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Abstract
Recent Transformer-based architectures, e.g.,
BERT, provide impressive results in many Nat-
ural Language Processing tasks. However,
most of the adopted benchmarks are made of
(sometimes hundreds of) thousands of exam-
ples. In many real scenarios, obtaining high-
quality annotated data is expensive and time-
consuming; in contrast, unlabeled examples
characterizing the target task can be, in gen-
eral, easily collected. One promising method
to enable semi-supervised learning has been
proposed in image processing, based on Semi-
Supervised Generative Adversarial Networks.
In this paper, we propose GAN-BERT that ex-
tends the fine-tuning of BERT-like architec-
tures with unlabeled data in a generative adver-
sarial setting. Experimental results show that
the requirement for annotated examples can
be drastically reduced (up to only 50-100 an-
notated examples), still obtaining good perfor-
mances in several sentence classification tasks.

1 Introduction

In recent years, Deep Learning methods have be-
come very popular in Natural Language Process-
ing (NLP), e.g., they reach high performances by
relying on very simple input representations (for
example, in (Kim, 2014; Goldberg, 2016; Kim
et al., 2016)). In particular, Transformer-based
architectures, e.g., BERT (Devlin et al., 2019), pro-
vide representations of their inputs as a result of
a pre-training stage. These are, in fact, trained
over large scale corpora and then effectively fine-
tuned over a targeted task achieving state-of-the-art
results in different and heterogeneous NLP tasks.
These achievements are obtained when thousands
of annotated examples exist for the final tasks. As
experimented in this work, the quality of BERT
fine-tuned over less than 200 annotated instances
shows significant drops, especially in classification
tasks involving many categories. Unfortunately,

obtaining annotated data is a time-consuming and
costly process. A viable solution is adopting semi-
supervised methods, such as in (Weston et al., 2008;
Chapelle et al., 2010; Yang et al., 2016; Kipf and
Welling, 2016) to improve the generalization capa-
bility when few annotated data is available, while
the acquisition of unlabeled sources is possible.

One effective semi-supervised method is imple-
mented within Semi-Supervised Generative Adver-
sarial Networks (SS-GANs). Usually, in GANs
(Goodfellow et al., 2014) a “generator” is trained
to produce samples resembling some data distribu-
tion. This training process “adversarially” depends
on a “discriminator”, which is instead trained to
distinguish samples of the generator from the real
instances. SS-GANs (Salimans et al., 2016) are an
extension to GANs where the discriminator also
assigns a category to each example while discrim-
inating whether it was automatically generated or
not.

In SS-GANs, the labeled material is thus used to
train the discriminator, while the unlabeled exam-
ples (as well as the ones automatically generated)
improve its inner representations. In image pro-
cessing, SS-GANs have been shown to be effective:
exposed to few dozens of labeled examples (but
thousands of unlabeled ones), they obtain perfor-
mances competitive with fully supervised settings.

In this paper, we extend the BERT training with
unlabeled data in a generative adversarial setting.
In particular, we enrich the BERT fine-tuning pro-
cess with an SS-GAN perspective, in the so-called
GAN-BERT1 model. That is, a generator produces
“fake” examples resembling the data distribution,
while BERT is used as a discriminator. In this way,
we exploit both the capability of BERT to produce
high-quality representations of input texts and to
adopt unlabeled material to help the network in

1The code is available at https://github.com/
crux82/ganbert.

https://github.com/crux82/ganbert
https://github.com/crux82/ganbert
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generalizing its representations for the final tasks.
At the best of our knowledge, using SS-GANs in
NLP has been investigated only by (Croce et al.,
2019) with the so-called Kernel-based GAN. In
that work, authors extend a Kernel-based Deep
Architecture (KDA, (Croce et al., 2017)) with an
SS-GAN perspective. Sentences are projected into
low-dimensional embeddings, which approximate
the implicit space generated by using a Semantic
Tree Kernel function. However, it only marginally
investigated how the GAN perspective could ex-
tend deep architecture for NLP tasks. In particular,
a KGAN operates in a pre-computed embedding
space by approximating a kernel function (Annesi
et al., 2014). While the SS-GAN improves the
quality of the Multi-layered Perceptron used in the
KDA, it does not affect the input representation
space, which is statically derived by the kernel
space approximation. In the present work, all the
parameters of the network are instead considered
during the training process, in line with the SS-
GAN approaches.

We empirically demonstrate that the SS-GAN
schema applied over BERT, i.e., GAN-BERT, re-
duces the requirement for annotated examples:
even with less than 200 annotated examples it is
possible to obtain results comparable with a fully
supervised setting. In any case, the adopted semi-
supervised schema always improves the result ob-
tained by BERT.

In the rest of this paper, section 2 provides an
introduction to SS-GANs. In sections 3 and 4,
GAN-BERT and the experimental evaluations are
presented. In section 5 conclusions are derived.

2 Semi-supervised GANs

SS-GANs (Salimans et al., 2016) enable semi-
supervised learning in a GAN framework. A dis-
criminator is trained over a (k + 1)-class objective:
“true” examples are classified in one of the target
(1, ..., k) classes, while the generated samples are
classified into the k + 1 class.

More formally, let D and G denote the discrim-
inator and generator, and pd and pG denote the
real data distribution and the generated examples,
respectively. In order to train a semi-supervised
k-class classifier, the objective of D is extended as
follows. Let us define pm(ŷ = y|x, y = k + 1)
the probability provided by the model m that a
generic example x is associated with the fake class
and pm(ŷ = y|x, y ∈ (1, ..., k)) that x is con-

sidered real, thus belonging to one of the target
classes. The loss function of D is defined as:
LD = LDsup. + LDunsup. where:

LDsup.=−Ex,y∼pdlog[pm(ŷ = y|x, y ∈ (1, ..., k))]
LDunsup.=−Ex∼pd log[1− pm (ŷ = y|x, y= k+1)]

− Ex∼G log [pm(ŷ = y|x, y = k + 1)]

LDsup. measures the error in assigning the wrong
class to a real example among the original k cat-
egories. LDunsup. measures the error in incorrectly
recognizing a real (unlabeled) example as fake and
not recognizing a fake example.

At the same time, G is expected to generate ex-
amples that are similar to the ones sampled from
the real distribution pd. As suggested in (Salimans
et al., 2016), G should generate data approximating
the statistics of real data as much as possible. In
other words, the average example generated in a
batch by G should be similar to the real prototypical
one. Formally, let’s f(x) denote the activation on
an intermediate layer of D. The feature matching
loss of G is then defined as:

L
Gfeature matching= ‖Ex ∼ pd

f(x) − Ex ∼ Gf(x)‖22

that is, the generator should produce examples
whose intermediate representations provided in in-
put to D are very similar to the real ones. The G
loss also considers the error induced by fake exam-
ples correctly identified by D, i.e.,

LGunsup.=−Ex∼G log[1− pm(ŷ = y|x,y = k+1)]

The G loss is LG = LGfeature matching + LGunsup. .
While SS-GANs are usually used with image

inputs, we will show that they can be adopted in
combination with BERT (Devlin et al., 2019) over
inputs encoding linguistic information.

3 GAN-BERT: Semi-supervised BERT
with Adversarial Learning

Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) belongs to the
family of the so-called transfer learning methods,
where a model is first pre-trained on general tasks
and then fine-tuned on the final target tasks. In
Computer Vision, transfer learning has been shown
beneficial in many different tasks, i.e., pre-training
a neural network model on a known task, followed
by a fine-tuning stage on a (different) target task
(see, for example, (Girshick et al., 2013)). BERT
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is a very deep model that is pre-trained over large
corpora of raw texts and then is fine-tuned on target
annotated data. The building block of BERT is the
Transformer (Vaswani et al., 2017), an attention-
based mechanism that learns contextual relations
between words (or sub-words, i.e., word pieces,
(Schuster and Nakajima, 2012)) in a text.

BERT provides contextualized embeddings of
the words composing a sentence as well as a sen-
tence embedding capturing sentence-level seman-
tics: the pre-training of BERT is designed to cap-
ture such information by relying on very large cor-
pora. After the pre-training, BERT allows encoding
(i) the words of a sentence, (ii) the entire sentence,
and (iii) sentence pairs in dedicated embeddings.
These can be used in input to further layers to solve
sentence classification, sequence labeling or rela-
tional learning tasks: this is achieved by adding
task-specific layers and by fine-tuning the entire
architecture on annotated data.

In this work, we extend BERT by using SS-
GANs for the fine-tuning stage. We take an already
pre-trained BERT model and adapt the fine-tuning
by adding two components: i) task-specific layers,
as in the usual BERT fine-tuning; ii) SS-GAN lay-
ers to enable semi-supervised learning. Without
loss of generality, let us assume we are facing a sen-
tence classification task over k categories. Given
an input sentence s = (t1, ..., tn) BERT produces
in output n + 2 vector representations in Rd, i.e.,
(hCLS , ht1 , ..., htn , hSEP ). As suggested in (De-
vlin et al., 2019), we adopt the hCLS representation
as a sentence embedding for the target tasks.

As shown in figure 1, we add on top of BERT the
SS-GAN architecture by introducing i) a discrim-
inator D for classifying examples, and ii) a gen-
erator G acting adversarially. In particular, G is a
Multi Layer Perceptron (MLP) that takes in input a
100-dimensional noise vector drawn fromN(µ, σ2)
and produces in output a vector hfake ∈ Rd. The
discriminator is another MLP that receives in input
a vector h∗ ∈ Rd; h∗ can be either hfake produced
by the generator or hCLS for unlabeled or labeled
examples from the real distribution. The last layer
of D is a softmax-activated layer, whose output is
a k + 1 vector of logits, as discussed in section 2.

During the forward step, when real instances are
sampled (i.e., h∗ = hCLS), D should classify them
in one of the k categories; when h∗ = hfake, it
should classify each example in the k + 1 category.
As discussed in section 2, the training process tries
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Figure 1: GAN-BERT architecture: G generates a set of fake
examples F given a random distribution. These, along with
unlabeled U and labeled L vector representations computed
by BERT are used as input for the discriminator D.

to optimize two competing losses, i.e., LD and LG.
During back-propagation, the unlabeled exam-

ples contribute only to LDunsup. , i.e., they are con-
sidered in the loss computation only if they are
erroneously classified into the k+1 category. In all
other cases, their contribution to the loss is masked
out. The labeled examples thus contribute to the
supervised loss LDsup. . Finally, the examples gen-
erated by G contribute to both LD and LG, i.e.,
D is penalized when not finding examples gener-
ated by G and vice-versa. When updating D, we
also change the BERT weights in order to fine-tune
its inner representations, so considering both the
labeled and the unlabeled data2.

After training, G is discarded while retaining the
rest of the original BERT model for inference. This
means that there is no additional cost at inference
time with respect to the standard BERT model. In
the following, we will refer to this architecture as
GAN-BERT.

4 Experimental Results

In this section, we assess the impact of GAN-BERT
over sentence classification tasks characterized by
different training conditions, i.e., number of exam-
ples and number of categories. We report measures
of our approach to support the development of deep
learning models when exposed to few labeled ex-
amples over the following tasks: Topic Classifica-
tion over the 20 News Group (20N) dataset (Lang,
1995), Question Classification (QC) on the UIUC
dataset (Li and Roth, 2006), Sentiment Analysis
over the SST-5 dataset (Socher et al., 2013). We

2From a computational perspective, the additional cost of
G is negligible in terms of network parameters: it is an MLP
which takes in input random vectors of 100 dimensions and
produces in output vectors in the same 768-dimensional space
of BERT. In other words, it is characterized by about 100
thousand parameters that are much less than in BERT base,
i.e., 110 million parameters.
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Figure 2: Learning curves for the six tasks. We run all the models for 3 epochs except for 20N (15 epochs). The
sequence length we used is: 64 for QC coarse, QC fine, and SST-5; 128 for both MNLI settings; 256 for 20N.
Learning rate was set for all to 2e-5, except for 20N (5e-6).

will also report the performances over a sentence
pair task, i.e., over the MNLI dataset (Williams
et al., 2018). For each task, we report the perfor-
mances with the metric commonly used for that
specific dataset, i.e., accuracy for SST-5 and QC,
while F1 is used for 20N and MNLI datasets. As
a comparison, we report the performances of the
BERT-base model fine-tuned as described in (De-
vlin et al., 2019) on the available training material.
We used BERT-base as the starting point also for
the training of our approach. GAN-BERT is im-
plemented in Tensorflow by extending the original
BERT implementation3.

In more detail, G is implemented as an MLP
with one hidden layer activated by a leaky-relu
function. G inputs consist of noise vectors drawn
from a normal distribution N(0, 1). The noise vec-
tors pass through the MLP and finally result in
768-dimensional vectors, that are used as fake ex-
amples in our architecture. D is, also, an MLP with
one hidden layer activated by a leaky-relu function
followed by a softmax layer for the final predic-
tion. For both G and D we used dropout=0.1 after
the hidden layer. We repeated the training of each
model with an increasing set of annotated material
(L), starting by sampling only 0.01% or 1% of the
training set, in order to measure the performances

3https://github.com/google-research/
bert

starting with very few labeled examples (about 50-
70 instances). GAN-BERT is also provided with a
set of unlabeled examples U coming from the un-
used annotated material for each training set sam-
ple (|U | = 100|L|, when available). We replicated
the labeled examples of a factor log(|U |/|L|): this
guarantees the presence of some labeled instances
in each batch to avoid divergences due to the unsu-
pervised component of the adversarial training. All
the reported results are averaged over 5 different
shuffles of the training material.

The 20N classification results are shown in fig-
ure 2a. The training and testing datasets are made
of 11, 314 and 7, 531 documents classified in 20
categories4, respectively. The plot shows F1 scores
of the models: when 1% of data is used (i.e.,
about 110 examples) BERT almost diverges while
GAN-BERT achieves more than 40% of F1. This
trend is confirmed until 40% of labeled documents
are used (i.e., about 5, 000 examples).

In the QC task we observe similar outcomes. The
training dataset is made of about 5, 400 question.
In the coarse-grained setting (figure 2b) 6 classes
are involved; in the fine-grained scenario (figure
2c) the number of classes is 50. In both cases,
BERT diverges when only 1% of labeled questions
are used, i.e., about 50 questions. It starts to com-

4We used the train/test split available within scikit-learn.

https://github.com/google-research/bert
https://github.com/google-research/bert
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pensate when using about 20% of the data in the
coarse setting (about 1, 000 labeled examples). In
the fine-grained scenario, our approach is perform-
ing better until 50% of the labeled examples. It
seems that, when a large number of categories is in-
volved, i.e., the classification task is more complex,
the semi-supervised setting is even more beneficial.

The results are confirmed in sentiment analy-
sis over the SST-5 dataset (figure 2d), i.e., sen-
tence classification involving 5 polarity categories.
Also in this setting, we observe that GAN-BERT
is beneficial when few examples are available.
This is demonstrated by the difference in accu-
racy at 1% of the data (about 85 labeled examples),
where BERT accuracy is 22.2% while GAN-BERT
reaches 30.4% in accuracy. This trend is confirmed
until about 20% of labeled examples (about 1, 700),
where BERT achieves comparable results.

Finally, we report the performances on Nat-
ural Language Inference on the MNLI dataset.
We observe (in figures 2e and 2f) a systematic
improvement starting from 0.01% labeled exam-
ples (about 40 instances): GAN-BERT provides
about 6− 10 additional points in F1 with respect
to BERT (18.09% vs. 29.19% and 18.01% vs.
31.64%, for mismatched and matched settings, re-
spectively). This trend is confirmed until 0.5%
of annotated material (about 2, 000 annotated ex-
amples): GAN-BERT reaches 62.67% and 60.45%
while BERT reaches 48.35% and 42.41%, for mis-
matched and matched, respectively. Using more
annotated data results in very similar performances
with a slight advantage in using GAN-BERT. Even
if acquiring unlabeled examples for sentence pairs
is not trivial, these results give a hint about the
potential benefits on similar tasks (e.g., question-
answer classification).

5 Conclusion

In this paper, we extended the limits of
Transformed-based architectures (i.e., BERT) in
poor training conditions. Experiments confirm
that fine-tuning such architectures with few la-
beled examples lead to unstable models whose
performances are not acceptable. We suggest
here to adopt adversarial training to enable semi-
supervised learning Transformer-based architec-
tures. The evaluations show that the proposed
variant of BERT, namely GAN-BERT, systemati-
cally improves the robustness of such architectures,
while not introducing additional costs to the infer-

ence. In fact, the generator network is only used in
training, while at inference time only the discrimi-
nator is necessary.

This first investigation paves the way to several
extensions including adopting other architectures,
such as GPT-2 (Radford et al., 2019) or DistilBERT
(Sanh et al., 2019) or other tasks, e.g., Sequence
Labeling or Question Answering. Moreover, we
will investigate the potential impact of the adver-
sarial training directly in the BERT pre-training.
From a linguistic perspective, it is worth investi-
gating what the generator encodes in the produced
representations.
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