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Abstract

Extracting lexico-semantic relations as graph-
structured taxonomies, also known as taxon-
omy construction, has been beneficial in a vari-
ety of NLP applications. Recently Graph Neu-
ral Network (GNN) has shown to be power-
ful in successfully tackling many tasks. How-
ever, there has been no attempt to exploit GNN
to create taxonomies. In this paper, we pro-
pose Graph2Taxo, a GNN-based cross-domain
transfer framework for the taxonomy construc-
tion task. Our main contribution is to learn
the latent features of taxonomy construction
from existing domains to guide the structure
learning of an unseen domain. We also pro-
pose a novel method of directed acyclic graph
(DAG) generation for taxonomy construction.
Specifically, our proposed Graph2Taxo uses
a noisy graph constructed from automatically
extracted noisy hyponym-hypernym candidate
pairs, and a set of taxonomies for some known
domains for training. The learned model is
then used to generate taxonomy for a new un-
known domain given a set of terms for that
domain. Experiments on benchmark datasets
from science and environment domains show
that our approach attains significant improve-
ments correspondingly over the state of the art.

1 Introduction

Taxonomy has been exploited in many Natural Lan-
guage Processing (NLP) applications, such as ques-
tion answering (Harabagiu et al., 2003), query un-
derstanding (Hua et al., 2017), recommendation
systems (Friedrich and Zanker, 2011), etc. Auto-
matic taxonomy construction is highly challenging
as it involves the ability to recognize – (i) a set
of types (i.e. hypernyms) from a text corpus, (ii)
instances (i.e. hyponyms) of each type, and (iii)
is-a (i.e. hypernymy) hierarchy between types.

Existing taxonomies (e.g., WordNet (Miller
et al., 1990)) are far from being complete. Tax-

onomies specific to many domains are either en-
tirely absent or missing. In this paper, we focus
on construction of taxonomies for such unseen do-
mains1. Since taxonomies are expressed as directed
acyclic graphs (DAGs) (Suchanek et al., 2008), tax-
onomy construction can be formulated as a DAG
generation problem.

There has been considerable research on Graph
Neural Networks (GNN) (Sperduti and Starita,
1997; Gori et al., 2005) over the years; particu-
larly inspired by the convolutional GNN (Bruna
et al., 2014) where graph convolution operations
were defined in the Fourier domain. In a similar
spirit to convolutional neural networks (CNNs),
GNN methods aggregate neighboring information
based on the connectivity of the graph to create
node embeddings. GNN has been applied suc-
cessfully in many tasks such as matrix comple-
tion (van den Berg et al., 2017), manifold analy-
sis (Monti et al., 2017), predictions of community
(Bruna et al., 2014), knowledge graph completion
(Shang et al., 2019), and representations of network
nodes (Hamilton et al., 2017; Kipf and Welling,
2017).

To the best of our knowledge, there has been no
attempt to exploit GNN for taxonomy construction.
Our proposed framework, Graph2Taxo, is the first
to show that a GNN-based model using a cross-
domain noisy graph can substantially improve the
taxonomy construction of unseen domains (e.g.,
Environment) by exploiting taxonomy of one or
more seen domains (e.g., Food). (The task is de-
scribed in detail in Section 3.1.)

Another novelty of our approach is we are the
first to apply the acyclicity constraint-based DAG
structure learning model (Zheng et al., 2018; Yu
et al., 2019) for taxonomy generation task.

The input of Graph2Taxo is a cross-domain
1By unseen domain, we refer to a domain for which tax-

onomy is not available to the system.
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noisy graph constructed by connecting noisy can-
didate is-a pairs, which are extracted from a large
corpus using standard linguistic pattern-based ap-
proaches (Hearst, 1992). It is noisy because
pattern-based approaches are prone to poor cov-
erage as well as wrong extractions. In addition, it
is cross-domain because the noisy is-a pairs
are extracted from a large-scale corpus which con-
tains a collection of text from multiple domains.

Our proposed neural model directly encodes the
structural information from a noisy graph into the
embedding space. Since the links between domains
are also used in our model, it has not only structural
information of multiple domains but also cross-
domain information.

We demonstrate effectiveness of our proposed
method on science and environment datasets (Bor-
dea et al., 2016), and show significant improve-
ments on F-score over the state of the art.

2 Related Work

Taxonomy construction (also known as taxonomy
induction) is a well-studied problem. Most of the
existing works follow two sequential steps to con-
struct taxonomies from text corpora (Wang et al.,
2017). First, is-a pairs are extracted using pattern-
based or distributional methods. Then, a taxonomy
is constructed from these is-a pairs.

The pattern-based methods, pioneered by Hearst
(1992), detect is-a relation of a term pair (x, y)
using the appearance of x and y in the same sen-
tence through some lexical patterns or linguistic
rules (Ritter et al., 2009; Luu et al., 2014). Snow
et al. (2004) represented each (x, y) term-pair as
the multiset of dependency paths connecting their
co-occurrences in a corpus, which is also regarded
as a path-based method.

An alternative approach for detecting is-a rela-
tion is the distributional methods (Baroni et al.,
2012; Roller et al., 2014), using the distributional
representation of terms to directly predict relations.

As for the step of taxonomy construction using
the extracted is-a pairs, most of the approaches
do it by incrementally attaching new terms (Snow
et al., 2006; Shen et al., 2012; Alfarone and Davis,
2015; Wu et al., 2012). Mao et al. (2018) is the first
to present a reinforcement learning based approach,
named TaxoRL, for this task. For each term pair,
its representation in TaxoRL is obtained by the
path LSTM encoder, the word embeddings of both
terms, and the embeddings of features.

Recently, Dash et al. (2020) argued that strict
partial orders2 correspond more directly to DAGs.
They proposed a neural network architecture,
called Strict Partial Order Network (SPON), that
enforces asymmetry and transitive properties as
soft constraints. Empirically, they showed that
such a network produces better results for detecting
hyponym-hypernym pairs on a number of datasets
for different languages and domains in both super-
vised and unsupervised settings.

Many graph-based methods such as Kozareva
and Hovy (2010) and Luu et al. (2014) regard the
task of hypernymy organization as a hypernymy
detection problem followed by a graph pruning
problem. For the graph pruning task, various graph-
theoretic approaches such as optimal branching al-
gorithm (Velardi et al., 2013), Edmond’s algorithm
(Karp, 1971) and Tarjan’s algorithm (Tarjan, 1972)
have been used over the years. In addition to these,
Wang et al. (2017) mentions several other graph-
based taxonomy induction approaches. In contrast,
our approach formulates the taxonomy construction
task as a DAG generation problem instead of an
incremental taxonomy learning (Mao et al., 2018),
which differentiates it when compared with the ex-
isting methods. In addition, our approach uses the
knowledge from existing domains (Bansal et al.,
2014; Gan et al., 2016) to build the taxonomies of
missing domains.

3 The Graph2Taxo Framework

In this section, we first formulate the problem state-
ment and then introduce our proposed Graph2Taxo
framework as a solution. We describe the individ-
ual components of this framework in detail, along
with justifications of how and why these compo-
nents come together as a solution.

Figure 1: An illustration of our GNN-based cross-
domain transfer framework for taxonomy construction.

2A binary relation that is transitive, irreflexive and asym-
metric.
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3.1 Problem Definition

The problem addressed in this paper is, given a
list of domain-specific terms from a target unseen
(aka missing) domain as input, how to construct a
taxonomy for that target unseen domain. In other
words, the problem addressed in this paper is how
to organize these terms into a taxonomy.

This problem can be further abstracted out as
follows: Given a large input corpus and a set of
gold taxonomies Ggold from some known domains
(different from the target domain), our task is to
learn a model (trained using the corpus and tax-
onomies of known domains) to construct multiple
taxonomies for the target unseen domains.

As a solution to the aforementioned problem,
we propose a GNN-based cross-domain transfer
framework for taxonomy construction (see Figure
1), called Graph2Taxo which consists of a cross-
domain graph encoder and a DAG generator.

The first step in our proposed approach is to
build a cross-domain noisy graph as an input to
our Graph2Taxo model. In this step, we extract
candidate is-a pairs from a large collection of input
corpora that spans multiple domains. To do so, we
used the output of Panchenko et al. (2016), which
is a combination of standard substring matching
and pattern-based approaches. Since such pattern-
based approaches are too rigid, the corresponding
output not only suffers from recall (i.e., missing
is-a pairs) but also contains incorrect (i.e., noisy)
pairs due to the ambiguity of language and richness
in syntactic expression and structure in the input
corpora. For example, consider the phrase “... an-
imals other than dogs such as cats ...”. As (Wu
et al., 2012) noted, pattern-based approaches will
extract (cat is-a dog) rather than (cat is-a animal).

Based on the noisy is-a pairs, we construct a
directed graph Ginput = (Vinput, Einput), which is
a cross-domain noisy graph. Here, Vinput denotes
a set of terms, and (vi, vj) ∈ Einput if and only if
(vi, vj) belongs to the list of extracted noisy is-a
pairs. The input document collection spans mul-
tiple domains, therefore Einput not only has intra-
domain edges, but also has cross-domain edges
(see Figure 1).

Graph2Taxo is a subgraph generation model
which uses the large cross-domain noisy graph
as the input. Given a list of terms for a tar-
get unseen domain, it aims to learn a taxonomy
structure for the corresponding domain as a DAG.
Graph2Taxo takes advantage of additional knowl-

edge in the form of previously known gold tax-
onomies {Ggold,i, 1 ≤ i ≤ Nknown} to train a
learning model. During inference phase, the model
receives a list of terms from the target unseen do-
main and aims to build a taxonomy by using the
input terms. Here, Nknown denotes the number
of previously known taxonomies used during the
training phase.

This problem of distilling directed acyclic sub-
structures (taxonomies of many domains) using a
large cross-domain noisy graph is challenging, be-
cause of relatively lower overlap between noisy
edges in Einput and true edges in the available tax-
onomies in hand.

The following sections describe our proposed
Cross-domain Graph Encoder and the DAG Gener-
ator in further detail.

3.2 Cross-domain Graph Encoder

This subsection describes the Cross-domain Graph
Encoder in Figure 1 for embedding generation.
This embedding generation algorithm uses two
strategies, namely Neighborhood aggregation and
Semantic clustering aggregation.

3.2.1 Neighborhood Aggregation
This is the first of the two strategies used for embed-
ding generation. Let A ∈ Rn×n be the adjacency
matrix of the noisy graph Ginput, where n is the
size of Vinput. Let hli represent the feature repre-
sentation for the node vi in the l-th layer and thus
H l ∈ Rn×dl denotes the intermediate representa-
tion matrix. The initial matrix H0 is randomly
initialized from a standard normal distribution.

We use the adjacency matrix A and the node
representation matrix H l to iteratively update the
representation of a particular node by aggregat-
ing representations of its neighbors. This is done
by using a GNN. Formally, a GNN layer (Gilmer
et al., 2017; Hamilton et al., 2017; Xu et al., 2019)
employs the general message-passing architecture
which consists of a message propagation function
M to get messages from neighbors and a vertex
update function U . The message passing works via
the following equations,

ml+1
v = M(hlu) ∀u ∈ N (v)

hl+1
v = U(hlv,m

l+1
v )

where N (v) denotes the neighbors of node v and
m is the message. In addition, we use the following
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definitions for M and U functions,

M(hlu) =
∑

u∈N (v)

Avuh
l
u,∀u ∈ N (v)

U(hlv,m
l+1
v ) = σ(ml+1

v Θl + hlvΘ
l)

where Θl ∈ Rdl×dl+1 denotes trainable parameters
for layer l and σ represents an activation function.

Let Ã = A+ I , here I is the identity matrix, the
information aggregation strategy described above
can be abstracted out as,

H l+1 = GNNl(A,H
l) = σ(ÃH lΘl)

3.2.2 Semantic Clustering Aggregation
This is the second of the two strategies used for em-
bedding generation, which operates on the output
of the previous step. The learned representations
from the previous step are highly likely not to be
uniformly distributed in the Euclidean Space, but
rather form a bunch of clusters. In this regard, we
propose a soft clustering-based pooling-unpooling
step, that uses semantic clustering aggregating for
learning better model representations. In essence,
this step shares the similarity information for any
pair of terms in the vocabulary.

Analogous to an auto-encoder, the pooling layer
adaptively creates a smaller cluster graph compris-
ing of a set of cluster nodes, whose representa-
tions are learned based on a trainable cluster as-
signment matrix. This idea of using an assignment
matrix was first proposed by the DiffPool (Ying
et al., 2018) approach. On the other hand, the un-
pooling layer decodes the cluster graph into the
original graph using the same cluster assignment
matrix learned in the pooling layer. The learned se-
mantic cluster nodes can be thought of as “bridges”
between nodes from the same or different clusters
to pass messages.

Mathematically speaking, we learn a soft cluster
assignment matrix Sl ∈ Rn×nc at layer l using the
GNN model, where nc is the number of clusters.
Each row in Sl corresponds to one of n nodes in
layer l and each column corresponds to one of the
nc clusters. As a first step, the pooling layer uses
the adjacency matrix A and the node feature matrix
H l to generate a soft cluster assignment matrix as,

Sl = softmax(GNNl,cluster(A,H
l)) (1)

where the softmax is a row-wise softmax func-
tion, Θl

cluster ∈ Rdl×nc denotes all trainable pa-
rameters in GNNl,cluster.

Since the matrix Sl is calculated based on node
embeddings, nodes with similar features and local
structure will have similar cluster assignment.

As the final step, the pooling layer generates
an adjacency matrix Ac for the cluster graph and
a new embedding matrix containing cluster node
representations H l

c as follows,

H l
c = (Sl)TH l ∈ Rnc×dl

Ac = (Sl)TASl ∈ Rnc×nc

A GNN operation is used within the small cluster
graph,

H l+1
c = GNNl(Ac, H

l
c) ∈ Rnc×dl+1

to further propagate messages from the neighboring
clusters. The trainable parameters in GNNl are
Θl ∈ Rdl×dl+1 .

For passing clustering information to the original
graph, the unpooling layer restores the original
graph using cluster assignment matrix, as follows,

H̃ l+1 = SlH l+1
c ∈ Rn×dl+1

The output of the pooling-unpooling layer re-
sults in the node representations possessing latent
cluster information. Finally, we combine the neigh-
borhood aggregation and semantic clustering ag-
gregation strategies via a residual connection, as,

H l+1 = concate(H̃ l+1, H l)

where concatemeans concatenate the two matrices.
H l+1 is the output of this pooling-unpooling step.

Figure 2: An illustration of DAG generator.

3.3 DAG Generator
The DAG generator takes in the noisy graphGinput
and representations of all the vocabulary terms (out-
put of Section 3.2) as input, encodes acyclicity as
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a soft-constraint (as described below), and outputs
a distribution of edges within Ginput that encodes
the likelihood of true is-a relationships. This output
distribution is finally used to induce taxonomies,
i.e., DAGs of is-a relationships.

In each training step, DAG generator is ap-
plied to one domain (see Figure 2), using a noisy
graph G, which is a subgraph from Ginput, as
a training sample and a DAG is generated for
that domain. Here let Nt denote the number of
(hypo, hyper) pairs belonging to the edge set of
G. During the training, we also know label vec-
tor label ∈ {0, 1}Nt for these Nt pairs, based on
whether they belong to the gold known taxonomy.

3.3.1 Edge Prediction
For each edge within the noisy graph G, our DAG
generator estimates the probability that the edge
represents a valid hypernymy relationship. Our
model estimates this probability through the use of
a convolution operation illustrated in Figure 2.

For each edge (hypo, hyper), in the first step
the term embeddings and edge features are concate-
nated as follows,

vpair = concate(vhypo, vhyper, vfeas)

where vhypo and vhyper are the embeddings
for hypo and hyper nodes (from Section 3.2)
and vfeas denotes a feature vector for the edge
(hypo, hyper), which includes edge frequency and
substring features. The substring features includes
ends with, contains, prefix match, suffix match,
length of longest common substring (LCS), length
difference and a boolean feature denoting whether
LCS in Vinput (the set of terms) or not.

Inspired by ConvE model (Dettmers et al., 2018),
a well known convolution based algorithm for link
prediction, we apply a 1D convolution operation
on vpair. We use a convolution operation since it
increases the expressiveness of the DAG Generator
through additional interaction between participat-
ing embeddings.

For the convolution operation, we make use of
C different kernels parameterized by {wc, 1 ≤ c ≤
C}. The 1D convolution operation is then calcu-
lated as follows,

vc = [Uc(vpair, 0), ..., Uc(vpair, dv − 1)] (2)

Uc(vpair, p) =

K−1∑
τ=0

ωc(τ)v̂pair(p+ τ)) (3)

where K denotes the kernel width, dv denotes the
size of vpair, p denotes the position to start the
kernel operation and the kernel parameters ωc are
trainable. In addition, v̂pair denotes the padded
version of vpair, wherein the padding strategy is as
follows. If |K| is odd, we pad vpair with bK/2c
zeros on both the sides. On the other hand, if |K|
is even, we pad bK/2c − 1 zeros at the beginning,
and bK/2c zeros at the end of vpair. Here, bvaluec
returns the floor of value.

Each kernel c generates a vector vc, according to
Equation 2. As there areC different kernels, this re-
sults in the generation of C different vectors which
are then concatenated together to form one vector
VC , i.e. VC = concatenate(v0, v1, . . . , vC).

The probability p(hypo,hyper) of a given edge
(hypo, hyper) expressing a hypernymy relation-
ship can then be estimated using the following
scoring function,

p(hypo,hyper) = sigmoid(V T
CW ) (4)

where W denotes the parameter matrix of a fully
connected layer, as illustrated in Figure 2.

Finally, for the loss calculations, we make use
of differentiable F1 loss (Huang et al., 2015),

Precision =

∑Nt−1
t=0 pt × labelt∑Nt−1

t=0 pt

Recall =

∑Nt−1
t=0 pt × labelt∑Nt−1

t=0 labelt

LF1 =
2× Precision× Recall

Precision + Recall

3.3.2 DAG Constraint
The edge prediction step alone does not guaran-
tee that the generated graph is acyclic. Learning
DAG from data is an NP-hard problem (Chickering,
1995; Chickering et al., 2004). To this effect, one of
the first works that formulate the acyclic structure
learning task as a continuous optimization problem
was introduced by Zheng et al. (2018).

In that paper, the authors note that the trace of
Bk denoted by tr(Bk), for a non-negative adja-
cency matrix B ∈ Rn×n counts the number of
length-k cycles in a directed graph. Hence, posi-
tive entries within the diagonal of Bk suggests the
existence of cycles. Or, in other words, B has no
cycle if and only if

∑∞
k=1

∑n
i=1(B

k)ii = 0.
However, calculatingBk for every value of k, i.e.

repeated matrix exponentiation, is impractical and
can easily exceed machine precision. To solve this
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problem, Zheng et al. (2018) makes use of Taylor
Series expansion as eB =

∑∞
k=0

Bk

k! , and show that
a non-negative matrix B is a DAG iff,

∞∑
k=1

n∑
i=1

(Bk)ii
k!

= tr(eB)− n = 0

To make sure this constraint is useful for an arbi-
trary weighted matrix with both positive and neg-
ative values, a Hadamard product B = A ◦ A is
used, which leads us to the following theorem.

Theorem 1 (Zheng et al., 2018) A matrix A ∈
Rn×n is a DAG if and only if:

tr(eA◦A)− n = 0

where tr represents the trace of a matrix, ◦ repre-
sents the Hadamard product and eB equals matrix
exponential of B.

Since the matrix exponential may not be avail-
able in all deep learning frameworks, (Yu et al.,
2019) propose an alternative constraint that is prac-
tically convenient as follows.

Lemma 2 (Yu et al., 2019) Let α = c/m > 0 for
some c. For any complex λ, since (1 + α|λ|)m ≤
ec|λ|, the DAG constraint from Theorem 1 can be
relaxed and stated as follows,

h(A) = tr
[
(I + αA ◦A)n

]
− n = 0

where α is a hyper-parameter.

Finally, using an augmented Lagrangian ap-
proach, we propose the combined loss function,

L = LF1 + λh(A) +
ρ

2
h(A)2

where λ and ρ are the hyper-parameters. During the
backpropagation, the gradients will be passed back
to all domains through the intra-domain and cross-
domain edges fromGinput to update all parameters.

4 Experiments

We evaluate Graph2Taxo on Semeval-2016 Task
13: Taxonomy Extraction Evaluation3, otherwise
known as TExEval-2 task (Bordea et al., 2016). All
experiments are implemented in PyTorch. Code is
publicly available at https://github.com/IBM/
gnn-taxo-construction.

3Semeval-2016 Task 13: http://alt.qcri.org/
semeval2016/task13

Domain Source V E

Science WordNet 429 452
Eurovoc 125 124

Combined 453 465
Environment Eurovoc 261 261

Table 1: Dataset statistics for TExEval-2 task ob-
tained from Bordea et al. (2016). The Vertices(V ) and
Edges(E) columns represent structural measures of tax-
onomies for English language only.

4.1 Benchmark Datasets

For experiments, we used the English environment
and the science taxonomies within the TExEval-2
benchmark datasets. These datasets do not come
with any training data, but a list of terms and the
task is to build a meaningful taxonomy using these
terms. The science domain terms come from Word-
net, Eurovoc and a manually constructed taxonomy
(henceforth referred to as combined), whereas the
terms for environment domain comes from Eurovoc
taxonomy only. Table 1 shows the dataset statistics.

We chose to evaluate our proposed approach on
environment and science taxonomies only, because
we wanted to compare our approach with the ex-
isting state-of-the-art system named TaxoRL (Mao
et al., 2018) as well as with TAXI, the winning sys-
tem in the TExEval-2 task. Note that we use the
same datasets with TaxoRL (Mao et al., 2018) for
TExEval-2 task.

In addition, we used the dataset from Bansal
et al. (2014) as gold taxonomies (i.e. sources of
additional knowledge), Ggold = {Ggold,i, 1 ≤ i ≤
Nknown} that are known apriori. This dataset is a
set of medium-sized full-domain taxonomies con-
sisting of bottom-out full subtrees sampled from
Wordnet, and contains 761 taxonomies in total.

To test our model for taxonomy prediction (and
to remove overlap), we removed any taxonomy
from Ggold which had term overlap with the set
of provided terms for science and environment do-
mains within TExEval-2 task. Because of this, we
get 621 non-overlapping taxonomies in total, parti-
tioned by 80-20 ratio to create training and valida-
tion datasets respectively.

4.2 Experimental Settings

We ran our experiments in two different settings.
In each of them, we train on a different noisy input
graph (and the same gold taxonomies as mentioned
before), and evaluate on the science and environ-

https://github.com/IBM/gnn-taxo-construction
https://github.com/IBM/gnn-taxo-construction
http://alt.qcri.org/semeval2016/task13
http://alt.qcri.org/semeval2016/task13
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Science Science Science Science Environment
(Combined) (Eurovoc) (WordNet) (Average) (Eurovoc)

Model Pe Re Fe Pe Re Fe Pe Re Fe Pe Re Fe Pe Re Fe

Baseline 0.63 0.29 0.39 0.62 0.21 0.31 0.69 0.27 0.38 0.65 0.26 0.36 0.50 0.21 0.30
JUNLP 0.14 0.31 0.19 0.13 0.36 0.19 0.21 0.31 0.25 0.16 0.33 0.21 0.13 0.23 0.17
USAAR 0.38 0.26 0.31 0.63 0.15 0.25 0.82 0.19 0.31 0.61 0.20 0.29 0.81 0.15 0.25

TAXI 0.39 0.35 0.37 0.30 0.33 0.31 0.37 0.38 0.38 0.35 0.35 0.35 0.34 0.27 0.30
TaxoRLA – – – – – – – – – 0.57 0.33 0.42 0.38 0.24 0.29
TaxoRLB – – – – – – – – – 0.38 0.38 0.38 0.32 0.32 0.32

Graph2Taxo1 0.91 0.31 0.46 0.78 0.26 0.39 0.82 0.32 0.46 0.84 0.30 0.44 0.89 0.24 0.37
Graph2Taxo2 0.90 0.33 0.48 0.79 0.33 0.46 0.77 0.32 0.46 0.82 0.33 0.47 0.67 0.28 0.39

Table 2: Results on TExEval-2 task: Taxonomy Extraction Evaluation (a.k.a TExEval-2). First four rows
represent participating systems in the TExEval-2 task, whose performances are taken from Bordea et al. (2016).
TaxoRLA/B illustrate the performance of a Reinforcement Learning system by Mao et al. (2018) under the Partial
and Full setting respectively. Graph2Taxo1/2 represent our proposed algorithm under both the settings as described
in Section 4.2. All results reported above are rounded to 2 decimal places.

ment domains, within TExEval-2 task. In the first
setting, we used the same input as TaxoRL (Mao
et al., 2018) for a fair comparison. This input of
TaxoRL consists of term pairs and associated de-
pendency path information between them, which
has been extracted from three public web-based
corpora. For Graph2Taxo, we only make use of the
term pairs to create a noisy input graph.

In the second setting, we used data4 provided by
TAXI (Panchenko et al., 2016), which comprises
of a list of candidate is-a pairs extracted based on
substrings and lexico-syntactic patterns. We used
these noisy candidate pairs to create a noisy graph.

A Graph2Taxo model is then trained on the
noisy graph obtained in each of the two settings.
In the test phase, all candidate term-pairs for
which both terms are present in the test vocabu-
lary are scored (between 0 and 1) by the trained
Graph2Taxo model. A threshold of 0.5 is applied,
and the candidate pairs scoring beyond this thresh-
old are accumulated together as the predicted tax-
onomy Gpred. Notice that there are different op-
timal thresholds for different tasks. We get bet-
ter performance if we tune the thresholds. How-
ever, we chose a harder task and proved our model
has better performance than others even we sim-
ply use 0.5 as the threshold. In addition, We
specify the hyper-parameter ranges for our exper-
iments: learning rate {0.01, 0.005, 0.001}, num-
ber of kernels {5, 10, 20} and number of clus-
ters {10, 30, 50, 100}. Finally, Adam optimizer
(Kingma and Ba, 2015) is used for all experiments.

Evaluation Metrics. Given a gold taxonomy

4Data is available at http://panchenko.me/data/
joint/taxi/res/resources.tgz

Ggold (as part of the TExEval-2 benchmark dataset)
and a predicted taxonomy Gpred (by our proposed
Graph2Taxo approach), we evaluate Gpred using
Edge Precision, Edge Recall and F-score measures
as defined in Bordea et al. (2016).

4.3 Hyper-parameters
We use the following hyper-parameter configura-
tion for training the model. We set dropout to 0.3,
number of kernels C to 10, kernel size K to 5,
learning rate to 0.001 and initial embedding size
to 300. For the loss function, we use the λ = 1.0
and ρ = 0.5. In addition, number of clusters nc is
set to 50 for all our experiments. In the scenario
wherein the input resource comes from TAXI, only
hyponym-hypernym candidate pairs observed more
than 10 times are used to create a noisy graph. Also,
we use one pooling and one unpooling layer for our
experiments.

We use dropouts in two places, one at the end
of the cross-domain encoder module, and the other
after the Conv1D operation. Our models are trained
using NVIDIA Tesla P100 GPUs.

4.4 Results and Discussions
Table 2 shows the results on the TExEval-2 task
Evaluation on science and environment domains.
The first row represents a string-based baseline
method (Bordea et al., 2016), that exploits term
compositionality to hierarchically relate terms. For
example, it extracts pairs such as (Statistics Depart-
ment, Department) from the provided Wikipedia
corpus, and utilizes aforementioned technique to
construct taxonomy.

The next three rows in Table 2, namely, TAXI,
JUNLP and USAAR are some of the top perform-

http://panchenko.me/data/joint/taxi/res/resources.tgz
http://panchenko.me/data/joint/taxi/res/resources.tgz
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Science Science Science Environment
(Combined) (Eurovoc) (WordNet) (Eurovoc)

Model Pe Re Fe Pe Re Fe Pe Re Fe Pe Re Fe

Graph2Taxo(2GNN+SC+Res) 0.90 0.33 0.48 0.79 0.33 0.46 0.77 0.32 0.46 0.67 0.28 0.39
Graph2Taxo(2GNN+Res) 0.92 0.32 0.48 0.83 0.29 0.43 0.80 0.31 0.45 0.73 0.26 0.38

Graph2Taxo(2GNN) 0.90 0.33 0.48 0.81 0.29 0.42 0.81 0.31 0.45 0.74 0.25 0.37
Graph2Taxo(NoConstraint) 0.92 0.32 0.48 0.81 0.28 0.41 0.83 0.31 0.45 0.76 0.25 0.37
Graph2Taxo(Without Feas) 0.82 0.33 0.47 0.73 0.27 0.39 0.70 0.33 0.45 0.61 0.23 0.33

Graph2Taxo(AddEmbeddings) 0.90 0.33 0.48 0.80 0.33 0.47 0.77 0.32 0.46 0.71 0.28 0.40

Table 3: Ablation tests reporting the Precision, Recall and F-score, across Science and Environment domains.
The first block of values reports results by ablating each layer utilized within Graph2Taxo model. In the
second block, we demonstrate that addition of constraint does in fact improve performance. In the third
block, we illustrate that the importance of features vfeas for improving performance. The final block uses
pretrained fastText embeddings to initialize our Graph2Taxo model, and then fine tunes based on our training data.
All results reported above are rounded off to 2 decimal places.

ing systems that participated in the TExEval-2
task. Furthermore, TaxoRLA,B illustrates the per-
formance of a Reinforcement Learning system by
under the Partial induction and Full induction set-
tings respectively (Mao et al., 2018). Since Mao
et al. (2018) has shown that it outperforms other
methods such as Gupta et al. (2017); Bansal et al.
(2014), we only compare the results of our pro-
posed Graph2Taxo approach against the state-of-
the-art system TaxoRL.

Finally, Graph2Taxo1 and Graph2Taxo2 depict
the results of our proposed algorithm under both
aforementioned settings, i.e. using the input re-
sources of TaxoRL in the first scenario, and us-
ing the resources of TAXI in the second scenario.
In each of these settings, we find that the overall
precision of our proposed Graph2Taxo approach
is far better than all the other existing approaches,
demonstrating the strong ability of Graph2Taxo to
find true relations. Meanwhile, the recall of our pro-
posed Graph2Taxo approach is comparable to that
of the existing state-of-the-art approaches. Combin-
ing the precision and recall metrics, we observe that
Graph2Taxo outperforms existing state-of-the-art
approaches on the F-score, by a significant margin.
For example, for the Science (Average) domain,
Graph2Taxo2 improves over TaxoRL’s F-score by
5%. For the Environment (Eurovoc) domain, our
model improves TaxoRL’s F-score by 7% on the
TExEval-2 task.

Besides, our proposed model has high scalability.
For example, the GNN method has been trained
for a large graph, including about 1 million nodes
(Kipf and Welling, 2017). Besides, the GNN part
can be replaced by any improved GNN methods

(Hamilton et al., 2017; Gao et al., 2018) designed
for large-scale graphs.

Ablation Tests. Table 3 shows the results of pro-
posed Graph2Taxo in the second setting for the
ablation experiments (divided into four blocks),
which indicates the contribution of each layer used
in our Graph2Taxo model. In Table 3, all the exper-
iments are run three times, and the average values
of the three runs are reported. Furthermore, in
Figure 3, we randomly choose Science (Eurovoc)
domain as the one to report the error-bars (corre-
sponding to the standard-deviation values) for our
experiments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2GNN+SC+Res

2GNN+Res

2GNN

No Constraint

Without Feas

Results on Science (Eurovoc) domain with Error Bars

F1 Score Recal l Precision

Figure 3: Results on Science (Eurovoc) domain: The
average Precision, Recall and F-score values and their
standard error values. It is clear that addition of Resid-
ual Layer and SC Layer lowers the variance of the re-
sults.

The first block of values in Table 3 illus-
trates results by ablating layers from within our
Graph2Taxo model. Comparing the first two rows,
it’s evident that adding a Semantic Cluster (SC)
layer improves recall at the cost of precision, how-
ever improving the overall F-score. This improve-
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ment is clearly seen for the Science (Eurovoc) do-
main, wherein we have an increase of 3%.

In the second block, we show that the addition
of constraints improves performance. Row 4 rep-
resents a Graph2Taxo i.e. 2GNN+SC+Res setup,
but without any constraint. Adding the DAG Con-
straint (Row 1) to this yields can get a better F-
score. Specifically, we observe a major increase of
+5% F1 for the Science (Eurovoc) domain.

In the third block, we remove the features vfeas
as mentioned in section 3.3.1. The results, i.e. row
5 in Table 3 shows that these features are critical in
improving the performance of our proposed system
on both Science (Eurovoc) and Environment (Eu-
rovoc) domains. Note that these features denoted as
vfeas are not a novelty of our proposed method, but
rather have been used by existing state-of-the-art
approaches.

Finally, we study the effect of initializing our
model using pre-trained embeddings, rather than
initializing at random. Specifically, we initialize
the input matrixH0 of our Graph2Taxo model with
pre-trained fastText5 embeddings. Our model us-
ing fastText embeddings improves upon Row 1 by
a margin of 4% in precision values for the Environ-
ment (Eurovoc) domain, but unfortunately has no
significant effect on the F-score. Hence, we have
not used pre-trained embeddings in reporting the
results in Table 2.

We provide an illustration of the output of the
Graph2Taxo model in Figure 4, for the Environ-
ment domain.The generated taxonomy in this ex-
ample contains multiple trees, which serve the pur-
pose of generating taxonomical classifications. As
future work, we plan to figure out different strate-
gies to connect the subtrees into a large graph for
better DAG generation.

Figure 4: A simple example of the taxonomy generated
by Graph2Taxo in the environment domain.

5https://fasttext.cc

5 Conclusion

We have introduced a GNN-based cross-domain
knowledge transfer framework Graph2Taxo, which
makes use of a cross-domain graph structure, in
conjunction with an acyclicity constraint-based
DAG learning for taxonomy construction. Further-
more, our proposed model encodes acyclicity as
a soft constraint and shows that the overall model
outperforms state of the art.

In the future, we would like to figure out differ-
ent strategies to merge individual gains, obtained
by separate application of the DAG constraint, into
a setup that can take the best of both precision and
recall improvements, and put forth a better perform-
ing system. We also plan on looking into strategies
to improve recall of the constructed taxonomy.

Acknowledgments

The authors would like to thank Dr. Jie Chen from
MIT-IBM Watson AI Lab and Prof. Jinbo Bi from
the University of Connecticut for in-depth discus-
sions on model construction.

References
Daniele Alfarone and Jesse Davis. 2015. Unsuper-

vised learning of an IS-A taxonomy from a lim-
ited domain-specific corpus. In Proceedings of the
Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pages 1434–1441. AAAI
Press.

Mohit Bansal, David Burkett, Gerard de Melo, and
Dan Klein. 2014. Structured learning for taxon-
omy induction with belief propagation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1041–1051, Baltimore, Maryland. As-
sociation for Computational Linguistics.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics, pages 23–32, Avignon, France. Association for
Computational Linguistics.

Rianne van den Berg, Thomas N. Kipf, and Max
Welling. 2017. Graph convolutional matrix comple-
tion. CoRR, abs/1706.02263.

Georgeta Bordea, Els Lefever, and Paul Buitelaar.
2016. SemEval-2016 task 13: Taxonomy extrac-
tion evaluation (TExEval-2). In Proceedings of the
10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 1081–1091, San Diego,

https://fasttext.cc
http://ijcai.org/Abstract/15/206
http://ijcai.org/Abstract/15/206
http://ijcai.org/Abstract/15/206
https://doi.org/10.3115/v1/P14-1098
https://doi.org/10.3115/v1/P14-1098
https://www.aclweb.org/anthology/E12-1004
https://www.aclweb.org/anthology/E12-1004
http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/1706.02263
https://doi.org/10.18653/v1/S16-1168
https://doi.org/10.18653/v1/S16-1168


2207

California. Association for Computational Linguis-
tics.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and
Yann LeCun. 2014. Spectral networks and lo-
cally connected networks on graphs. In 2nd Inter-
national Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings.

David Maxwell Chickering. 1995. Learning bayesian
networks is np-complete. In Learning from Data
- Fifth International Workshop on Artificial Intel-
ligence and Statistics, AISTATS 1995, Key West,
Florida, USA, January, 1995. Proceedings, pages
121–130. Springer.

David Maxwell Chickering, David Heckerman, and
Christopher Meek. 2004. Large-sample learning of
bayesian networks is np-hard. J. Mach. Learn. Res.,
5:1287–1330.

Sarthak Dash, Md Faisal Mahbub Chowdhury, Alfio
Gliozzo, Nandana Mihindukulasooriya, and Nico-
las Rodolfo Fauceglia. 2020. Hypernym detection
using strict partial order networks. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, New York, USA, February 7 - February
12, 2020. AAAI Press.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence, (AAAI-18), New Orleans, USA, February
2-7, 2018, pages 1811–1818. AAAI Press.

Gerhard Friedrich and Markus Zanker. 2011. A tax-
onomy for generating explanations in recommender
systems. AI Magazine, 32(3):90–98.

Chuang Gan, Yi Yang, Linchao Zhu, Deli Zhao, and
Yueting Zhuang. 2016. Recognizing an action using
its name: A knowledge-based approach. Int. J. Com-
put. Vis., 120(1):61–77.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji.
2018. Large-scale learnable graph convolutional net-
works. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-
23, 2018, pages 1416–1424. ACM.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In Pro-
ceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70, pages 1263–
1272. PMLR.

Marco Gori, Gabriele Monfardini, and Franco Scarselli.
2005. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Con-
ference on Neural Networks, 2005., volume 2, pages
729–734. IEEE.
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