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Abstract

Neural Network Language Models (NNLMs)
generate probability distributions by applying
a softmax function to a distance metric formed
by taking the dot product of a prediction vec-
tor with all word vectors in a high-dimensional
embedding space. The dot-product distance
metric forms part of the inductive bias of
NNLMs. Although NNLMs optimize well
with this inductive bias, we show that this re-
sults in a sub-optimal ordering of the embed-
ding space that structurally impoverishes some
words at the expense of others when assigning
probability. We present numerical, theoretical
and empirical analyses showing that words on
the interior of the convex hull in the embed-
ding space have their probability bounded by
the probabilities of the words on the hull.

1 Introduction

Neural Network Language Models (NNLMs) have
evolved rapidly over the years from simple feed
forward nets (Bengio et al., 2003) to include recur-
rent connections (Mikolov et al., 2010) and LSTM
cells (Zaremba et al., 2014), and most recently
transformer architectures (Dai et al., 2019; Radford
et al., 2019). This has enabled ever-increasing per-
formance on benchmark data sets. However, one
thing has remained relatively constant: the softmax
of a dot product as the output layer.

NNLMs generate probability distributions by
applying a softmax function to a distance metric
formed by taking the dot product of a prediction
vector with all word vectors in a high-dimensional
embedding space. We show that the dot product dis-
tance metric introduces a limitation that bounds the
expressiveness of NNLMs, enabling some words
to “steal” probability from other words simply due
to their relative placement in the embedding space.
We call this limitation the stolen probability effect.
While the net impact of this limitation is small in

terms of the perplexity measure on which NNLMs
are evaluated, we show that the limitation results
in significant errors in certain cases.

As an example, consider a high probability word
sequence like “the United States of America” that
ends with a relatively infrequent word such as
“America”. Infrequent words are often associated
with smaller embedding norms, and may end up in-
side the convex hull of the embedding space. As we
show, in such a case it is impossible for the NNLM
to assign a high probability to the infrequent word
that completes the high-probability sequence.

Numerical, theoretical and empirical analyses
are presented to establish that the stolen probabil-
ity effect exists. Experiments with n-gram models,
which lack this limitation, are performed to quan-
tify the impact of the effect.

2 Background

In a NNLM, words wi are represented as vectors
xi in a high-dimensional embedding space. Some
combination of these vectors xc = {xi}i∈c are
used to represent the preceding context c, which
are fed into a a neural unit as features to generate
a prediction vector ht. NNLMs generate a proba-
bility distribution over a vocabulary of words wi

to predict the next word in a sequence wt using a
model of the form:

P (wt|c) = σ(f(xc, θNNLM )) (1)

where σ is the softmax function, f is a neural unit
that generates the prediction vector ht, and θNNLM

are the parameters of the neural unit.
A dot product between the prediction vector ht

and all word vectors xi is taken to calculate a set
of distances, which are then used to form logits:

zit = xi · hTt + bi (2)
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where bi is a word-specific bias term. Logits are
used with the softmax function to generate a proba-
bility distribution over the vocabulary V such that:

P (wt = wi|c) =
ezit∑
V e

zvt
(3)

We refer to this calculation of logits and transfor-
mation into a probability distribution as the dot-
product softmax.

3 Problem Definition

NNLMs learn very different embeddings for dif-
ferent words. In this section we show that this
can make it impossible for words with certain em-
beddings to ever be assigned high probability in
any context. We start with a brief examination of
the link between embedding norm and probability,
which motivates our analysis of the stolen proba-
bility effect in terms of a word’s position in the
embedding space relative to the convex hull of the
embedding space.

3.1 Embedding Space Analysis
The dot product used in Eq. 2 can be written in
polar coordinates as:

zit =‖xi‖‖ht‖ cos(θi) + bi (4)

where θi is the angle between xi and ht. The dot-
product softmax allocates probability to word wi

in proportion to zit’s value relative to the value of
other logits (see Eq. 3). Setting aside the bias term
bi for the moment (which is shown empirically to
be irrelevant to our analysis in Section 4.2), this
means that word A with a larger norm than word B
will be assigned higher probability when the angles
θA and θB are the same.

More generally, the relationship between embed-
ding norms and the angles formed with prediction
points ht can be expressed as:

‖xA‖
‖xB‖

>
cos(θB)

cos(θA)
(5)

when word A has a higher probability than word
B. Empirical results (not presented) confirm that
NNLMs organize the embedding space such that
word vector norms are widely distributed, while
their angular displacements relative to a reference
vector fall into a narrow range. This suggests that
the norm terms in Eq. 4 dominate the calculation
of logits, and thereby probability.

Figure 1: Numerical Illustration of the Stolen Proba-
bility Effect. Panels (i) and (ii) show the embedding of
four words in a 2D embedding space. Word A is on the
convex hull in panel (i), and interior to the convex hull
in panel (ii). Panels (iii) and (iv) show the probability
that would be assigned by the dot-product softmax to
A for a range of prediction points ht in the x, y plane.
When word A is on the convex hull, it can achieve
nearly 100% probability for an ht prediction point in
the far lower-left quadrant (see panel (iii)). When word
A is interior to the convex hull, its maximum proba-
bility is bounded by any word on the convex hull (see
panel (iv)).

3.2 Theoretical Analysis

While an analysis of how embedding norms impact
the assignment of probability is informative, the
stolen probability effect is best analyzed in terms of
a word’s position in the embedding space relative to
the convex hull of the embedding space. A convex
hull is the smallest set of points forming a convex
polygon that contains all other points in a Euclidean
space.

Theorem 1. Let C be the convex hull of the em-
beddings {xi} of a vocabulary V . If an embedding
xi for word wi ∈ V is interior to C, then the max-
imum probability P (wi) assigned to wi using a
dot-product softmax is bounded by the probability
assigned to at least one word wi whose embedding
is on the convex hull. (see Appendix A for proof).

3.3 Numerical Analysis

The stolen probability effect can be illustrated nu-
merically in a 2D Euclidean space (see Figure
1). We show two configurations of an embedding
space, one where target word A is on the convex
hull (Panel i) and another where A is on the inte-
rior (Panel ii). Under both configurations, a NNLM
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trained to the maximum likelihood objective would
seek to assign probability such that P (A) = 1.0.

For the first configuration, this is achievable for
an ht in the far lower-left quadrant (Panel iii). How-
ever, when A is in the interior, there is no ht that
exists where the dot-product softmax can assign a
probability approaching 1.0 (Panel iv). A similar
illustration in 3D is presented in Appendix B.

4 Experiments

In this section we provide empirical evidence show-
ing that words interior to the convex hull are
probability-impoverished due to the stolen prob-
ability effect and analyze the impact of this phe-
nomenon on different models.

4.1 Methods
We perform our evaluations using the AWD-LSTM
(Merity et al., 2017) and the Mixture of Soft-
maxes (MoS) (Yang et al., 2017) language mod-
els. Both models are trained on the Wikitext-2
corpus (Merity et al., 2016) using default hyper-
parameters, except for dimensionality which is set
to d = {50, 100, 200}. The AWD-LSTM model
is trained for 500 epochs and the MoS model is
trained for 200 epochs, resulting in perplexities as
shown in Table 1.

The Quickhull algorithm (Barber et al., 1996)
is among the most popular algorithms used to de-
tect the convex hull in Euclidean space. However,
we found it to be intractably slow for embedding
spaces above ten dimensions, and therefore re-
sorted to approximate methods. We relied upon
an identity derivable from the properties of a con-
vex hull which states that a point p ∈ Rd is vertex
of the convex hull of {xi} if there exists a vector
ht ∈ Rd such that for all xi:

〈ht, xi − p〉 < 0. (6)

where 〈·〉 is the dot-product.
Searching for directions ht which satisfy Eq 6 is

not computationally feasible. Instead, we rely upon
a high-precision, low-recall approximate method to
eliminate potential directions for ht which do not
satisfy Eq. 6. We call this method our detection
algorithm. If the set of remaining directions is not
empty, then p is classified as a vertex, otherwise p
is classified as an interior point.

The detection algorithm is anchored by the in-
sight that all vectors parallel to the difference vector

Train Test ω Interior
Model d PPL PPL (radians) Points

AWD 50 140.6 141.8 50π/128 6,155
AWD 100 73.3 97.8 55π/128 5,205
AWD 200 44.9 81.6 58π/128 2,064

MoS 50 51.7 76.8 53π/128 4,631
Mos 100 34.8 67.4 57π/128 4,371
MoS 200 25.5 64.2 59π/128 2,009

Table 1: Perplexities and Detection Results. Each
model was trained using default hyper-parameters ex-
cept for dimensions d as shown and number of train-
ing epochs. The AWD-LSTM models we trained for
500 epochs and the MoS models were trained for 200
epochs. Each ordinal plane of an n-Sphere in the em-
bedding space was discretized into arcs of 2π/256. The
angle φ of the difference vector xi − p formed each
word type embedded at p is mapped to one of these
arcs. Directions on the interval (φ± ω) are eliminated
from consideration per Eq 6, and words for which all
directions have been eliminated as classified as interior.
The increment ω was set to the lowest value that would
classify at least 1,000 words as interior.

~xi− ~p do not satisfy Eq. 6. It is also true that all di-
rections in the range (φ+ω, φ−ω) will not satisfy
Eq. 6, where φ is the direction of the difference
vector and ω is some increment less than π/2. The
detection algorithm was validated in lower dimen-
sional spaces where an exact convex hull could be
computed (e,g. up to d = 10). It consistently clas-
sified interior points with precision approaching
100% and recall of 68% when evaluated on the first
10 dimensions of the MoS model with d = 100.

4.2 Results

Applying the detection algorithm to our models
yields word types being classified into distinct inte-
rior and non-interior sets (see Table 1). We ranked
the top 500 words of each set by the maximum
probability they achieved on the training corpora1,
and plot these values in Figure 2, showing a clear
distinction between interior and non-interior sets.
The maximum trigram probabilities (Stolcke, 2002)
smoothed with KN3 for the same top 500 words in
each set (separately sorted) are also shown. The dif-
ference between NNLM and trigram curves for in-
terior words shows that models like n-grams, which
do not utilize a dot-product softmax, are not sub-
ject to the stolen probability effect and can assign
higher probabilities. A random set of words equal

1We present our results on the training set because here,
our goal is to characterize the expressiveness of the models
rather than their ability to generalize.
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Figure 2: Maximum Probability of Top 500 Inte-
rior and Non-Interior Words. The MoS model with
d = 100 struggles to assign high probability to interior
words, while trigrams were able to capture more accu-
rate statistics. This behavior is absent for non-interior
words.

Non- Tri-
Model d Interior Rand gram Interior

AWD 50 44.3 8.1 20.7 0.004
AWD 100 89.2 31.3 15.6 0.018
AWD 200 99.0 43.3 12.5 0.113

MoS 50 76.5 22.9 16.8 0.4
MoS 100 92.9 50.5 22.6 8.6
MoS 200 97.3 51.4 30.9 40.0

Table 2: Average Maximum Probability for Top 500
Words. The average probability mass for each word set
(expressed as percents) is calculated by averaging the
maximum probability on the training corpora achieved
for the top 500 words of each set.

in size to the interior set was also constructed by
uniform sampling, and ranked on the top 500 words.
A comparison between the random and interior sets
provides evidence that our detection algorithm is
effective at separating the interior and non-interior
sets, and is not simply performing random sam-
pling.

Our results can be more compactly presented by
considering the average probability mass assigned
to the top 500 words for each set (see Table 2).
The impact of the stolen probability effect for each
model can quantified as the difference between the
interior set and each of the three reference sets (non-
interior, random, and trigram) in the table. The
interior average maximum probability is generally
much smaller than those of the reference sets.

Another way to quantify the impact of the stolen
probability effect is to overcome the bound on the
interior set by constructing an ensemble with tri-
gram statistics. We constructed a targeted ensem-
ble of the MoS model with d = 100 and a trigram

model—unlike a standard ensemble, the trigram
model is only used in contexts that are likely to
indicate an interior word: specifically, those that
precede at least one interior word in the training set.
Otherwise, we default to the NNLM probability.
When we ensemble, we assign weights of 0.8 to
the NNLM, 0.2 to the trigram (selected using the
training set). Overall, the targeted ensemble im-
proved training perplexity from 34.8 to 33.6, and
test perplexity from 67.4 to 67.0. The improve-
ments on the interior words themselves were much
larger: training perplexities for interior words im-
proved from 700.0 to 157.2, and test improved from
645.6 to 306.7. Improvement on the interior words
is not unexpected given the differences observed in
Figure 2. The overall perplexity differences, while
small in magnitude, suggest that ensembling with
a model that lacks the stolen probability limitation
may provide some boost to a NNLM.

Returning to the question of bias terms, we find
empirically that bias terms are relatively small, av-
eraging −0.13 and 0.02 for the interior and non-
interior sets of the MoS model with d = 100, re-
spectively. We note that the bias terms are word-
specific and can only adjust the stolen probability
effect by a constant factor. That is, it does not
change the fact that words in the interior set are
probability-bounded. All of our empirical results
are calculated on a model with a bias term, demon-
strating that the stolen probability effect persists
with bias terms.

4.3 Analysis

Attributes of the stolen probability effect analyzed
in this work are distinct from the softmax bottle-
neck (Yang et al., 2017). The softmax bottleneck
argues that language modeling can be formulated
as a factorization problem, and that the resulting
model’s expressiveness in limited by the rank of
the word embedding matrix. While we also argue
that the expressiveness of a NNLM is limited for
structural reasons, the stolen probability effect that
we study is best understood as a property of the
arrangement of the embeddings in space, rather
than the dimensionality of the space.

Our numerical and theoretical analyses pre-
sented do not rely upon any particular number of
dimensions, and our experiments show that the
stolen probability effect holds over a range of di-
mensions. However, there is a steady increase of
average probability mass assigned to the interior set
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as model dimensionality increases, suggesting that
there are limits to the stolen probability effect. This
is not unexpected. As the capacity of the embed-
ding space increases with additional dimensions,
the model has additional degrees of freedom in or-
ganizing the embedding space. The vocabulary of
the Wikitext-2 corpus is small compared to other
more recent corpora. We believe that larger vocab-
ularies will offset (at least partially) the additional
degrees of freedom associated with higher dimen-
sional embedding spaces. We leave the exploration
of this question as future research.

We acknowledge that our results can also be im-
pacted by the approximate nature of our detection
algorithm. Without the ability to precisely detect
detect the convex hull for any of our embedding
spaces, we can not make precise claims about its
performance. The difference between average prob-
ability mass assigned to random and interior sets
across all models evaluated suggests that the detec-
tion algorithm succeeds at identifying words with
substantially lower maximum probabilities than a
random selection of words.

In Section 3.1 we motivated our analysis of the
stolen probability effect by examining the impact of
embeddings norms on probability assignment. One
natural question is to ask is “Does our detection
algorithm simply classify embeddings with small
norms as interior points?” Our results suggest that
this is not the case. The scatter plot of embedding
norm versus maximum probability (see Figure 3)
shows that words classified as interior points fre-
quently have lower norms. This is expected, since
points interior to the convex hull are by definition
not located in extreme regions of the embedding
space. The embedding norms for words in the in-
terior set range between 1.4 and 2.6 for the MoS
model with d = 100. Average maximum proba-
bilities for words in this range are 1.4% and 4.1%
for interior and non-interior sets of the MoS model
with d = 100, respectively, providing evidence that
the detection algorithm is not merely identifying
word with small embedding norms.

Lastly, we note that the interior sets of the AWD-
LSTM models are particularly probability impov-
erished relative to the more powerful MoS models.
We speculate that the perplexity improvements of
the MoS model may be due in part to mitigating the
stolen probability effect. Exploration of the stolen
probability effect in more powerful NNLM archi-
tectures using dot-product softmax output layers is

Figure 3: Maximum Probability vs. Embedding
Norm. Examining maximum word probability as a
function of embedding norm for the MoS model with
d = 100 shows that interior words are associated with
smaller embedding norms and lower maximum proba-
bilities. However, many non-interior words with com-
parably small norms have substantially higher maxi-
mum probabilities.

another item of future research.

5 Related Work

Other work has explored alternative softmax con-
figurations, including a mixture of softmaxes, adap-
tive softmax and a Taylor Series softmax (Yang
et al., 2017; Grave et al., 2016; de Brébisson and
Vincent, 2015). There is also a body of work that
analyzes the properties of embedding spaces (Bur-
dick et al., 2018; Mimno and Thompson, 2017).
We do not seek to modify the softmax. Instead we
present an analysis of how the structural bounds of
an NNLM limit its expressiveness.

6 Conclusion

We present numerical, theoretical and empirical
analyses showing that the dot-product softmax lim-
its a NNLM’s expressiveness for words on the inte-
rior of a convex hull of the embedding space. This
is structural weakness of NNLMs with dot-product
softmax output layers, which we call the stolen
probability effect. Our experiments show that the
effect is relatively common in smaller neural lan-
guage models. Alternative architectures that can
overcome the stolen probability effect are an item
of future work.
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A Proof of Theorems

Proof of Theorem 1.
Let P = {x1, . . . , xN} be the set of all words.

We can form the convex hull of this set. If p is
interior, then for all v, there exists an xi ∈ P such
that 〈v, xi − p〉 > 0. We argue by contradiction.
Suppose that p is interior and that for all v, we have
that 〈v, xi − p〉 ≤ 0 for all xi ∈ P . This implies
that all points in our set P lay strictly on one side
of the hyperplane made perpendicular to v through
p. This would imply that p was actually on the
convex hull, a contradiction.

This implies that for any test point h, an interior
point will be bounded by at least one point in P .
That is 〈h, p〉 < 〈h, xi〉 for some xi ∈ P . Plugging
into the softmax function we see that:

P(p) =
exp(〈h, p〉)

exp(〈h, p〉) +
∑

j 6=p exp(〈h, xj〉)

≤ 1

1 + exp(〈h, xi − p〉)

Letting ‖h‖ → ∞ shows that P(p) → 0. This
shows that interior points are probability deficient.
We also note that letting ‖h‖ → 0 gives the base
probability P(p) = 1/|P |.

The contrapositive of the above statement im-
plies that if @ v, where ∀ xi ∈ p we have
〈v, xi−p〉 ≤ 0, then p is on the convex hull. In fact,
we also note that if p was a vertex, the inequality
would be strict, which implies that one can find a
test point such that the probability P(p)→ 1.

The more interesting case is if the point p is
on the convex hull, but not a vertex. In this case
we define the set Ω(p, h) = {xi ∈ P | 〈h, p −
xi〉 = 0}. This corresponds to the set of points
lying directly on the hyperplane perpendicular to
h, running through p. This set is nonempty. Then
we see that:

P(p) =
exp(〈h, p〉)∑
j exp(〈h, xj〉)

≤ exp(〈h, p〉)∑
j∈Ω(p,h) exp(〈h, xj〉)

=
1

|Ω(p, h)|

x

B 3D Numerical Illustration

Figure 4: Numerical Illustration in 3D The top pan-
els show six words in a flattened cross-section of 3D
space. Points A, B, C, D and E are embedded at
(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0) and (0.5, 0.5, 1) re-
spectively. In the top-left panel, F is embedded out-
side of the convex hull at (0.65, 0.35, 1.5), and in the
top-right panel F is embedded inside of the convex
hull at (0.65, 0.35, 0.5). Subsequent panels show cross
sections of the probability of F for test points in the
plains z = {0.0, 2.0, 4.0, 6.0}, numerically illustrating
the stolen probability effect in 3D.


