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Abstract

Recent work has found evidence that natural
languages are shaped by pressures for efficient
communication — e.g. the more contextually
predictable a word is, the fewer speech sounds
or syllables it has (Piantadosi et al. 2011). Re-
search on the degree to which speech and lan-
guage are shaped by pressures for effective
communication — robustness in the face of
noise and uncertainty — has been more equiv-
ocal. We develop a measure of contextual con-
fusability during word recognition based on
psychoacoustic data. Applying this measure to
naturalistic speech corpora, we find evidence
suggesting that speakers alter their productions
to make contextually more confusable words
easier to understand.

1 Introduction

A major open question in the study of natural lan-
guages is the extent to which pressures for effi-
cient communication shape the online production
choices of speakers or the system of forms and
form-meaning mappings. Zipf (1936, 1949) fa-
mously noted that highly frequent words tend to
be shorter and hypothesized that this could be ex-
plained in terms of pressures for efficient commu-
nication: the average cost of producing a word is
lower than it would be otherwise.

More recent work has formalized hypotheses
about the effect of communicative pressures on
language usage and design using tools from infor-
mation theory (Shannon 1948, Cover and Thomas
2012) and rational analysis (Anderson 1990, 1991).
This work has found evidence that meanings are
allocated to word types in a way that minimizes
speaker effort (Piantadosi et al. 2011, 2012), and
that this appears to be at least partly explainable by
online production choices (Mahowald et al. 2013).

While this research offers evidence that lexi-
cons and the production choices of speakers are

shaped by pressures for efficient communication,
other work examining how much words and lexi-
cons are shaped by pressures for ensuring effective
communication in the face of noise and uncertainty
has been more equivocal. This work has found evi-
dence that words with greater neighborhood size or
density — that is, words that have a greater num-
ber of similar-sounding neighbors — have faster
onset of production, and have lower overall dura-
tions. Words with greater neighborhood density
also take longer for listeners to recognize and com-
prehend, and have less acoustically distinctive vow-
els (Vitevitch 2002, Gahl et al. 2012; see Vitevitch
and Luce 2016 for review).

This work provides a challenge for
communicatively-oriented models of production:
words with greater numbers of similar-sounding
neighbors seem likely to be more confusable, and
therefore speakers would be predicted to decrease
the likelihood of noise by, e.g., increasing their
duration. However, this work does not directly
estimate word confusability, instead using neigh-
borhood density or an acoustic similarity measure
as a proxy. It remains possible that greater
word confusability is associated with phonetic
enhancement, and that a more direct measure of
confusability would reveal this relationship.

In this paper, we present a measure of relative
word confusability based on both a language model
and psychoacoustic data, and we examine how well
it predicts word durations in natural speech cor-
pora. This measure differs from neighborhood den-
sity in three ways: 1) it is sensitive to edit type; 2)
it considers words with edit distance greater than 1;
and 3) it takes into account top-down expectations.

The structure of the paper is as follows. We
first present a derivation of a Bayesian model of
word recognition (broadly similar to Norris and
McQueen 2008) that incorporates both linguistic
context and a model of noise estimated from the
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gating data of Warner et al. (2014). We use this
speech recognition model to define a measure of
confusability, and apply this measure to content
words in the NXT-annotated subset of the Switch-
board corpus and in the Buckeye corpus (Calhoun
et al. 2010, Pitt et al. 2005). We provide evidence
that greater confusability is associated with longer
duration.

1.1 Related work

A number of other studies have examined how lan-
guage is shaped by pressures for communication in
the presence of noise. Dautriche et al. (2017) ex-
amines whether the words of natural lexicons are
dispersed, as would be predicted if these lexicons
are optimized to prevent confusions between dif-
ferent words. This work finds that in fact lexicons
exhibit clear tendencies towards being clumpier
rather than dispersed.

The current study follows previous work in us-
ing the phenomena of reduction and enhancement
to investigate whether communication is optimized
for robustness to noise. Speech tokens that are
produced with shorter than usual duration, or with
parts omitted or made less distinctive, are said to
be reduced, and those tokens produced with longer
durations or produced more distinctively are en-
hanced.

Previous work has provided evidence that re-
duction and enhancement are influenced by con-
textual predictability. Words, syllables, and seg-
ments that are more contextually predictable tend
to be reduced and those that are less contextu-
ally predictable tend to be enhanced (see e.g. Van
Son et al. 1998, Van Son and Pols 2003, Jurafsky
et al. 2001, Aylett and Turk 2004, 2006, Cohen
Priva 2008, 2012, 2015, Seyfarth 2014, Demberg
et al. 2012, Pate and Goldwater 2015, Buz et al.
2016, Turnbull et al. 2018; see Bell et al. 2009,
Jaeger and Buz 2018 for reviews). According to a
communicatively-oriented account, this is explain-
able as balancing efficiency against effectiveness:
speakers economize on production cost the more
that context facilitates accurate listener inference
of the speaker’s intent.

Other work has investigated the effects of envi-
ronmental noise on speech production. This in-
cludes work investigating whether speakers mod-
ulate their productions in response to overt sig-
nals of communication difficulty, e.g. loud envi-
ronments or talking to listeners who are children,

elderly, or non-native speakers (Lombard 1911,
Uther et al. 2007, Picheny et al. 1986).

2 A model of word confusability

We propose a simplified model of word confusabil-
ity, in which there are two factors that will make
word 𝑣 in context 𝑐 more vs. less confusable. On
the one hand, a listener who has observed con-
text 𝑐 has some ‘top-down’ beliefs and expecta-
tions about what 𝑣 will be before the speaker pro-
duces any acoustics for 𝑣. On the other hand, once
the speaker has produced acoustics for 𝑣, there
will be (in general ambiguous) ‘bottom-up’ acous-
tic cues that will usually underdetermine what the
speaker’s choice of 𝑣 actually was. The goal of the
listener is then to combine their top-down expecta-
tions with their bottom-up observations to reason
about which words are more vs. less likely to have
been what the speaker intended.1

We operationalize the perceptibility of word 𝑣 as
the probability that the listener accurately recovers
this word in situations where the speaker uses it;
the confusability of a word is inversely related to
its perceptibility. If a speaker has a model of the ex-
pected confusability of a given word, they can then
decide to lengthen or shorten their particular pro-
duction of the word token, balancing listener com-
prehension and their own effort.

2.1 Model definition
To model the in-context confusability of word to-
kens, we model the task of word recognition as one
of Bayesian inference, with the following underly-
ing generative process for the speaker:

1. At some point in time, the speaker has al-
ready produced some existing sentential con-
text 𝑐, consisting of a sequence of ortho-
graphic words. We assume for simplicity
and tractability that the listener knows exactly
what this context is at each timestep.

2. The speaker produces the current word 𝑣 —
e.g. cigarette. We model this as sampling ac-
cording to a language model 𝑝𝐿: 𝑣 ∼ 𝑝𝐿(⋅|𝑐).

3. The speaker determines the segment se-
quence 𝑥1∶𝑓 = (𝑥1, ..., 𝑥𝑓 ) corresponding to
their word choice. For example, the speaker
will determine that the segments [sIg@ôEt] cor-
respond to the word cigarette.

1Note that of the two basic factors integrated here, previ-
ous probabilistic work on reduction has been limited to using
only ‘top-down’ expectations.
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In our corpora, there is a unique correct seg-
ment sequence for a given orthographic word.
For ease of exposition, we therefore iden-
tify 𝑥1∶𝑓 with its corresponding orthographic
form 𝑣. Abusing notation, we will write
𝑝𝐿(𝑥1∶𝑓 |𝑐) for the distribution over segmen-
tal forms induced by the language model.2

4. The listener receives a segment sequence
𝑦1∶𝑓 = (𝑦1, ..., 𝑦𝑓 ) — e.g. [SIg@ôEt] (‘shi-
garette’) — drawn from a channel distribution
𝑝𝑁 conditioned on the speaker’s intended seg-
ment sequence: 𝑦1∶𝑓 ∼ 𝑝𝑁 (⋅|𝑥1∶𝑓 ). This rep-
resents the effects of noise on the signal re-
ceived by the listener.

The task of the listener is to then combine their
observation (represented here by 𝑦1∶𝑓 ) with their
prior expectations about which words are likely
given the context. The listener tries to determine
how likely each wordform in the lexicon is to have
been the one intended by the speaker. Their poste-
rior belief 𝑝LISTENER about which segmental word-
form 𝑥1∶𝑓 was intended is described by Bayes’
rule:

𝑝LISTENER(𝑥1∶𝑓 |𝑦1∶𝑓 , 𝑐) (1)

=
𝑝𝑁 (𝑦1∶𝑓 |𝑥1∶𝑓 )𝑝𝐿(𝑥1∶𝑓 |𝑐)

𝑝(𝑦1∶𝑓 |𝑐) (2)

=
𝑝𝑁 (𝑦1∶𝑓 |𝑥1∶𝑓 )𝑝𝐿(𝑥1∶𝑓 |𝑐)∑

𝑥′1∶𝑓

𝑝𝑁 (𝑦1∶𝑓 |𝑥′1∶𝑓 )𝑝𝐿(𝑥′1∶𝑓 |𝑐) (3)

Suppose for example that the listener perceives
𝑦1∶𝑓 =[SIg@ôEt]. Their beliefs about the lexicon
𝑝𝐿(𝑋1∶𝑓 |𝐶) will tell them that this is not a valid
segmental wordform, but that [sIg@ôEt] is a valid
wordform. Their beliefs about the noise distribu-
tion for the language 𝑝𝑁 (𝑌1∶𝑓 |𝑋1∶𝑓 ) tell them that
𝑥𝑗 =[s] is a plausible segment to be misperceived
as 𝑦𝑗 =[S]; together this suggests that a good expla-
nation of their percept is the intended wordform
𝑥1∶𝑓 =[sIg@ôEt].

Equation 1 allows us to measure how accurately
the listener will be able to reconstruct the speaker’s
intended message, given a perceived segmental
wordform 𝑦1∶𝑓 . However, this is not sufficient to
determine the confusability of an intended word-
form. In general, an intended wordform 𝑥1∶𝑓 may
give rise to many different perceived wordforms
𝑦1∶𝑓 as a result of noise. In order to measure

2This notation ignores homophony, though the model is in
fact sensitive to this.

its confusability, we therefore need to marginalize
over the possible perceived segment sequences.

We define the contextual perceptibility of a seg-
mental wordform 𝑥1∶𝑓 in context 𝑐 to be the ex-
pected probability that the listener accurately re-
covers it:

𝔼
𝑦1∶𝑓∼𝑝𝑁 (⋅|𝑥1∶𝑓 ) 𝑝LISTENER(𝑥1∶𝑓 |𝑦1∶𝑓 , 𝑐) (4)

=
∑
𝑦1∶𝑓

𝑝LISTENER(𝑥1∶𝑓 |𝑦1∶𝑓 , 𝑐)𝑝𝑁 (𝑦1∶𝑓 |𝑥1∶𝑓 ) (5)

The space of all possible channel strings 𝑦1∶𝑓
grows exponentially in sequence length 𝑓 . How-
ever, each segment is only substantially confusable
with a small number of other segments and the
probability of more than a small number of chan-
nel errors is small. We therefore approximated Eq.
4 with a Monte Carlo estimator:

𝔼
𝑦1∶𝑓∼𝑝𝑁 (⋅|𝑥1∶𝑓 ) 𝑝LISTENER(𝑥1∶𝑓 |𝑦1∶𝑓 , 𝑐) (6)

≈ 1
𝑛

𝑛∑
𝑖=1

𝑝LISTENER(𝑥1∶𝑓 |𝑦𝑖1∶𝑓 , 𝑐) (7)

𝑦𝑖1∶𝑓 ∼ 𝑝𝑁 (⋅|𝑥1∶𝑓 ) (8)

We choose 𝑛 =1000 to balance the variance and
computational feasibility of the estimator.

Finally, following the reasoning given in Levy
(2005, 2008b), we take the negative logarithm of
this quantity and arrive at a surprisal, which rep-
resents the contextual confusability of segment se-
quence 𝑥1∶𝑓 in context 𝑐:3

ℎ(𝑥1∶𝑓 |𝑥1∶𝑓 , 𝑐) (9)
= − log 𝔼

𝑦1∶𝑓∼𝑝𝑁 (⋅|𝑥1∶𝑓 ) 𝑝LISTENER(𝑥1∶𝑓 |𝑦1∶𝑓 , 𝑐)
(10)

3 Materials and methods

We make use of two types of data: psychoacous-
tic gating data for estimating a noise model, and
several corpora of natural speech for evaluating
whether individuals increase the duration of more
confusable words.

3.1 Words duration data
Word durations were analyzed separately in two
spoken corpora of American English: the Buck-
eye Corpus of Conversational Speech (Pitt et al.

3Compare Equations 4–9 with Eq. VII of Levy (2008a), a
study of sentence-level confusability.
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2005) and the NXT Switchboard Annotations (Cal-
houn et al. 2010), a richly annotated subset of
Switchboard-1 Release 2 (Godfrey and Holliman
1997).

The Buckeye Corpus contains about 300,000
word tokens, taken from interviews with 40 speak-
ers from central Ohio. Word durations for the
present study were taken from the timestamps pro-
vided for word-level annotations. Each word to-
ken had a broad transcription uniform across all
instances of the word type and a second, token-
specific close transcription created by a human an-
notator.

The Switchboard Corpus contains transcripts of
telephone conversations between strangers. The
NXT annotated subset includes about 830,000
word tokens from 642 conversations between 358
speakers recruited from all areas of the United
States. Word durations for the present study were
taken from the ‘phonological word’-level times-
tamps; these were the result of annotator-checked
and -corrected timestamps initially made by align-
ment software. Each phonological word was also
associated with a segmental transcription that was
uniform across all instances of the word type.

Exclusion criteria almost exactly follow Sey-
farth (2014) for the reasons cited there. These cri-
teria are mainly designed to exclude non-content
words and words whose pronunciation is likely af-
fected by disfluencies or prosodic structure. Our
criteria only diverge in the following manner:
Word tokens were excluded if the utterance speech
rate (total number of syllables / length of the utter-
ance in seconds) was more than 3 standard devi-
ations from the speaker mean (vs. 2.5 in Seyfarth
2014). After exclusion criteria were applied, about
44,000 (4,900) and 113,000 (8,900) word tokens
(word types) remained in the Buckeye and NXT
Switchboard corpora, respectively.

3.2 Diphone gating data

The model of word confusability was based on the
diphone gating experiment data of Warner et al.
(2014). Participants listened to gated intervals of
every phonotactically licit diphone of (western)
American English and attempted to identify the
full diphone they thought was being produced dur-
ing the interval. Along with earlier work by some
of the same researchers on Dutch (Smits et al. 2003,
Warner et al. 2005), this represents by far the rich-
est and most comprehensive acoustic confusion

matrix data of its kind.
Warner et al. (2014) identified all adjacent pairs

of segments within and between words based on an
electronic pronouncing dictionary of about 20,000
American English wordforms. A set of approxi-
mately 2,000 phonotactically licit diphones were
extracted from this transcribed lexicon. At least
one stimulus nonsense word was created per di-
phone by inserting the diphone into an environ-
ment consisting of at most one syllable on the left
and at most one syllable on the right.

A recording of each stimulus wordform was then
marked up with (generally) six temporal gates. For
each stimulus wordform, one recording was cre-
ated for each gate, starting at the beginning of the
original recording and going all the way up to a
gate location, followed by a ramping procedure
(rather than truncation or white noise) to avoid sys-
tematically biasing confusion data.

In each trial, participants heard a gated stimulus
recording.4 If the recording included a preceding
context, this context was displayed on the screen.
The participant then selected the stimulus diphone
they thought was in the recording (i.e. not includ-
ing context).

From this response data, each gate of each stim-
ulus diphone can be associated with a frequency
distribution over response diphones. Only the re-
sponse data for gates corresponding to the end
of each segment of the diphone were used in the
current study. For each of Buckeye and NXT
Switchboard, the segment inventories of the gat-
ing data and of each speech corpus had to be pro-
jected down to a common set of segments. In each
case, this involved collapsing the distinction in the
corpora between syllabic and non-syllabic nasal
stops. For reasons of data sparsity, the distinction
between stressed and unstressed versions of any
given vowel was also collapsed.

3.3 Language model

Our measure of contextual confusability uses a lan-
guage model to compute the prior probability of a
word in context. We estimate a language model
from the Fisher corpus (Cieri et al. 2004), a speech
corpus matched for genre and register to Buck-
eye and Switchboard. This corpus contains about
12 million (orthographic) word tokens taken from
nearly 6000 short conversations, each on one of

4See Grosjean (1980) for reference on the gating
paradigm.



1995

about 100 topics.
We estimated n-gram models of several orders

from the Fisher corpus using KenLM (Heafield
2011).5 The n-gram order was treated as a hyper-
parameter, and selected on the Training Set, as de-
scribed below. An add-1 smoothed unigram model
was also created from word frequencies in the
Fisher corpus using SRILM (Stolcke 2002, Stolcke
et al. 2011).

3.4 Channel model

The channel model describes the conditional distri-
bution 𝑝𝑁 (𝑌1∶𝑓 |𝑋1∶𝑓 ) over what sequence of seg-
ments 𝑦1∶𝑓 a listener will perceive (e.g. [SIg@ôEt],
shigarette) given the full intended sequence 𝑥1∶𝑓
(e.g. [sIg@ôEt], cigarette). We estimate this distri-
bution using the diphone gating data in Section 3.2.
We make the simplifying assumption that the chan-
nel distribution for segment 𝑦𝑖 is conditionally in-
dependent of all other 𝑦𝑗 (𝑗 ≠ 𝑖) given intended
segments 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1.

By conditioning on adjacent segments, we can
capture some effects of coarticulation on confus-
ability. For example, nasals before oral stops
are systematically likely to be misheard as hav-
ing the same place of articulation as the stop:
𝑥1∶𝑓 =[AnpA] (alveolar nasal before labial stop) is
more likely to be misperceived as 𝑦1∶𝑓 =[AmpA]
(a labial nasal) than the reverse, and a confusion of
[n] for [m] is comparatively less likely when [n] is
between vowels as in [AnA] (Ohala 1990).

For each gate 𝑔 ∈ {3, 6} and for each diphone
𝑥1𝑥2, the response data from Section 3.2 induce
a conditional frequency distribution over channel
diphones 𝑓𝑔(𝑦1, 𝑦2|𝑥1, 𝑥2). These frequency distri-
butions were smoothed by adding a pseudocount
to every channel diphone in every distribution;
the distributions were then normalized to define a
smoothed pair of diphone-to-diphone channel dis-
tributions 𝑝𝑔(𝑦1, 𝑦2|𝑥1, 𝑥2). From the marginals of
these distributions we constructed an approxima-
tion (Eq. 11) of the triphone-to-uniphone channel
distribution via their geometric mean:6

𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)
∝
√
𝑝3(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖) ⋅ 𝑝6(𝑦𝑖|𝑥𝑖, 𝑥𝑖+1) (11)

5We do not use lower-perplexity neural language models
due to intractability resulting from the normalizing constant
in Equations 3 and 4.

6We stop short of utilizing a full triphone-to-triphone chan-
nel distribution for tractability.

With the simplifying assumption that only substitu-
tion errors are possible,7 we obtain a preliminary
string-to-string channel model:

𝑝𝑁 (𝑦1∶𝑓 |𝑥1∶𝑓 ) = 𝑗=𝑓∏
𝑗=1

𝑝𝑡(𝑦𝑗|𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1) (12)

We are primarily interested in using the channel
model to define a ranking on the confusability of
words, i.e. to determine which words are more or
less confusable than others. This makes the chan-
nel model defined by Equations 11 and 12 not fully
adequate.

The diphone gating data were collected in a labo-
ratory setting with rates of noise lower than for nat-
uralistic speech. As a result, when the noise model
is estimated from this data, it implies the absolute
rate of accurate perception (as defined by Equation
3) is close to 1 for most words. This makes it hard
for the Monte Carlo estimator defined in Equation
7 to determine stable rankings of confusability. In
order to estimate rankings in a more stable manner,
we introduce a model hyperparameter 0 < 𝜆 ≤ 1,
and define a new triphone-to-uniphone channel dis-
tribution by:

𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) (13)

=
{
𝜆 ⋅ 𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1), 𝑦𝑖 = 𝑥𝑖
𝛽 ⋅ 𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1), 𝑦𝑖 ≠ 𝑥𝑖

} (14)

Here 𝛽 ≥ 1 is used to normalize the distributions; it
is fully determined by 𝜆 for a particular distribution
𝑝𝑡(⋅|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1). The term 𝜆 is used to increase
the noise rate in the channel distributions. Note
that two important features of the original triphone-
to-uniphone distributions 𝑝𝑡 are maintained in the
new model. First, the ratios of outcome probabili-
ties within a single triphone distribution remain the
same:
𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)
𝑝𝑡(𝑦′𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) = 𝑝𝑡(𝑦𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)

𝑝𝑡(𝑦′𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1) (15)

for segments 𝑦𝑖, 𝑦′𝑖 ≠ 𝑥𝑖. Second, the relative prob-
ability of accurate perception is preserved across
triphone distributions:

𝑝𝑡(𝑥𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)
𝑝𝑡(𝑥′𝑖|𝑥′𝑖−1, 𝑥′𝑖, 𝑥′𝑖+1) = 𝑝𝑡(𝑥𝑖|𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1)

𝑝𝑡(𝑥′𝑖|𝑥′𝑖−1, 𝑥′𝑖, 𝑥′𝑖+1) (16)

The new model maximally agrees with the exper-
imentally estimated distribution, differing only in
the absolute amount of noise implied.

7The gating data does not provide information for estimat-
ing the probability of deletion or insertion errors.
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The final string-to-string channel model is de-
fined by:

𝑝𝑁 (𝑦1∶𝑓 |𝑥1∶𝑓 ) = 𝑗=𝑓∏
𝑗=1

𝑝𝑡(𝑦𝑗|𝑥𝑗−1, 𝑥𝑗 , 𝑥𝑗+1) (17)

This new channel model has an increased noise
rate, making it easier to estimate stable rankings
of confusability across words.

The most similar previous channel model (Nor-
ris and McQueen 2008) was based on Dutch gating
data (Smits et al. 2003) comparable to that used
here. Norris and McQueen (2008) did not con-
struct a triphone-to-uniphone channel model, but
made use of all gates and also allowed investiga-
tion of word boundary identification.

3.5 Statistical methods

Prior to any analyses, the Switchboard and Buck-
eye corpora were each randomly divided into
evenly-sized Training and Test sets. The Training
sets were used for exploratory statistical analyses,
and for determining the values of several model hy-
perparameters. Following this, all parameters and
statistical analyses were frozen, and preregistered
with the Open Science Foundation.8

We perform several linear regressions in order to
determine the effect of confusability on word dura-
tion. Contextual confusability is defined through-
out using Equation 9. Word durations are log-
transformed. The following covariates are stan-
dard in the literature, and are included in our analy-
ses: speaker identity; part of speech; unigram prior
surprisal; speech rate (the average rate of speech,
in syllables per second, of the utterance containing
the target word); word length (measured by num-
ber of segments and syllables). Several covariates
that are included are more non-trivial, and are dis-
cussed in more detail below: segmental inventory
factors; forward and backward surprisal; neighbor-
hood size and log weighted neighborhood density;
and unigram confusability.

The segmental inventory variables code each
word as a ‘bag-of-segments.’ A separate variable
is defined for each phoneme in the segmental lex-
icon of the corpus. Each variable counts the num-
ber of times the corresponding phoneme occurs in
the word. This is a variant of the baseline model

8The preregistered analyses are available at the fol-
lowing link: https://osf.io/gj3ph/?view_only=
6c5bd9b1211e4b798d2268fb8a8f5842

used in previous work (Bell et al. 2009, Gahl et al.
2012).

Certain segments take longer to pronounce than
others, and the baseline model is used in case the
confusability scores contain information about seg-
ment identities within a word. Note, however, that
this is a conservative baseline, as segment identity
has an effect on confusability; certain segments are,
individually, harder to perceive than others. The
model will be used to predict word durations after
these segmental effects have been factored out.

The forward language-model surprisal of a word
is the surprisal of the word given preceding words
in the context, and its backward surprisal is the
surprisal given the following words in the context.
Previous work in English has found backward sur-
prisal to be a stronger predictor of spoken word du-
ration than forward surprisal (Bell et al. 2009, Sey-
farth 2014). Word confusability is expected to be
correlated with surprisal, as more surprising words
will be more difficult for the listener to recover in
the presence of noise.

Neighborhood size and log weighted neighbor-
hood density are measures of the number of words
adjacent (within Levenshtein distance 1) to a tar-
get word. These measures have been extensively
studied as explanatory variables for word duration
(see Gahl et al. 2012, Vitevitch and Luce 2016
for review), and are expected to correlate with
word confusability: words with more neighbors
are expected to be more confusable. We evaluate
whether there is any residual effect of confusability
beyond its impact on these variables.

Unigram confusability measures the confusabil-
ity of a word (Equation 9) given a unigram (word
frequency) language model. This is a measure of
the out-of-context confusability of a word, as dis-
cussed below.

All variables are treated as fixed effects, and
OLS is used for regressions. Confidence inter-
vals and p-values are calculated using the bias-
corrected bootstrap. Bootstrapping is used to ad-
dress possible heteroskedasticity in the data. Ran-
dom effects are not used due to potential issues aris-
ing in observational studies like the current one.
In particular, random effects may correlate with
predictors in an observational study, leading to in-
correct estimates of uncertainty and the potential
for bias (Bafumi and Gelman 2006, Wooldridge
2010).9

9While Bafumi and Gelman (2006) propose a solution to

https://osf.io/gj3ph/?view_only=6c5bd9b1211e4b798d2268fb8a8f5842
https://osf.io/gj3ph/?view_only=6c5bd9b1211e4b798d2268fb8a8f5842
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(a) Switchboard (b) Buckeye

Figure 1: Confusability vs. log duration on the Test sets of the Switchboard and Buckeye corpora. Error bars are
95% confidence intervals (non-bootstrapped). As illustrated in Figure 2, data are sparse beyond 18 bits, resulting
in large confidence intervals in this range.

Figure 2: Histogram of contextual confusability scores
on the Test sets.

All analyses were performed in two ways: us-
ing the raw values for each variable, and with rank-
transformed values for the continuous variables.
The rank-transformed analyses provide a test of the
papers hypothesis that greater (i.e. higher-rank)
confusability is associated with longer (higher-
rank) duration. The analyses eliminate the poten-
tially questionable parametric assumption of a lin-
ear relationship between confusability (in bits) and

this problem by decorrelating the fixed effect from random ef-
fects, the method produces identical estimates for the fixed ef-
fect, and is primarily useful when the random effect estimates
themselves are of interest.

duration (in log seconds). The rank-transformed
analyses are intended as sensitivity analyses for the
non-transformed analyses; if the two analyses pro-
vide different results, this provides evidence of a
problem with the statistical methods.10

4 Results

Four model hyperparameters were selected using
the Switchboard and Buckeye Training sets: the or-
der and direction of the n-gram model, the diphone-
to-diphone channel pseudocounts, and the noise
factor 𝜆.11 Backward bigram language models
were found to perform best on the Training sets,
possibly due to distributional differences between
these corpora and the Fisher corpus, which was
used for language model estimation. This is con-
sistent with prior work in the area (e.g. Bell et al.
2009, Seyfarth 2014). Pseudocounts were set to
0.01, and the term 𝜆 was set to 2−6.

Figure 2 shows the frequency of model-
computed confusability scores on the Switchboard
and Buckeye Test sets. Figure 1 shows the rela-
tionship between confusability and word duration
on the Test sets.

The first set of analyses include all of the co-
10Model and analysis code is available at: https://

github.com/emeinhardt/wr
11The language model order was the same across all covari-

ates where it was used.

https://github.com/emeinhardt/wr
https://github.com/emeinhardt/wr
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Dataset Rank 𝛽 95% CI p-value

SWBD No 0.006 (0.004, 0.008) 0.001
SWBD Yes 0.086 (0.067, 0.109) 0.001
Buckeye No 0.005 (0.001, 0.008) 0.01
Buckeye Yes 0.123 (0.080, 0.130) 0.001

Table 1: Effect of contextual confusability on log word
duration, not controlling for unigram confusability. Es-
timates from the Test sets. Rank indicates whether con-
tinuous variables were rank-transformed. p-values are
upper-bounds.

Dataset Rank 𝛽 95% CI p-value

SWBD No 0.009 (0.006, 0.011) 0.001
SWBD Yes 0.132 (0.095, 0.130) 0.001
Buckeye No 0.007 (0.003, 0.011) 0.001
Buckeye Yes 0.148 (0.106, 0.164) 0.001

Table 2: Effect of contextual confusability on log word
duration, controlling for unigram confusability. Esti-
mates from the Test sets.

variates from Section 3.5, except for unigram con-
fusability. This allows us to determine whether
there is an effect of word confusability on duration,
independent of whether this effect is sensitive to
context. Greater confusability is associated with
longer word durations on both the Switchboard and
Buckeye Training sets (p<0.001 for all analyses).
Table 1 shows results of the same analyses per-
formed on the Test sets. The effects replicate on the
Test sets, and are qualitatively similar when contin-
uous variables are rank-transformed.

These analyses provide evidence that higher con-
fusability is associated with longer word dura-
tion. In the second set of analyses, we investi-
gate whether a context-sensitive measure of con-
fusability is necessary for explaining this effect, or
whether an out-of-context measure suffices. In or-
der to do this, we include unigram confusability as
a covariate in the analyses, in addition to the pre-
vious covariates. Unigram confusability is iden-
tical to our target measure of word confusability,
except that the language model is replaced with a
unigram model. The measure calculates a word’s
confusability based on its acoustic properties and
its phonological similarity to other words. It there-
fore does not take into account top-down expecta-
tions based on a word’s context.

After controlling for unigram confusability,
contextual confusability remains associated with
longer word durations on both the Switchboard and
Buckeye Training sets (p<0.001 for all analyses).
Table 2 shows the same analyses on the Test sets.
The effects replicate on both Test sets, and simi-
larly for the rank-transformed analyses.

4.1 Neighborhood density

We report the results of several unplanned analyses.
Confidence intervals and p-values reported in this
section are non-bootstrapped.

We evaluate the effect of neighborhood density
on word duration in the Test sets. Weighted neigh-
borhood density is associated with lower word du-
ration in all analyses. (See Appendix B.) The re-
sults provide evidence that the neighborhood den-
sity effects identified in previous work remain qual-
itatively similar, after adjusting for contextual con-
fusability.

5 Discussion

We draw two main conclusions from our results.
First, we provide evidence that speakers lengthen
words that are more confusable. This supports the
hypothesis that variation and structure in natural
languages are shaped not only by pressures for effi-
cient signals, but also pressures for effective com-
munication of the speaker’s intended message in
the face of noise and uncertainty (Lindblom 1990,
Lindblom et al. 1995, Hall et al. 2018).

Second, we provide large scale, naturalistic ev-
idence for reduction and enhancement driven by
contextual confusability. Conversational context
may make a speaker’s intended message easier or
harder to recover from ambiguous acoustics. The
results suggest that speakers modulate their utter-
ances in a manner that is sensitive to this effect of
context, increasing duration when context makes
the intended utterance harder to recover.

The results complement previous work which
demonstrates reduction and enhancement driven
by contextual predictability (see e.g. Seyfarth
2014). They also complement work which shows
confusability-driven reduction and enhancement
in targeted experimental manipulations (see e.g.
Kirov and Wilson 2012, Schertz 2013, Seyfarth
et al. 2016, Buz et al. 2016).

The study may help to resolve questions raised
by previous work examining the effects of neigh-
borhood density. That work found negative or null
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associations between word duration and neighbor-
hood density and related measures (e.g. Gahl et al.
2012, Gahl and Strand 2016). The proposed con-
fusability measure differs from neighborhood den-
sity in three ways: it is sensitive to edit type, words
greater than two edits away, and top-down effects.

These differences may account for the discrep-
ancy in the effects of neighborhood density and
confusability. Under one hypothesis, neighbor-
hood density effects reflect spillover of activation
between words with overlapping subsequences of
speech sounds (e.g. Gahl and Strand (2016), Chen
and Mirman (2012), Dell (1986), Vitevitch and
Luce (2016)). This spillover is potentially sensitive
only to Levenshtein distance. In contrast, confus-
ability is sensitive to fine-grained perceptual struc-
ture. When lexical neighbors differ in perceptu-
ally distinct segments, they will typically be non-
confusable.

A second hypothesis is that the discrepancy
arises from the role of top-down expectations in
confusability. Neighborhood effects are type-level
phenomena: a word has the same neighbors no
matter what context it appears in. Confusability,
on the other hand, is a token-level phenomenon:
contextual expectations will change the confusabil-
ity of a word. Stable properties of the lexicon may
determine which segment sequences undergo fre-
quent articulatory rehearsal, and are reduced as a
consequence. The confusability measure picks up
on context-dependent variation, which rehearsal
processes in the articulatory system may not be sen-
sitive to.

The study suggests several directions for future
work. First, while there are advantages of using
naturalistic speech data (Gahl et al. 2012), it would
be desirable to have experimental validation of
the confusability measure and its relationship to
speaker reduction. Second, a lower-perplexity neu-
ral language model would provide better estimates
of a word’s confusability, but would first need to
be validated on speech data. Third, a more so-
phisticated channel model would allow for inser-
tions and deletions, and better capture transitional
coarticulatory cues (Wright 2004). Because speak-
ers enhance or reduce their speech in ways other
than changing duration (see e.g. Kirov and Wilson
2012, Schertz 2013, Seyfarth et al. 2016, Buz et al.
2016), such a model would permit investigation of
targeted enhancement and reduction in naturalistic
data.
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A Sensitivity analyses

In this section we present the results of several sen-
sitivity analyses. These analyses are post-hoc, and
were not pre-registered with OSF. They are per-
formed in order to assess the sensitivity of the find-
ings to the bootstrapping method that was used for
calculating p-values.

The analyses are intended to evaluate the effect
of contextual confusability on word duration, and
are identical to the analyses in Section 4, except
that p-values are calculated using a likelihood ra-
tio test. Each likelihood ratio test compares a pair
of OLS models: one model containing contextual
confusability as a covariate, and an ablated model
which does not use this covariate, but is otherwise
identical. The tests evaluate whether the inclusion
of contextual confusability improves the prediction
of word duration, beyond the contributions of other
covariates.

Table 3 and Table 4 show results without and
with unigram confusability included as a covari-
ate. All comparisons performed in Section 4 re-
main significant with the likelihood ratio test.
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Dataset Rank Likelihood ratio p-value

SWBD No 35.4 3𝑥10−9

SWBD Yes 91.8 3𝑥10−22

Buckeye No 7.23 0.007
Buckeye Yes 64.9 8𝑥10−16

Table 3: Likelihood ratio tests, evaluating whether con-
textual confusability improves OLS model fit on the test
set. No control for unigram confusability included.

Dataset Rank Likelihood ratio p-value

SWBD No 51.3 8𝑥10−13

SWBD Yes 160.6 8𝑥10−37

Buckeye No 12.0 0.0005
Buckeye Yes 70.1 6𝑥10−17

Table 4: Likelihood ratio evaluation of contextual con-
fusability, controlling for unigram confusability.

B Neighborhood density analyses

Table 5 shows the effect of log weighted neighbor-
hood density on log word duration. Confidence in-
tervals and p-values are non-bootstrapped.

Dataset 𝛽 95% CI p-value

SWBD -4.27 (-4.96, -3.58) 0.001
Buckeye -1.91 (-2.88, -0.94) 0.001

Table 5: Effect of log weighted neighborhood density
on log word duration.


