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Abstract

Sequence-to-sequence (seq2seq) network is a
well-established model for text summarization
task. It can learn to produce readable con-
tent; however, it falls short in effectively iden-
tifying key regions of the source. In this pa-
per, we approach the content selection prob-
lem for clinical abstractive summarization by
augmenting salient ontological terms into the
summarizer. Our experiments on two pub-
licly available clinical data sets (107,372 re-
ports of MIMIC-CXR, and 3,366 reports of
OpenI) show that our model statistically signif-
icantly boosts state-of-the-art results in terms
of ROUGE metrics (with improvements: 2.9%
RG-1, 2.5% RG-2, 1.9% RG-L), in the health-
care domain where any range of improvement
impacts patients’ welfare.

1 Introduction

Radiology reports convey the detailed observations
along with the significant findings about a medical
encounter. Each radiology report contains two im-
portant sections:1 FINDINGS that encompasses ra-
diologist’s detailed observations and interpretation
of imaging study, and IMPRESSION summarizing
the most critical findings. IMPRESSION (usually
couple of lines and thrice smaller than finding) is
considered as the most integral part of report (Ware
et al., 2017) as it plays a key role in communicating
critical findings to referring clinicians. Previous
studies have reported that clinicians mostly read the
IMPRESSION as they have less time to review find-
ings, particularly those that are lengthy or intricate
(Flanders and Lakhani, 2012; Xie et al., 2019).

In clinical setting, generating IMPRESSION from
FINDINGS can be subject to errors (Gershanik et al.,
2011; Brady, 2016). This fact is especially crucial
when it comes to healthcare domain where even

1Depending on institution, radiology reports may or may
not include other fields such as BACKGROUND.

the smallest improvement in generating IMPRES-
SION can improve patients’ well-being. Automat-
ing the process of impression generation in radi-
ology reporting would save clinicians’ read time
and decrease fatigue (Flanders and Lakhani, 2012;
Kovacs et al., 2018) as clinicians would only need
to proofread summaries or make minor edits.

Previously, MacAvaney et al. (2019) showed
that augmenting the summarizer with entire on-
tology (i.e., clinical) terms within the FINDINGS

can improve the content selection and summary
generation to some noticeable extent. Our findings,
further, suggest that radiologists select significant
ontology terms, but not all such terms, to write
the IMPRESSION. Following this paradigm, we hy-
pothesize that selecting the most significant clinical
terms occurring in the FINDINGS and then incorpo-
rating them into the summarization would improve
the final IMPRESSION generation. We further ex-
amine if refining FINDINGS word representations
according to the identified clinical terms would
result in improved IMPRESSION generation.

Overall, the contributions of this work are
twofold: (i) We propose a novel seq2seq-based
model to incorporate the salient clinical terms into
the summarizer (§3.2). We pose copying likelihood
of a word as an indicator of its saliency in terms of
forming IMPRESSION, which can be learned via a
sequence-tagger (§3.1); (ii) Our model statistically
significantly improves over the competitive base-
lines on MIMIC-CXR publicly available clinical
dataset. To evaluate the cross-organizational trans-
ferability, we further evaluate our model on another
publicly available clinical dataset (OpenI) (§5).

2 Related Work

Few prior studies have pointed out that although
seq2seq models can effectively produce readable
content, they perform poorly at selecting salient
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content to include in the summary (Gehrmann et al.,
2018; Lebanoff et al., 2019). Many attempts have
been made to tackle this problem (Zhou et al., 2017;
Lin et al., 2018; Hsu et al., 2018; Lebanoff et al.,
2018; You et al., 2019). For example, Zhou et al.
(2017) used sentence representations to filter sec-
ondary information of word representation. Our
work is different in that we utilize ontology rep-
resentations produced by an additional encoder to
filter word representations. Gehrmann et al. (2018)
utilized a data-efficient content selector, by aligning
source and target, to restrict the model’s attention
to likely-to-copy phrases. In contrast, we use the
content selector to find domain knowledge align-
ment between source and target. Moreover, we do
not focus on model attention here, but on rectifying
word representations.

Extracting clinical findings from clinical reports
has been explored previously (Hassanpour and Lan-
glotz, 2016; Nandhakumar et al., 2017). For sum-
marizing radiology reports, Zhang et al. (2018)
recently used a separate RNN to encode a section
of radiology report.2 Subsequently, MacAvaney
et al. (2019) extracted clinical ontologies within
the FINDINGS to help the model learn these useful
signals by guiding decoder in generation process.
Our work differs in that we hypothesize that all
of the ontological terms in the FINDINGS are not
equally important, but there is a notion of odds of
saliency for each of these terms; thus, we focus on
refining the FINDINGS representations.

3 Model

Our model consists of two main components: (1)
a content selector to identify the most salient onto-
logical concepts specific to a given report, and (2)
a summarization model that incorporates the iden-
tified ontology terms within the FINDINGS into the
summarizer. The summarizer refines the FINDINGS

word representation based on salient ontology word
representation encoded by a separate encoder.

3.1 Content Selector

The content selection problem can be framed as
a word-level extraction task in which the aim is
to identify the words within the FINDINGS that
are likely to be copied into the IMPRESSION. We
tackle this problem through a sequence-labeling
approach. We align FINDINGS and IMPRESSION

to obtain required data for sequence-labeling task.
2BACKGROUND field.

To this end, let b1, b2, ..., bn be the binary tags over
the FINDINGS terms x = {x1, x2, ..., xn}, with n
being the length of the FINDINGS. We tag word xi
with 1 if it meets two criteria simultaneously: (1)
it is an ontology term, (2) it is directly copied into
IMPRESSION, and 0 otherwise. At inference, we
characterize the copying likelihood of each FIND-
INGS term as a measure of its saliency.

Recent studies have shown that contextual-
ized word embeddings can improve the sequence-
labeling performance (Devlin et al., 2019; Peters
et al., 2018). To utilize this improvement for the
content selection, we train a bi-LSTM network on
top of the BERT embeddings with a softmax acti-
vation function. The content selector is trained to
maximize log-likelihood loss with the maximum
likelihood estimation. At inference, the content
selector calculates the selection probability of each
token in the input sequence. Formally, let O be the
set of ontological words which the content selector
predicts to be copied into the IMPRESSION:

O = {oi|oi ∈ FU (x) ∧ poi ≥ ε} (1)

where FU (x) is a mapping function that takes
in FINDINGS tokens and outputs word sequences
from input tokens if they appear in the ontology
(i.e., RadLex) 3, and otherwise skips them. poi de-
notes the selection probability of ontology word oi,
and ε ∈ [0, 1] is the copying threshold.

3.2 Summarization Model

3.2.1 Encoders
We exploit two separate encoders: (1) findings en-
coder that takes in the FINDINGS, and (2) ontology
encoder that maps significant ontological terms
identified by the content selector to a fix vector
known as ontology vector. The findings encoder is
fed with the embeddings of FINDINGS words, and
generates word representations h. Then, a separate
encoder, called ontology encoder, is used to pro-
cess the ontology terms identified by the content
selector and produce associated representations ho.

h = Bi-LSTM(x)
ho = LSTM(O) (2)

where x is the FINDINGS text,O is the set of ontol-
ogy terms occurring in the FINDINGS and identified
by the content selector, ho = {ho1, ho2, ..., hol } is the

3RadLex version 3.10, http://www.radlex.org/
Files/radlex3.10.xlsx

http://www.radlex.org/Files/radlex3.10.xlsx
http://www.radlex.org/Files/radlex3.10.xlsx
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Figure 1: Overview of our summarization model. As
shown, “bilateral” in the FINDINGS is a significant on-
tological term which has been encoded into the ontol-
ogy vector. After refining FINDINGS word representa-
tion, the decoder computes attention weight (highest on
“bilateral”) and generates it in the IMPRESSION.

word representations yielded from the ontology en-
coder. Note that hol –called ontology vector– is the
last hidden state containing summarized informa-
tion of significant ontologies in the FINDINGS.

3.2.2 Ontological Information Filtering
Although de facto seq2seq frameworks implicitly
model the information flow from encoder to de-
coder, the model should benefit from explicitly
modeling the selection process. To this end, we
implement a filtering gate on top of the findings en-
coder to refine the FINDINGS word representations
according to the significant ontology terms within
the FINDINGS and produce ontology-aware word
representations. Specifically, the filtering gate re-
ceives two vectors: the word hidden representation
hi that has the contextual information of word xi,
and the ontology vector hol including the overal in-
formation of significant ontology words within the
FINDINGS. The filtering gate processes these two
vectors through a liner layer with Sigmoid activa-
tion function. We then compute the ontology-aware
word hidden representation h′i, given the source
word hidden representation hi and the associated
filtering gate Fi.

Fi = σ(Wh[hi;h
o
l ] + b)

h′i = hi � Fi
(3)

where Wh is the weight matrix, b denotes the bias
term, and � denotes element-wise multiplication.

3.2.3 Impression Decoder
We use an LSTM network as our decoder to gen-
erate the IMPRESSION iteratively. In this sense,
the decoder computes the current decoding state
st = LSTM(st−1,yt−1), where yt−1 is the in-
put to the decoder (human-written summary tokens

at training, or previously generated tokens at in-
ference) and st−1 is the previous decoder state.
The decoder also computes an attention distribu-
tion a = Softmax(h′>Vs>) with h′ being the
ontology-aware word representations. The atten-
tion weights are then used to compute the context
vector ct =

∑n
i aih

′
i where n is the length of the

FINDINGS. Finally, the context vector and decoder
output are used to either generate the next token
from the vocabulary or copy it from the FINDINGS.

4 Experiments

4.1 Dataset and Ontologies
MIMIC-CXR. This collection (Johnson et al.,
2019) is a large publicly available dataset of ra-
diology reports. Following similar report pre-
processing as done in (Zhang et al., 2018), we
obtained 107,372 radiology reports. For tokeniza-
tion, we used ScispaCy (Neumann et al., 2019).
We randomly split the dataset into 80%(85,898)-
10%(10,737)-10%(10,737) train-dev-test splits.
OpenI. A public dataset from the Indiana Net-
work for Patient Care (Demner-Fushman et al.,
2016) with 3,366 reports. Due to small size, it
is not suitable for training; we use it to evaluate the
cross-organizational transferability of our model
and baselines.
Ontologies. We use RadLex, a comprehensive ra-
diology lexicon, developed by Radiological Society
of North America (RSNA), including 68,534 radio-
logical terms organized in hierarchical structure.

4.2 Baselines
We compare our model against both known and
state-of-the-art extractive and abstractive models.

- LSA (Steinberger and Jez̈ek, 2004): An extrac-
tive vector-based model that employs Sigular
Value Decomposition (SVD) concept.

- NeuSum (Zhou et al., 2018): A state-of-the-art
extractive model that integrates the process of
source sentence scoring and selection.4

- Pointer-Generator (PG) (See et al., 2017): An
abstractive summarizer that extends ses2seq net-
works by adding a copy mechanism that allows
for directly copying tokens from the source.

- Ontology-Aware Pointer-Generator (Ont.
PG) (MacAvaney et al., 2019): An extension of

4We use open code at https://github.com/
magic282/NeuSum with default hyper-parameters.

https://github.com/magic282/NeuSum
https://github.com/magic282/NeuSum
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Method RG-1 RG-2 RG-L

LSA 22.21 11.17 20.80
NEUSUM 23.97 12.82 22.61

PG 51.20 39.13 50.16
Ont. PG 51.84 39.59 50.72
BUS 52.04 39.69 50.83
Ours (this work) 53.57∗ 40.78∗ 51.81∗

Table 1: ROUGE results on MIMIC-CXR. ∗ shows the
statistical significance (paired t-test, p < 0.05).

PG model that first encodes entire ontological
concepts within FINDINGS, then uses the
encoded vector to guide decoder in summary
decoding process.

- Bottom-Up Summarization (BUS) (Gehrmann
et al., 2018): An abstractive model which makes
use of a content selector to constrain the model’s
attention over source terms that have a good
chance of being copied into the target.5

4.3 Parameters and Training

We use SCIBERT model (Beltagy et al., 2019)
which is pre-trained over biomedical text. We em-
ploy 2-layer bi-LSTM encoder with hidden size of
256 upon BERT model. The dropout is set to 0.2.
We train the network to minimize cross entropy
loss function, and optimize using Adam optimizer
(Kingma and Ba, 2015) with learning rate of 2e−5.

For the summarization model, we extended on
the open base code by Zhang et al. (2018) for im-
plementation.6 We use 2-layer bi-LSTM, 1-layer
LSTM as findings encoder, ontology encoder, and
decoder with hidden sizes of 200 and 100, respec-
tively. We also exploit 100d GloVe embeddings
pretrained on a large collection of 4.5 million ra-
diology reports (Zhang et al., 2018). We train the
network to optimize negative log likelihood with
Adam optimizer and a learning rate of 0.001.

5 Results and Discussion

5.1 Experimental Results

Table. 1 shows the ROUGE scores of our model
and baseline models on MIMIC-CXR, with human-
written IMPRESSIONS as the ground truth. Our
model significantly outperforms all the baselines

5We re-implemented the BUS model.
6https://github.com/yuhaozhang/

summarize-radiology-findings

Method RG-1 RG-2 RG-L

BUS 40.02 21.89 39.37
Ours (this work) 40.88∗ 24.44∗ 40.37∗

Table 2: ROUGE results on Open-I dataset, comparing
our model with the best-performing baseline. ∗ shows
the statistical significance (paired t-test, p < 0.05).

Setting RG-1 RG-2 RG-L

w/o Cont. Sel. 52.47 40.11 51.39
w/ Cont. Sel. 53.57∗ 40.78∗ 51.81

Table 3: ROUGE results showing the impact of content
selector in summarization model. ∗ shows the statisti-
cal significance (paired t-test, p < 0.05).

on all ROUGE metrics with 2.9%, 2.5%, and 1.9%
improvements for RG-1, RG-2, and RG-L, respec-
tively. While NEUSUM outperforms the non-neural
LSA in extractive setting, the extractive models lag
behind the abstractive methods considerably, sug-
gesting that human-written impressions are formed
by abstractively selecting information from the find-
ings, not merely extracting source sentences. When
comparing Ont. PG with our model, it turns out
that indeed our hypothesis is valid that a pre-step
of identifying significant ontological terms can im-
prove the summary generation substantially. As
pointed out earlier, we define the saliency of an
ontological term by its copying probability.

As expected, BUS approach achieves the best
results among the baseline models by constraining
decoder’s attention over odds-on-copied terms, but
still underperforms our model. This may suggest
that the intermediate stage of refining word rep-
resentations based on the ontological word would
lead to a better performance than superficially re-
stricting attention over the salient terms. Table. 3
shows the effect of content selector on the sum-
marization model. For the setting without content
selector, we encode all ontologies within the FIND-
INGS. As shown, our model statistically signifi-
cantly improves the results on RG-1 and RG-2.

To further evaluate the transferability of our
model across organizations, we perform an eval-
uation on OpenI with our best trained model on
MIMIC-CXR. As shown in Table. 2, our model
significantly outperforms the top-performing ab-
stractive baseline model suggesting the promising
cross-organizational transferability of our model.

https://github.com/yuhaozhang/summarize-radiology-findings
https://github.com/yuhaozhang/summarize-radiology-findings
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Figure 2: Histograms and arrow plots showing differences between IMPRESSION of 100 manually-scored radiology
reports. Although challenges remain to reach human parity for all metrics, 81% (a), 82% (b), and 80% (c) of our
system-generated Impressions are as good as human-written Impressions across different metrics.

5.2 Expert Evaluation

While our approach achieves the best ROUGE

scores, we recognize the limitation of this met-
ric for summarization task (Cohan and Goharian,
2016). To gain a better understanding of quali-
ties of our model, we conducted an expert human
evaluation. To this end, we randomly sampled 100
system-generated Impressions with their associated
gold from 100 evenly-spaced bins (sorted by our
system’s RG-1) of MIMIC-CXR dataset. The Im-
pressions were shuffled to prevent potential bias.
We then asked three experts 7 to score the given Im-
pressions independently on a scale of 1-3 (worst to
best) for three metrics: Readability. understandable
or nonsense; Accuracy. fully accurate, or contain-
ing critical errors; Completeness. having all major
information, or missing key points.

Figure. 2 presents the human evaluation re-
sults using histograms and arrow plots as done
in (MacAvaney et al., 2019), comparing our sys-
tem’s Impressions versus human-written Impres-
sions. The histograms indicate the distribution of
scores, and arrows show how the scores changed
between ours and human-written. The tail of each
arrow shows the score of human-written IMPRES-
SION , and its head indicates the score of our
system’s IMPRESSION. The numbers next to the
tails express the count of Impressions that gained
score of s′ by ours and s by gold. 8 We observed
that while there is still a gap between the system-
generated and human-written Impressions, over
80% of our system-generated Impressions are as
good 9 as the associated human-written Impres-

7Two radiologists and one medical student.
8s, s′ ∈ {1, 2, 3}
9Either tied or improved.

sions. Specifically, 73% (readability), and 71%
(accuracy) of our system-generated Impressions
ties with human-written Impressions, both achiev-
ing full-score of 3; nonetheless, this percentage is
62% for completeness metric. The most likely ex-
planation of this gap is that deciding which findings
are more important (i.e., should be written into Im-
pression) is either subjective, or highly correlates
with the institutional training purposes. Hence,
we recognize cross-organizational evaluations in
terms of Impression completeness as a challenging
task. We also evaluated the inter-rater agreement
using Fleiss’ Kappa (Fleiss, 1971) for our system’s
scores and obtained 52% for readability, 47% for
accuracy, and 50% for completeness, all of which
are characterized as moderate agreement rate.

6 Conclusion

We proposed an approach to content selection for
abstractive text summarization in clinical notes. We
introduced our novel approach to augment standard
summarization model with significant ontological
terms within the source. Content selection problem
is framed as a word-level sequence-tagging task.
The intrinsic evaluations on two publicly available
real-life clinical datasets show the efficacy of our
model in terms of ROUGE metrics. Furthermore,
the extrinsic evaluation by domain experts further
reveals the qualities of our system-generated sum-
maries in comparison with gold summaries.
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