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Abstract

Sequence labeling is a fundamental task for
a range of natural language processing prob-
lems. When used in practice, its performance
is largely influenced by the annotation qual-
ity and quantity, and meanwhile, obtaining
ground truth labels is often costly. In many
cases, ground truth labels do not exist, but
noisy annotations or annotations from differ-
ent domains are accessible. In this paper, we
propose a novel framework Consensus Net-
work (CONNET) that can be trained on annota-
tions from multiple sources (e.g., crowd anno-
tation, cross-domain data). It learns individual
representation for every source and dynami-
cally aggregates source-specific knowledge by
a context-aware attention module. Finally, it
leads to a model reflecting the agreement (con-
sensus) among multiple sources. We evaluate
the proposed framework in two practical set-
tings of multi-source learning: learning with
crowd annotations and unsupervised cross-
domain model adaptation. Extensive experi-
mental results show that our model achieves
significant improvements over existing meth-
ods in both settings. We also demonstrate that
the method can apply to various tasks and cope
with different encoders. 1

1 Introduction

Sequence labeling is a general approach en-
compassing various natural language process-
ing (NLP) tasks including part-of-speech (POS)
tagging (Ratnaparkhi, 1996), word segmenta-
tion (Low et al., 2005), and named entity recogni-
tion (NER) (Nadeau and Sekine, 2007). Typically,
existing methods follow the supervised learning
paradigm, and require high-quality annotations.
While gold standard annotation is expensive and

∗The first two authors contributed equally.
1Our code can be found at https://github.com/

INK-USC/ConNet .

time-consuming, imperfect annotations are rela-
tively easier to obtain from crowdsourcing (noisy
labels) or other domains (out-of-domain). De-
spite their low cost, such supervision usually can
be obtained from different sources, and it has
been shown that multi-source weak supervision
has the potential to perform similar to gold anno-
tations (Ratner et al., 2016).

Specifically, we are interested in two scenar-
ios: 1) learning with crowd annotations and 2)
unsupervised cross-domain model adaptation.
Both situations suffer from imperfect annotations,
and benefit from multiple sources. Therefore, the
key challenge here is to aggregate multi-source
imperfect annotations for learning a model with-
out knowing the underlying ground truth label se-
quences in the target domain.

Our intuition mainly comes from the phe-
nomenon that different sources of supervision
have different strengths and are more proficient
with distinct situations. Therefore they may not
keep consistent importance during aggregating su-
pervisions, and aggregating multiple sources for a
specific input should be a dynamic process that de-
pends on the sentence context. To better model
this nature, we need to (1) explicitly model the
unique traits of different sources when training
and (2) find best suitable sources for generalizing
the learned model on unseen sentences.

In this paper, we propose a novel framework,
named Consensus Network (CONNET), for se-
quence labeling with multi-source supervisions.
We represent the annotation patterns as differ-
ent biases of annotators over a shared behav-
ior pattern. Both annotator-invariant patterns and
annotator-specific biases are modeled in a decou-
pled way. The first term comes through sharing
part of low-level model parameters in a multi-task
learning schema. For learning the biases, we de-
couple them from the model as the transformations

https://github.com/INK-USC/ConNet
https://github.com/INK-USC/ConNet
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Figure 1: Illustration of the task settings for the two applications in this work: (a) learning consensus model
from crowd annotations; (b) unsupervised cross-domain model adaptation.

on top-level tagging model parameters, such that
they can capture the unique strength of each anno-
tator. With such decoupled source representations,
we further learn an attention network for dynam-
ically assigning the best sources for every unseen
sentence through composing a transformation that
represents the agreement among sources (consen-
sus). Extensive experimental results in two scenar-
ios show that our model outperforms strong base-
line methods, on various tasks and with different
encoders. CONNET achieves state-of-the-art per-
formance on real-world crowdsourcing datasets
and improves significantly in unsupervised cross-
domain adaptation tasks over existing works.

2 Related Work

There exists three threads of related work with this
paper, which are sequence labeling, crowdsourc-
ing and unsupervised domain adaptation.
Neural Sequence Labeling. Traditional ap-
proaches for sequence labeling usually need
significant efforts in feature engineering for
graphical models like conditional random fields
(CRFs) (Lafferty, 2001). Recent research ef-
forts in neural network models have shown that
end-to-end learning like convolutional neural net-
works (CNNs) (Ma and Hovy, 2016a) or bidirec-
tional long short-term memory (BLSTMs) (Lam-
ple et al., 2016) can largely eliminate human-
crafted features. BLSTM-CRF models have
achieved promising performance (Lample et al.,
2016) and are used as our base sequence tagging
model in this paper.
Crowd-sourced Annotation. Crowd-sourcing
has been demonstrated to be an effective way of
fulfilling the label consumption of neural mod-
els (Guan et al., 2017; Lin et al., 2019). It col-
lects annotations with lower costs and a higher
speed from non-expert contributors but suffers
from some degradation in quality. Dawid and

Skene (1979) proposes the pioneering work to
aggregate crowd annotations to estimate true la-
bels, and Snow et al. (2008) shows its effec-
tiveness with Amazon’s Mechanical Turk system.
Later works (Dempster et al., 1977; Dredze et al.,
2009; Raykar et al., 2010) focus on Expectation-
Maximization (EM) algorithms to jointly learn the
model and annotator behavior on classification.

Recent research shows the strength of multi-
task framework in semi-supervised learning (Lan
et al., 2018; Clark et al., 2018), cross-type learn-
ing (Wang et al., 2018), and learning with entity
triggers (Lin et al., 2020). Nguyen et al. (2017);
Rodrigues and Pereira (2018); Simpson et al.
(2020) regards crowd annotations as noisy gold la-
bels and constructs crowd components to model
annotator-specific bias which were discarded dur-
ing the inference process. It is worth mentioning
that, it has been found even for human curated an-
notations, there exists certain label noise that hin-
ders the model performance (Wang et al., 2019).

Unsupervised Domain Adaptation. Unsuper-
vised cross-domain adaptation aims to transfer
knowledge learned from high-resource domains
(source domains) to boost performance on low-
resource domains (target domains) of interests
such as social media messages (Lin et al., 2017).
Different from supervised adaptation (Lin and Lu,
2018), we assume there is no labels at all for tar-
get corpora. Saito et al. (2017) and Ruder and
Plank (2018) explored bootstrapping with multi-
task tri-training approach, which requires unla-
beled data from the target domain. The method is
developed for one-to-one domain adaptation and
does not model the differences among multiple
source domains. Yang and Eisenstein (2015) rep-
resents each domain with a vector of metadata do-
main attributes and uses domain vectors to train
the model to deal with domain shifting, which
is highly dependent on prior domain knowledge.
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(Ghifary et al., 2016) uses an auto-encoder method
by jointly training a predictor for source labels,
and a decoder to reproduce target input with a
shared encoder. The decoder acts as a normal-
izer to force the model to learn shared knowl-
edge between source and target domains. Ad-
versarial penalty can be added to the loss func-
tion to make models learn domain-invariant fea-
ture only (Fernando et al., 2015; Long et al., 2014;
Ming Harry Hsu et al., 2015). However, it does
not exploit domain-specific information.

3 Multi-source Supervised Learning

We formulate the multi-source sequence labeling
problem as follows. Given K sources of supervi-
sion, we regard each source as an imperfect anno-
tator (non-expert human tagger or models trained
in related domains). For the k-th source data set
S(k) = {(x(k)

i ,y
(k)
i )}mk

i=1, we denote its i-th sentence
as x

(k)
i which is a sequence of tokens: x

(k)
i =

(x
(k)
i,1 , · · · , x

(k)
i,N ). The tag sequence of the sentence

is marked as y
(k)
i = {y(k)

i,j }. We define the sentence
set of each annotators as X (k) = {x(k)

i }
mk
i=1, and the

whole training domain as the union of all sentence
sets: X =

⋃(K)
k=1 X

(k). The goal of the multi-source
learning task is to use such imperfect annotations
to train a model for predicting the tag sequence
y for any sentence x in a target corpus T . Note
that the target corpus T can either share the same
distribution with X (Application I) or be signifi-
cantly different (Application II). In the following
two subsections, we formulate two typical tasks in
this problem as shown in Fig. 1.

Application I: Learning with Crowd Annota-
tions. When learning with crowd-sourced data,
we regard each worker as an imperfect annota-
tor (S(k)), who may make mistakes or skip sen-
tences in its annotations. Note that in this set-
ting, different annotators tag subsets of the same
given dataset (X ), and thus we assume there are
no input distribution shifts among X (k). Also, we
only test sentences in the same domain such that
the distribution in target corpus T is the same as
well. That is, the marginal distribution of target
corpus PT (x) is the same with that for each indi-
vidual source dataset, i.e. PT (x) = Pk(x). How-
ever, due to imperfectness of the annotations in
each source, Pk(y|x) is shifted from the underly-
ing truth P (y|x) (illustrated in the top-left part of
Fig. 1). The multi-source learning objective here
is to learn a model PT (y|x) for supporting infer-

ence on any new sentences in the same domain.

Application II: Unsupervised Cross-Domain
Model Adaptation. We assume there are avail-
able annotations in several source domains, but
not in an unseen target domain. We assume that
the input distributions P (x) in different source
domains X (k) vary a lot, and such annotations
can hardly be adapted for training a target domain
model. That is, the prediction distribution of each
domain model (Pk(y|x)) is close to the underly-
ing truth distribution (P (y|x)) only when x ∈
X (k). For target corpus sentences x ∈ T , such
a source model Pk(y|x) again differs from under-
lying ground truth for the target domain PT (y|x)
and can be seen as an imperfect annotators. Our
objective in this setting is also to jointly model
PT (y,x) while noticing that there are significant
domain shifts between T and any other X (k).

4 Consensus Network

In this section, we present our two-phase frame-
work CONNET for multi-source sequence label-
ing. As shown in Figure 2, our proposed frame-
work first uses a multi-task learning schema with
a special objective to decouple annotator represen-
tations as different parameters of a transformation
around CRF layers. This decoupling phase (Sec-
tion 4.2) is for decoupling the model parameters
into a set of annotator-invariant model parame-
ters and a set of annotator-specific representations.
Secondly, the dynamic aggregation phase (Sec-
tion 4.3) learns to contextually utilize the anno-
tator representations with a lightweight attention
mechanism to find the best suitable transformation
for each sentence, so that the model can achieve a
context-aware consensus among all sources. The
inference process is described in Section 4.4.

4.1 The Base Model: BLSTM-CRF

Many recent sequence labeling frameworks (Ma
and Hovy, 2016b; Misawa et al., 2017) share
a very basic structure: a bidirectional LSTM
network followed by a CRF tagging layer (i.e.
BLSTM-CRF). The BLSTM encodes an input se-
quence x = {x1, x2, . . . , xn} into a sequence of
hidden state vectors h1:n. The CRF takes as input
the hidden state vectors and computes an emission
score matrix U ∈ Rn×L where L is the size of tag
set. It also maintains a trainable transition matrix
M ∈ RL×L. We can consider Ui,j is the score
of labeling the tag with id j ∈ {1, 2, ..., L} for ith
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Figure 2: Overview of the CONNET framework. The decoupling phase constructs the shared model (yellow) and source-
specific matrices (blue). The aggregation phase dynamically combines crowd components into a consensus representation
(blue) by a context-aware attention module (red) for each sentence x.

word in the input sequence x, and Mi,j means the
transition score from ith tag to jth.

The CRF further computes the score s for a pre-
dicted tag sequence y = {y1, y2, ..., yk} as

s(x,y) =
T∑
t=1

(Ut,yt +Myt−1,yt), (1)

and then tag sequence y follows the conditional
distribution

P (y|x) = exp s(x,y)∑
y∈Yx

exp s(x,y)
. (2)

4.2 The Decoupling Phase: Learning
annotator representations

For decoupling annotator-specific biases in anno-
tations, we represent them as a transformation on
emission scores and transition scores respectively.
Specifically, we learn a matrix A(k) ∈ RL×L for
each imperfect annotator k and apply this matrix
as transformation on U and M as follows:

s(k)(x,y) =

T∑
t=1

(
(UA(k))t,yt + (MA(k))yt−1,yt

)
.

(3)
From this transformation, we can see that the orig-
inal score function s in Eq. 1 becomes an source-
specific computation. The original emission and
transformation score matrix U and M are still
shared by all the annotators, while they both are
transformed by the matrix A(k) for k-th annotator.
While training the model parameters in this phase,
we follow a multi-task learning schema. That is,
we share the model parameters for BLSTM and
CRF (including W, b, M), while updating A(k)

only by examples in Sk = {X (k),Y(k)}.
The learning objective is to minimize the nega-

tive log-likelihood of all source annotations:

L =− log

K∑
k=1

|X (k)|∑
i=1

P (y
(k)
i |x

(k)
i ) , (4)

P (y
(k)
i |x

(k)
i ) =

exp s(k)(x
(k)
i ,y

(k)
i )∑

y′ exp s
(k)(x,y′)

. (5)

The assumption on the annotation representation
A(k) is that it can model the pattern of annota-
tion bias. Each annotator can be seen as a noisy
version of the shared model. For the k-th anno-
tator, A(k) models noise from labeling the cur-
rent word and transferring from the previous label.
Specifically, each entry A

(k)
i,j captures the proba-

bility of mistakenly labeling i-th tag to j-th tag.
In other words, the base sequence labeling model
in Sec. 4.1 learns the basic consensus knowledge
while annotator-specific components add their un-
derstanding to predictions.

4.3 The Aggregation Phase: Dynamically
Reaching Consensus

In the second phase, our proposed network learns
a context-aware attention module for a consen-
sus representation supervised by combined pre-
dictions on the target data. For each sentence in
target data T , these predictions are combined by
weighted voting. The weight of each source is its
normalized F1 score on the training set. Through
weighted voting on such augmented labels over all
source sentences X , we can find a good approxi-
mation of underlying truth labels.

For better generalization and higher speed, an
attention module is trained to estimate the rele-
vance of each source to the target under the super-
vision of generated labels. Specifically, we com-
pute the sentence embedding by concatenating the
last hidden states of the forward LSTM and the
backward LSTM, i.e. h(i) = [

−→
h

(i)
T ;
←−
h

(i)
0 ]. The

attention module inputs the sentence embedding
and outputs a normalized weight for each source:

qi = softmax(Qh(i)), where Q ∈ RK×2d. (6)
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where d is the size of each hidden state h(i).
Source-specific matrices {A(k)}Kk=1 are then ag-
gregated into a consensus representation A∗i for
sentence xi ∈ X by

A∗i =
K∑
k=1

qi,kA
(k). (7)

In this way, the consensus representation contains
more information about sources which are more
related to the current sentence. It also alleviates
the contradiction problem among sources, because
it could consider multiple sources of different em-
phasis. Since only an attention model with weight
matrix Q is required to be trained, the amount of
computation is relatively small. We assume the
base model and annotator representations are well-
trained in the previous phase. The main objective
in this phase is to learn how to select most suitable
annotators for the current sentence.

4.4 Parameter Learning and Inference
CONNET learns parameters through two phases
described above. In the decoupling phase, each
instance from source Sk is used for training the
base sequence labeling model and its representa-
tion A(k). In the aggregation phase, we use ag-
gregated predictions from the first phase to learn a
lightweight attention module. For each instance in
the target corpus xi ∈ T , we calculate its embed-
ding hi from BLSTM hidden states. With these
sentence embeddings, the context-aware attention
module assigns weight qi to each source and dy-
namically aggregates source-specific representa-
tions {A(k)} for inferring ŷi. In the inference pro-
cess, only the consolidated consensus matrix A∗i
is applied to the base sequence learning model. In
this way, more specialist knowledge helps to deal
with more complex instances.

4.5 Model Application
The proposed model can be applied to two prac-
tical multi-sourcing settings: learning with crowd
annotations and unsupervised cross-domain model
adaptation. In the crowd annotation learning set-
ting, the training data of the same domain is an-
notated by multiple noisy annotators, and each
annotator is treated as a source. In the decou-
pling phase, the model is trained on noisy anno-
tations, and in the aggregation phase, it is trained
with combined predictions on the training set. In
the cross-domain setting, the model has access to

unlabeled training data of the target domain and
clean labeled data of multiple source domains.
Each domain is treated as a source. In the decou-
pling phase, the model is trained on source do-
mains, and in the aggregation phase, the model
is trained on combined predictions on the train-
ing data of the target domain. Our framework can
also extend to new tasks other than sequence la-
beling and cope with different encoders. We will
demonstrate this ability in experiments.

Our method is also incorporated as a feature for
controlling the quality of crowd-annotation in an-
notation frameworks such as AlpacaTag (Lin et al.,
2019) and LEAN-LIFE (Lee et al., 2020).

5 Experiments

We evaluate CONNET in the two aforementioned
settings of multi-source learning: learning with
crowd annotations and unsupervised cross-domain
model adaptation. Additionally, to demonstrate
the generalization of our framework, we also test
our method on sequence labeling with transformer
encoder in Appendix B and text classification with
MLP encoder in Section 5.5.

5.1 Datasets

Crowd-Annotation Datasets. We use crowd-
annotation datasets based on the 2003 CoNLL
shared NER task (Tjong Kim Sang and De Meul-
der, 2003). The real-world datasets, denoted as
AMT, are collected by Rodrigues et al. (2014) us-
ing Amazon’s Mechanical Turk where F1 scores
of annotators against the ground truth vary from
17.60% to 89.11%. Since there is no development
set in AMT, we also follow Nguyen et al. (2017)
to use the AMT training set and CoNLL 2003 de-
velopment and test sets, denoted as AMTC. Over-
lapping sentences are removed in the training set,
which is ignored in that work. Additionally, we
construct two sets of simulated datasets to inves-
tigate the quality and quantity of annotators. To
simulate the behavior of a non-expert annotator, a
CRF model is trained on a small subset of training
data and generates predictions on the whole set.
Because of the limited size of training data, each
model would have a bias to certain patterns.

Cross-Domain Datasets. In this setting, we in-
vestigate three NLP tasks: POS tagging, NER and
text classification. For POS tagging task, we use
the GUM portion (Zeldes, 2017) of Universal De-
pendencies (UD) v2.3 corpus with 17 tags and 7
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Methods AMTC AMT

Precision(%) Recall(%) F1-score(%) Precision(%) Recall(%) F1-score(%)

CONCAT-SLM 85.95(±1.00) 57.96(±0.26) 69.23(±0.13) 91.12(±0.57) 55.41(±2.66) 68.89(±1.92)
MVT-SLM 84.78(±0.66) 62.50(±1.36) 71.94(±0.66) 86.96(±1.22) 58.07(±0.11) 69.64(±0.31)
MVS-SLM 84.76(±0.50) 61.95(±0.32) 71.57(±0.04) 86.95(±1.12) 56.23(±0.01) 68.30(±0.33)
DS-SLM (Nguyen et al., 2017) 72.30∗ 61.17∗ 66.27∗ - - -
HMM-SLM (Nguyen et al., 2017) 76.19∗ 66.24∗ 70.87∗ - - -
MTL-MVT (Wang et al., 2018) 81.81(±2.34) 62.51(±0.28) 70.87(±1.06) 88.88(±0.25) 65.04(±0.80) 75.10(±0.44)
MTL-BEA (Rahimi et al., 2019) 85.72(±0.66) 58.28(±0.43) 69.39(±0.52) 77.56(±2.23) 67.23(±0.72) 72.01(±0.85)

CRF-MA (Rodrigues et al., 2014) - - - 49.40∗ 85.60∗ 62.60∗

Crowd-Add (Nguyen et al., 2017) 85.81(±1.53) 62.15(±0.18) 72.09(±0.42) 89.74(±0.10) 64.50(±1.48) 75.03(±1.02)
Crowd-Cat (Nguyen et al., 2017) 85.02(±0.98) 62.73(±1.10) 72.19(±0.37) 89.72(±0.47) 63.55(±1.20) 74.39(±0.98)
CL-MW (Rodrigues and Pereira, 2018) - - - 66.00∗ 59.30∗ 62.40∗

CONNET (Ours) 84.11(±0.71) 68.61(±0.03) 75.57(±0.27) 88.77(±0.25) 72.79(±0.04) 79.99(±0.08)

Gold (Upper Bound) 89.48(±0.32) 89.55(±0.06) 89.51(±0.21) 92.12(±0.31) 91.73(±0.09) 91.92(±0.21)

Table 1: Performance on real-world crowd-sourced NER datasets. The best score in each column excepting Gold is
marked bold. * indicates number reported by the paper.

domains: academic, bio, fiction, news, voyage,
wiki, and interview. For NER task, we select the
English portion of the OntoNotes v5 corpus (Hovy
et al., 2006). The corpus is annotated with 9
named entities with data from 6 domains: broad-
cast conversation (bc), broadcast news (bn), mag-
azine (mz), newswire (nw), pivot text (pt), tele-
phone conversation (tc), and web (web). Multi-
Domain Sentiment Dataset (MDS) v2.0 (Blitzer
et al., 2007) is used for text classification, which is
built on Amazon reviews from 4 domains: books,
dvd, electronics, and kitchen. Since the dataset
only contains word frequencies for each review
without raw texts, we follow the setting in Chen
and Cardie (2018) considering 5,000 most fre-
quent words and use the raw counts as the feature
vector for each review.

5.2 Experiment Setup

For sequence labeling tasks, we follow Liu et al.
(2018) to build the BLSTM-CRF architecture as
the base model. The dimension of character-
level, word-level embeddings and LSTM hidden
layer are set as 30, 100 and 150 respectively. For
text classification, each review is represented as a
5000-d vector. We use an MLP with a hidden size
of 100 for encoding features and a linear classi-
fication layer for predicting labels. The dropout
with a probability of 0.5 is applied to the non-
recurrent connections for regularization. The net-
work parameters are updated by stochastic gradi-
ent descent (SGD). The learning rate is initialized
as 0.015 and decayed by 5% for each epoch. The
training process stops early if no improvements in
15 continuous epochs and selects the best model
on the development set. For the dataset without

a development set, we report the performance on
the 50-th epoch. For each experiment, we report
the average performance and standard variance of
3 runs with different random initialization.

5.3 Compared Methods

We compare our models with multiple baselines,
which can be categorized in two groups: wrapper
methods and joint models. To demonstrate the the-
oretical upper bound of performance, we also train
the base model using ground-truth annotations in
the target domain (Gold).

A wrapper method consists of a label aggregator
and a deep learning model. These two components
could be combined in two ways: (1) aggregating
labels on crowd-sourced training set then feeding
the generated labels to a Sequence Labeling Model
(SLM) (Liu et al., 2017); (2) feeding multi-source
data to a Multi-Task Learning (MTL) (Wang et al.,
2018) model then aggregating multiple predicted
labels. We investigate multiple label aggregation
strategies. CONCAT considers all crowd annota-
tions as gold labels. MVT does majority voting on
the token level, i.e., the majority of labels {yk

i,j}
is selected as the gold label for each token xi,j .
MVS is conducted on the sequence level, address-
ing the problem of violating Begin/In/Out (BIO)
rules. DS (Dawid and Skene, 1979), HMM (Nguyen
et al., 2017) and BEA (Rahimi et al., 2019) induce
consensus labels with probability models.

In contrast with wrapper methods, joint models
incorporate multi-source data within the structure
of sequential taggers and jointly model all individ-
ual annotators. CRF-MAmodels CRFs with Multi-
ple Annotators by EM algorithm (Rodrigues et al.,
2014). Nguyen et al. (2017) augments the LSTM
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Figure 3: Visualizations of (a) the expertise of annotators; (b) attention weights for sample sentences. More cases and
details are described in Appendix A.1.

architecture with crowd vectors. These crowd
components are element-wise added to tags scores
(Crowd-Add) or concatenated to the output of
hidden layer (Crowd-Cat). These two methods
are the most similar to our decoupling phase. We
implemented them and got better results than re-
ported. CL-MW applies a crowd layer to a CNN-
based deep learning framework (Rodrigues and
Pereira, 2018). Tri-Training uses bootstrap-
ping with multi-task Tri-Training approach for un-
supervised one-to-one domain adaptation (Saito
et al., 2017; Ruder and Plank, 2018).

5.4 Learning with Crowd Annotations

Performance on real-world datasets. Tab. 1
shows the performance of aforementioned meth-
ods and our CONNET on two real-world datasets,
i.e. AMT and AMTC2. We can see that CONNET

outperforms all other methods on both datasets
significantly on F1 score, which shows the ef-
fectiveness of dealing with noisy annotations for
higher-quality labels. Although CONCAT-SLM
achieves the highest precision, it suffers from low
recall. Most existing methods have the high-
precision but low-recall problem. One possible
reason is that they try to find the latent ground truth
and throw away illuminating annotator-specific in-
formation. So only simple mentions can be clas-
sified with great certainty while difficult mentions
fail to be identified without sufficient knowledge.
In comparison, CONNET pools information from
all annotations and focus on matching knowledge
to make predictions. It makes the model be able to
identify more mentions and get a higher recall.
Case study. It is enlightening to analyze whether
the model decides the importance of annotators
given a sentence. Fig. 3 visualizes test F1 score
of all annotators, and attention weights qi in Eq. 6

2We tried our best to re-implement the baseline methods for all datasets,
and left the results blank when the re-implementation is not showing consistent
results as in the original papers.

68.89

77.44

72.16

79.08

68.67
70.53

78.73 79.99

60

65

70

75

80

85

CR
F
DP
(1)
DP
(2)

DP
(1+
2)

AP
(OM

V)

AP
(PM

V)

AP
(AM

V)

AP
(AW

V)

F1
(%
)

Figure 4: Performance of CONNET variants of decou-
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Figure 5: Performance on simulated crowd-sourced NER
data with (a) 5 annotators with different reliability levels; (b)
different numbers of annotators with reliability r = 1/50.

for 4 sampled sentences containing different entity
types. Obviously, the 2nd sample sentence with
ORG has higher attention weights on 1st, 5th and
33rd annotator who are best at labeling ORG. More
details and cases are shown in Appendix A.1.
Ablation study. We also investigate multiple vari-
ants of two phases on AMT dataset, shown in
Fig. 4. We explore 3 approaches to incorporate
source-specific representation in the decoupling
phase (DP). CRFmeans the traditional approach as
Eq. 1 while DP(1+2) is for our method as Eq. 3.
DP(1) only applies source representations A(k)

to the emission score U while DP(2) only trans-
fers the transition matrix M. We can observe from
the result that both variants can improve the re-
sult. The underlying model keeps more consensus
knowledge if we extract annotator-specific bias on
sentence encoding and label transition. We also
compare 4 methods of generating supervision tar-
gets in the aggregation phase (AP). OMV uses ma-
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Task & Corpus Multi-Domain POS Tagging: Universal Dependencies v2.3 - GUM

Target Domain academic bio fiction news voyage wiki interview AVG Acc(%)

CONCAT 92.68 92.12 93.05 90.79 92.38 92.32 91.44 92.11(±0.07)
MTL-MVT (Wang et al., 2018) 92.42 90.59 91.16 89.69 90.75 90.29 90.21 90.73(±0.29)
MTL-BEA (Rahimi et al., 2019) 92.87 91.88 91.90 91.03 91.67 91.31 91.29 91.71(±0.06)

Crowd-Add (Nguyen et al., 2017) 92.58 91.91 91.50 90.73 91.74 90.47 90.61 91.36(±0.14)
Crowd-Cat (Nguyen et al., 2017) 92.71 91.71 92.48 91.15 92.35 91.97 91.22 91.94(±0.08)
Tri-Training (Ruder and Plank, 2018) 92.84 92.15 92.51 91.40 92.35 91.29 91.00 91.93(±0.01)

CONNET 92.97 92.25 93.15 91.06 92.52 92.74 91.66 92.33(±0.17)

Gold (Upper Bound) 92.64 93.10 93.15 91.33 93.09 94.67 92.20 92.88(±0.14)

Task & Corpus Multi-Domain NER: OntoNotes v5.0 - English

Target Domain nw wb bn tc bc mz AVG F1(%)

CONCAT 68.23 32.96 77.25 53.66 72.74 62.61 61.24(±0.92)
MTL-MVT (Wang et al., 2018) 65.74 33.25 76.80 53.16 69.77 63.91 60.44(±0.45)
MTL-BEA (Rahimi et al., 2019) 58.33 32.62 72.47 47.83 48.99 52.68 52.15(±0.58)

Crowd-Add (Nguyen et al., 2017) 45.76 32.51 50.01 26.47 52.94 28.12 39.30(±4.44)
Crowd-Cat (Nguyen et al., 2017) 68.95 32.61 78.07 53.41 74.22 65.55 62.14(±0.89)
Tri-Training (Ruder and Plank, 2018) 69.68 33.41 79.62 47.91 70.85 68.53 61.67(±0.31)

CONNET 71.31 34.06 79.66 52.72 71.47 70.71 63.32(±0.81)

Gold (Upper Bound) 84.70 46.98 83.77 52.57 73.05 70.58 68.61(±0.64)

Task & Corpus Multi-Domain Text Classification: MDS

Target Domain books dvd electronics kitchen AVG Acc(%)

CONCAT 75.68 77.02 81.87 83.07 79.41(±0.02)
MTL-MVT (Wang et al., 2018) 74.92 74.43 79.33 81.47 77.54(±0.06)
MTL-BEA (Rahimi et al., 2019) 74.88 74.60 79.73 82.82 78.01(±0.28)

Crowd-Add (Nguyen et al., 2017) 75.72 77.35 81.25 82.90 79.30(±9.21)
Crowd-Cat (Nguyen et al., 2017) 76.45 77.37 81.22 83.12 79.54(±0.25)
Tri-Training (Ruder and Plank, 2018) 77.58 78.45 81.95 83.17 80.29(±0.02)

CONNET 78.75 81.06 84.12 83.45 81.85(±0.04)

Gold (Upper Bound) 78.78 82.11 86.21 85.76 83.22(±0.19)

Table 2: Performance on cross-domain data The best score (except the Gold) in each column that is significantly
(p < 0.05) better than the second best is marked bold, while those are better but not significantly are underlined.

jority voting of original annotations, while PMV
substitutes them with model prediction learned
from DP. AMV extends the model by using all pre-
diction, while AWV uses majority voting weighted
by each annotator’s training F1 score. The re-
sults show the effectiveness of AWV, which could
augment training data and well approximate the
ground truth to supervise the attention module for
estimating the expertise of annotator on the cur-
rent sentence. We can also infer labels on the test
set by conducting AWV on predictions of the un-
derlying model with each annotator-specific com-
ponents. However, it leads to heavy computation-
consuming and unsatisfying performance, whose
test F1 score is 77.35(±0.08). We can also train
a traditional BLSTM-CRF model with the same
AMV labels. Its result is 78.93(±0.13), which is
lower than CONNET and show the importance of
extracted source-specific components.

Performance on simulated datasets. To ana-
lyze the impact of annotator quality, we split the

origin train set into z folds and each fold could
be used to train a CRF model whose reliability
could be represented as r = 1/z assuming a
model with less training data would have stronger
bias and less generalization. We tried 5 settings
where z = {5, 10, 15, 30, 50} and randomly se-
lect 5 folds for each setting. When the reliability
level is too low, i.e. 1/50, only the base model is
used for prediction without annotator representa-
tions. Shown in Fig. 5(a), CONNET achieves sig-
nificant improvements over MVT-SLM and com-
petitive performance as Crowd-Cat, especially
when annotators are less reliable.

Regarding the annotator quantity, we split the
train set into 50 subsets (r = 1/50) and ran-
domly select {5, 10, 15, 30, 50} folds for simula-
tion. Fig. 5(b) shows CONNET is superior to
baselines and able to well deal with many annota-
tors while there is no obvious relationship between
the performance and annotator quantity in base-
lines. We can see the performance of our model
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Figure 6: Heatmap of averaged attention scores from each
source domain to each target domain.

increases as the number of annotators and, regard-
less of the number of annotators, our method con-
sistently outperforms than other baselines.

5.5 Cross-Domain Adaptation Performance
The results of each task on each domain are shown
in Tab. 2. We can see that CONNET performs the
best on most of the domains and achieves the high-
est average score for all tasks. We report the accu-
racy for POS tagging and classification, and the
chunk-level F1 score for NER. We can see that
CONNET achieves the highest average score on
all tasks. MTL-MVT is similar to our decoupling
phase and performs much worse. Naively doing
unweighted voting does not work well.

The attention can be viewed as implicitly
doing weighted voting on the feature level.
MTL-BEA relies on a probabilistic model to con-
duct weighted voting over predictions, but unlike
our approach, its voting process is independent
from the input context. It is probably why our
model achieves higher scores. This demonstrates
the importance of assigning weights to domains
based on the input sentence.
Tri-Training trains on the concatenated

data from all sources also performs worse than
CONNET, which suggests the importance of a
multi-task structure to model the difference among
domains. The performance of Crowd-Add is un-
stable (high standard deviation) and very low on
the NER task, because the size of the crowd vec-
tors is not controllable and thus may be too large.
On the other hand, the size of the crowd vectors in
Crowd-Cat can be controlled and tuned. These
two methods leverage domain-invariant knowl-
edge only but not domain-specific knowledge and
thus does not have comparable performance.

5.6 Analyzing Learned Attention
We analyzed the attention scores generated by the
attention module on the OntoNotes dataset. For

each sentence in the target domain we collected
the attention score of each source domain, and fi-
nally the attention scores are averaged for each
source-target pair. Fig. 6 shows all the source-
to-target average attention scores. We can see
that some domains can contribute to other related
domains. For example, bn (broadcast news) and
nw (newswire) are both about news and they con-
tribute to each other; bn and bc (broadcast conver-
sation) are both broadcast and bn contributes to bc;
bn and nw both contributes to mz (magzine) prob-
ably because they are all about news; wb (web)
and tc (telephone conversation) almost make no
positive contribution to any other, which is reason-
able because they are informal texts compared to
others and they are not necessarily related to the
other. Overall the attention scores can make some
sense. It suggests that the attention is aware of
relations between different domains and can con-
tribute to the model.

6 Conclusion

In this paper, we present CONNET for learning
a sequence tagger from multi-source supervision.
It could be applied in two practical scenarios:
learning with crowd annotations and cross-domain
adaptation. In contrast to prior works, CONNET

learns fine-grained representations of each source
which are further dynamically aggregated for ev-
ery unseen sentence in the target data. Experi-
ments show that our model is superior to previous
crowd-sourcing and unsupervised domain adap-
tation sequence labeling models. The proposed
learning framework also shows promising results
on other NLP tasks like text classification.
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A Analysis of ConNet with BLSTM
Encoder

A.1 Case study on learning with crowd
annotations

To better understand the effect and benefit of
CONNET, we do some case study on AMTC real-
world dataset with 47 annotators. We look into
some more instances to investigate the ability of
attention module to find right annotators in Fig. 7
and Tab. 3. Sentence 1-12 contains a specific en-
tity type respectively while 13-16 contains multi-
ple different entities. Compared with expertise of
annotators, we can see that the attention module
would give more weight on annotators who have
competitive performance and preference on the in-
cluded entity type. Although top selected annota-
tors for ORG has relatively lower expertise on ORG
than PER and LOC, they are actually the top three
annotators with highest expertise on ORG.

B Result of ConNet with Transformer
Encoder

To demonstrate the generalization of our frame-
work, we re-implement CONNET and some
baselines (MTV-SLM, Crowd-Add, Gold) with
Transformer-CRF as the base model. Specifi-
cally, the base model takes Transformer as the en-
coder for CRF, which has shown its effectiveness
in many NLP tasks (Vaswani et al., 2017; Devlin
et al., 2019). Transformer models sequences with
self-attention and eliminates all recurrence. Fol-
lowing the experimental settings from (Vaswani
et al., 2017), we set the number of heads for multi-
head attention as 8, the dimension of keys and val-
ues as 64, and the hidden size of the feed-forward
layers as 1024. We conduct experiments with
crowd-annotation dataset AMTC on NER task and
cross-domain dataset UD on POS task, which are
described in Section 5.1. Results are shown in Ta-
ble 4. We can see our model outperforms over
other baselines in both tasks and applications.

1

Defender [PER Hassan Abbas] rose
to intercept a long ball into the area
in the 84th minute but only man-
aged to divert it into the top corner
of [PER Bitar] ’s goal .

2 [ORG Plymouth] 4 [ORG Exeter] 1

3

Hosts [LOC UAE] play
[LOC Kuwait] and [LOC South
Korea] take on [LOC Indonesia] on
Saturday in Group A matches .

4
The former [MISC Soviet] repub-
lic was playing in an [MISC Asian
Cup] finals tie for the first time .

5
[PER Bitar] pulled off fine saves
whenever they did .

6
[PER Coste] said he had approached
the player two months ago about a
comeback .

7 [ORG Goias] 1 [ORG Gremio] 3

8
[ORG Portuguesa] 1 [ORG Atletico
Mineiro] 0

9 [LOC Melbourne] 1996-12-06

10

On Friday for their friendly against
[LOC Scotland] at [LOC Murray-
field] more than a year after the 30-
year-old wing announced he was re-
tiring following differences over se-
lection .

11
Scoreboard in the [MISC World Se-
ries]

12
Cricket - [MISC Sheffield Shield]
score .

13
“ He ended the [MISC World Cup]
on the wrong note , ” [PER Coste]
said .

14
Soccer - [ORG Leeds] ’
[PER Bowyer] fined for part
in fast-food fracas .

15
[ORG Rugby Union] - [PER Cut-
titta] back for [LOC Italy] after a
year .

Table 3: Sample instances in Fig. 3 and Fig. 7 with
NER annotations including PER (red), ORG (blue),
LOC (violet) and MISC (orange).
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Figure 7: Visualizations of (a) the expertise of annotators; (b) attention weights for additional sample sentences to
Fig. 3. Details of samples are described in Tab. 3.

Methods AMTC UD

Precision(%) Recall(%) F1-score(%) Accuracy(%)

MVT-SLM 72.21(±1.63) 51.72(±3.58) 60.21(±1.87) 87.23(±0.51)
Crowd-Add (Nguyen et al., 2017) 75.32(±1.41) 50.80(±0.30) 60.68(±0.67) 88.20(±0.36)

CONNET (Ours) 76.86(±0.33) 56.43(±3.32) 65.05(±2.32) 89.27(±0.31)

Gold (Upper Bound) 81.24(±1.25) 80.52(±0.37) 80.87(±0.79) 90.45(±0.71)

Table 4: Performance of methods with Transformer-CRF as the base model on crowd-annotation NER dataset AMTC and
cross-domain POS dataset UD.


