this metric, FNN also outperforms RF. However,
both models suffer significantly from the discrep-
ancy between the training and streaming settings
as measured per the INSTANCE and TIMESTEP met-
rics; this effect is largest for the FNN model.

Real-time tracking. One important use case of
MultiQT is real-time labelling of streamed audio
sequences and associated transcripts. For this rea-
son, MultiQT must be able to process a piece of
audio in a shorter time than that spanned by the au-
dio itself. For instance, given a 1 s chunk of audio,
MultiQT must process this in less than 1 s in order
to maintain a constant latency from the time that
the audio is ready to be processed to when it has
been processed. To assess the real-time capability
of MultiQT, we test it on an average emergency
call using an NVIDIA GTX 1080 Ti GPU card. In
our data, the average duration of an emergency call
is 166 s.

To simulate real-time streaming, we first process
the call in 166 distinct one-second chunks using
166 sequential forward passes. This benchmark
includes all overhead, such as the PCIe transfer
of data to and from the GPU for each of the for-
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ward passes. The choice of 1 s chunk duration
matches our production setting but is otherwise ar-
bitrary with smaller chunks giving lower latency
and larger chunks giving less computational over-
head. In this streaming setting, the 166 s of audio
are processed in 1.03 s yielding a real-time factor
of approximately 161 with a processing time of
6.2 ms per 1 s of audio. This satisfies the real-time
constraint by a comfortable margin, theoretically
leaving room for up to 161 parallel audio streams to
be processed on the same GPU before the real-time
constraint is violated.

When a single model serves multiple ongoing
calls in parallel, we can batch the incoming audio
chunks. Batching further increases the real-time
factor and enables a larger number of ongoing calls
to be processed in parallel on a single GPU. This
efficiency gain comes at the cost of additional, but
still constant, latency since we must wait for a
batch of chunks to form. For any call, the expected
additional latency is half the chunk duration. We
perform the same experiment as above but with dif-
ferent batch sizes. We maintain super real-time pro-
cessing for batches of up 256 one-second chunks,
almost doubling the number of calls that can be
handled by a single model.

In the offline setting, for instance for on-demand
processing of historical recordings, an entire call
can be processed in one forward pass. Here, Mul-
tiQT can process a single average call of 166 s
in 10.9 ms yielding an offline real-time factor of
15,000. Although batched processing in this setting
requires padding, batches can be constructed with
calls of similar length to reduce the relative amount
of padding and achieve higher efficiency yet.

5 Discussion

Label confusion. We analyze the label confusion
of the basic MultiQT model using both modalities
on the TIMESTEP metric. Less than 1% of all incor-
rect timestamps correspond to question-to-question
confusions while the two primary sources of confu-
sion are incorrect labelings of 1) “None” class for a
question and 2) of a question with the “None” class.
The single highest confusion is between the “None”
class and “Q4” which is the least frequent question.
Here the model has a tendency to both over-predict
and miss: ca 40% of predicted “Q4” are labeled as
“None” and 40% of “Q4” are predicted as “None”.
In summary, when our model makes an error, it
will most likely 1) falsely predict a non-question to

0.6 0.4 0.2 0.0 0.2 0.4 0.6

start

0.6 0.4 0.2 0.0 0.2 0.4 0.6

stop

error margins [s]

Figure 3: Error margin distributions for start and stop
timestamps of question sequences. The dotted lines de-
pict the ground truth start and stop timestamps.

be a question or 2) falsely predict a question to be
a non-question; once it discovers a question, it is
much less likely to assign it the wrong label.

Model disagreement. We examined the inter-
model agreement between MultiQT trained on the
different modes. The highest agreement of ∼90%
is achieved between the unimodal text and the mul-
timodal models whereas the lowest agreement was
generally between the unimodal audio and any
other model at ∼80%. The lower agreement with
the unimodal audio model can be attributed to the
generally slightly lower performance of this model
compared to the other models as per Table 2.

Question margins. In Figure 3, we visualize the
distribution of the errors made by the model per
TIMESTEP. For each question regarded as match-
ing according to the INSTANCE metric we compute
the number of seconds by which the model mis-
matched the label sequence on the left and right
side of the label sequence, respectively. We see that
the model errors are normally distributed around a
center value that is shifted towards the outside of
the question by slightly less than 100 ms. The prac-
tical consequence is that the model tends to make
predictions on the safe side by extending question
segments slightly into the outside of the question.

Modality ablation. To evaluate the model’s ro-
bustness to noise in the modalities, we remove all
information from one of the modalities in turn and
report the results in Table 3. We remove the in-
formation in a modality by randomly permuting
the entire temporal axis. This way we retain the
numerical properties of the signal which is not the
case when replacing a modality by zeros or noise.
To increase MultiQT’s robustness to this modality
ablation, we apply it at training so that for each
batch example we permute the temporal axis of the
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Permuted INSTANCE TIMESTEP

Modality Training Test P R F1 P R F1

A+T Yes T 82.2±4.9 60.1±5.6 68.6±5.7 79.0±4.7 58.4±3.7 64.7±3.5
A+T Yes A 82.6±3.2 75.9±2.9 78.7±1.6 78.3±2.4 68.3±2.7 72.3±1.1
A+T Yes - 86.3±1.6 83.8±2.8 84.8±2.0 80.4±1.0 74.1±2.2 76.9±1.3

A+T No T 0.0±0.0 0.0±0.0 0.0±0.0 16.2±0.0 16.7±0.0 16.4±0.0
A+T No A 89.5±3.1 69.2±4.4 77.0±2.5 84.3±2.6 63.7±3.5 71.0±2.0
A+T No - 83.6±2.2 83.3±2.5 83.3±1.6 75.7±2.2 73.8±2.3 74.5±1.3
A No - 87.4±1.9 60.6±4.0 70.3±3.1 79.2±1.3 57.8±3.3 65.0±2.4
T No - 84.2±1.6 78.5±2.8 81.1±2.0 78.8±1.2 69.4±2.0 73.5±1.3

Table 3: Results from the modality ablation on the MultiQT model. We compare multimodal MultiQT trained with
the audio (A) and text (T) modalities temporally permuted in turn during training with probability pa = 0.1 and
ps = 0.5 to MultiQT trained without modality permutation, unimodally and multimodally (some results copied
from Table 2). We can obtain robustness to loosing a modality while maintaining (or even slightly improving) the
multimodal performance. All results are based on five-fold cross-validation as in Table 2.
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Figure 4: Relation between TIMESTEP F1 and WER on
call-taker utterances without the “None” label.

audio or text modality with some probability pa or
ps. We choose pa = 0.1 and ps = 0.5 since the
model more easily develops an over-reliance on the
text-modality supposedly due to higher signal-to-
noise ratio. The results are listed in Table 3 along
with results for MultiQT from Table 2 for easy ref-
erence. We observe that the basic MultiQT model
suffers significantly from permutation of the text
modality and less so for audio which suggests that
it relies on the audio only for supportive features.
Training MultiQT with the random temporal per-
mutation forces learning of robustness to loosing
all information in a modality. We see that the re-
sults when removing a modality almost reach the
level achieved when training exclusively on that
modality while still maintaining the same (or bet-
ter) performance of the basic MultiQT model.

Relation to ASR. In Figure 4, we plot the per-
formance of the multimodal model on different

subsets of the test split by the maximum WER
of the ASR (measured only on the call-taker ut-
terances). This evaluation compares the micro-
averaged model F1-score when increasing the noise
on the textual input. We see that regardless of
the modality, the performance is the highest for
calls with very low WER. We observe that the per-
formance improvement of using both modalities
over unimodal text or unimodal audio increases
as we include noisy samples. This implies that
multi modality increases robustness. Training on
permuted inputs additionally improves the perfor-
mance on noisy data.

The evaluation of MultiQT in our paper has thus
far been only in relation to one particular ASR
model with CTC loss (Graves et al., 2006), where
our system displays significant gains from multi-
modal learning. Yet, do these results hold with
another ASR system, and in particular, are the mul-
timodal gains still significant if WER decreases
and produced text quality increases? For an initial
probing of these questions, we replace the fully
convolutional ASR with a densely-connected re-
current architecture with convolutional heads. This
model is similar to the one in (Amodei et al., 2015)
but also uses dense bottleneck layers. With this
model the transcription quality improves by around
+4% in WER, while the F1-scores of MultiQT still
strongly favor the multimodal approach, by +6.15
points absolute over text-only. We argue that in
a real-world scenario with high WER and limited
in-domain training data, the gains warrant learning
from joining the text and audio views on the input
speech when learning a question tracker. Alterna-
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tively, the ASR model itself could be extended into
a multitask learning setup to jointly track questions
and transcribe speech; we defer that line of work for
future research. On a practical note, for this mul-
titask approach, the data must be fully transcribed
by human annotators in addition to the question
annotatations. This is generally more time con-
suming and expensive than exclusively annotating
questions.

Qualitative analysis. We analyze the model pre-
dictions on a subset of 21 calls to identify the most
likely reasons for incorrect labeling. We find that
in over half of the analysed cases the incorrect
prediction is triggered either by a question-related
keyword uttered in a non-question sentence or by a
question asked in the background by a caller that
was not assigned a label. We also encounter unde-
tected questions that have a very noisy ASR tran-
script or are asked in an unusual way.

Symptom labeling. The experiment with our
silver-standard symptoms data shows a trend that
is similar to question tracking: The dual-modality
MultiQT scores an INSTANCE F1 score of 76.9 for
a +1.8 absolute improvement over the best single
modality. Text-only is the runner up (-1.8 F1) while
audio-only lags behind with a significant -23.6 de-
crease in F1. At the same time, a simple text-only
keyword matching baseline scores at 73.7. We
argue that symptom tracking strongly favors text
over audio because the distinctive audio features
of questions, such as changes in intonation, are not
present when communicating symptoms in speech.

6 Related work

The broader context of our work is to track the
dialogue state in calls to emergency medical ser-
vices, where conversations are typically formed as
sequences of questions and answers that pertain to
various medical symptoms. The predominant ap-
proach to dialogue state tracking (DST) in speech
is to first transcribe the speech by using ASR (Hen-
derson et al., 2014; Henderson, 2015; Mrkšić et al.,
2017). In our specific context, to entirely rely on
ASR is prohibitive because of significantly higher
WER in comparison to standard datasets. To ex-
emplify, while WER is normally distributed with
a mean of 37.6% in our data, the noisiest DST
challenge datasets rarely involve with WER above
30% (Jagfeld and Vu, 2017) while standard ASR
benchmarks offer even lower WER (Park et al.,

2019). None of the standard ASR scenarios thus
directly apply to a real-life ASR noise scenario.

From another viewpoint, work in audio recogni-
tion mainly involves with detecting simple single-
word commands or keyword spotting (de Andrade
et al., 2018), recognizing acoustic events such as
environmental or urban sounds (Salamon et al.,
2014; Piczak, 2015; Xu et al., 2016) or music pat-
terns, or document-level classification of entire au-
dio sequences (Liu et al., 2017). McMahan and
Rao (2018) provide a more extensive overview.
While approaches in this line of work relate to ours,
e.g. in the use of convolutional networks over au-
dio (Sainath and Parada, 2015; Salamon and Bello,
2017), our challenge features questions as linguis-
tic units of significantly greater complexity.

Finally, research into multimodal or multi-view
deep learning (Ngiam et al., 2011; Li et al., 2018)
offers insights to effectively combine multiple data
modalities or views on the same learning problem.
However, most work does not directly apply to our
problem: i) the audio-text modality is significantly
under-represented, ii) the models are typically not
required to work online, and iii) most tasks are cast
as document-level classification and not sequence
labeling (Zadeh et al., 2018).

7 Conclusions

We proposed a novel approach to speech sequence
labeling by learning a multimodal representation
from the temporal binding of the audio signal and
its automatic transcription. This way we learn a
model to identify questions in real time with a high
accuracy while trained on a small annotated dataset.
We show the multimodal representation to be more
accurate and more robust to noise than the uni-
modal approaches. Our findings generalize to a
medical symptoms labeling task, suggesting that
our model is applicable as a general-purpose speech
tagger wherever the speech modality is coupled in
real time to ASR output.
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