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Abstract

Many multi-domain neural machine transla-
tion (NMT) models achieve knowledge trans-
fer by enforcing one encoder to learn shared
embedding across domains. However, this de-
sign lacks adaptation to individual domains.
To overcome this limitation, we propose a
novel multi-domain NMT model using individ-
ual modules for each domain, on which we
apply word-level, adaptive and layer-wise do-
main mixing. We first observe that words in
a sentence are often related to multiple do-
mains. Hence, we assume each word has a
domain proportion, which indicates its domain
preference. Then word representations are ob-
tained by mixing their embedding in individ-
ual domains based on their domain propor-
tions. We show this can be achieved by care-
fully designing multi-head dot-product atten-
tion modules for different domains, and even-
tually taking weighted averages of their pa-
rameters by word-level layer-wise domain pro-
portions. Through this, we can achieve ef-
fective domain knowledge sharing, and cap-
ture fine-grained domain-specific knowledge
as well. Our experiments show that our pro-
posed model outperforms existing ones in sev-
eral NMT tasks.

1 Introduction

Neural Machine Translation (NMT) has made sig-
nificant progress in various machine translation
tasks (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015; Wu et al., 2016). The success of NMT heav-
ily relies on a huge amount of annotated parallel
sentences as training data, which is often limited
in certain domains, e.g., medical domain. One ap-
proach to address this is to explore unparalleled
corpora, such as unsupervised machine transla-
tion (Lample et al., 2017, 2018). Another approach
is to train a multi-domain NMT model and this is

the focus of this paper. The simplest way is to build
a unified model by directly pooling all training data
from multiple domains together, as the languages
from different domains often share some similar se-
mantic traits, e.g., sentence structure, textual style
and word usages. For domains with less training
data, the unified model usually shows significant
improvement.

Researchers have proposed many methods for
improving multi-domain NMT. Though certain se-
mantic traits are shared across domains, there still
exists significant heterogeneity among languages
from different domains. For example, Haddow and
Koehn (2012) show that for a domain with suffi-
cient training data, a unified model may lead to
weaker performance than the one trained solely
over the domain; Farajian et al. (2017); Luong et al.
(2015); Sennrich et al. (2015a); Servan et al. (2016)
also show that to improve the translation perfor-
mance over certain domains, fine-tuning the unified
model is often needed, but at the expense of sacri-
ficing the performance over other domains. This in-
dicates that a unified model might not well exploit
the domain-specific knowledge for each individual
domain.

To overcome this drawback, two lines of recent
research focus on developing new methods by ex-
ploiting domain-shared and domain-specific knowl-
edge to improve multi-domain NMT (Britz et al.,
2017; Zeng et al., 2018; Tars and Fishel, 2018;
Hashimoto et al., 2016; Wang et al., 2017; Chen
et al., 2017; Wang et al., 2018; Gu et al., 2019;
Chu and Wang, 2018; Dou et al., 2019; Pham et al.,
2019; Chu and Dabre, 2019).

One line of research focuses on instance weight-
ing, which assigns domain related weights to dif-
ferent samples during training. For example, Wang
et al. (2017) consider sentence weighting and do-
main weighting for NMT. The sentence weight is
determined by the bilingual cross-entropy of each
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sentence pair based on the language model of each
domain. The domain weight can be modified by
changing the number of sentences from that domain
in a mini-batch. Chen et al. (2017) propose a cost
weighting method, where the weight of each pair of
sentences is evaluated by the output probability of a
domain classifier on the encoder embedding. Wang
et al. (2018) propose a dynamic training method to
adjust the sentence selection and weighting during
training. We remark that many of these methods
are complementary to our proposed model, and can
be applied to improve the training of our model.

Another line of research attempts to design spe-
cific encoder-decoder architectures for NMT mod-
els. For example, Britz et al. (2017) consider
domain-aware embedding given by the encoder,
and then jointly train a domain classifier, taking the
embedding as input to incorporate the domain infor-
mation. Zeng et al. (2018); Su et al. (2019) further
extend their approach by separating the domain-
shared and domain-specific knowledge within the
embedding. In addition, Zeng et al. (2018) and
Shen et al. (2017) propose a maximum weighted
likelihood estimation method, where the weight is
obtained by word-level domain aware masking to
encourage the model to pay more attention to the
domain-specific words. The aforementioned meth-
ods, however, have a notable limitation: They en-
force one single encoder to learn shared embedding
across all domains, which often lacks adaptivity to
each individual domain.

To better capture domain-shared knowledge be-
yond shared embedding from a single encoder, we
propose a novel multi-domain NMT model using
individual modules for each domain, on which we
apply word-level, adaptive and layer-wise domain
mixing. Our proposed model is motivated by the
observation that although every sentence of the
training data has a domain label, the words in the
sentence are not necessarily only related to that
domain. For instance, the word “article” appears
in the domains of laws and business. Therefore,
we expect the knowledge for translating the word
“article” to be shared between these two domains.
Our proposed model assigns a context-dependent
domain proportion1 to every word in the sentence.
The domain proportions of the words can be nat-
urally integrated into the Transformer model for
capturing domain-shared/specific knowledge, as

1A word actually has multiple domain proportions at dif-
ferent layers of our model. See more details in Section 3

the multi-head dot-product attention mechanism is
applied at the word-level. Specifically, we carefully
design multi-head dot-product attention modules
for different domains, and eventually mix these
modules by taking weighted averages of their pa-
rameters by their layer-wise domain proportions.

Compared with existing models, ours has the
following two advantages:

• Our proposed model is more powerful in cap-
turing the domain-specific knowledge, as we de-
sign multiple dot-product attention modules for
different domains. In contrast, existing models rely
on one single shared encoder, and then one single
unified translation model is applied, which often
cannot adapt to each individual domain very well.

• Our proposed model is more adaptive in the pro-
cess of domain knowledge sharing. For common
words across domains, their domain proportions
tend to be uniform, and therefore can significantly
encourage knowledge sharing. For some words spe-
cific to certain domains, their domain proportions
tend to be skewed, and accordingly, the knowledge
sharing is encouraged only within the relevant do-
mains. For example, the word “article” appears less
in the medical domain than the domains of laws
and business. Therefore, the corresponding domain
proportion tends to favor the domains of laws and
business more than the medical domain.

We evaluate our proposed model in several multi-
domain machine translation tasks, and the empir-
ical results show that our proposed model outper-
forms existing ones and improves the translation
performance for all domains.

The rest of the paper is organized as follows:
Section 2 introduces the background; Section 3
describes our proposed model in detail; Section 4
presents numerical experiments on EN-DE, EN-
FR and ZH-EN datasets; Section 5 discusses the
connection to word disambiguation.

2 Background

Neural Machine Translation (NMT) directly
models the conditional distribution of the trans-
lated sentence y = (y1, ..., y`) given a source sen-
tence x = (x1, ..., x`)

2. The conditional proba-
bility density function p(y|x) is parameterized by
an encoder-decoder neural network: The encoder

2Here we assume that we have applied padding to all sen-
tences, and therefore, they are all of the same length.
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encodes the source sentence into a sequence of
hidden representations H(x) = (h1, ..., hn), and
the decoder generates target sentence one token
at a time using these intermediate representations.
More specifically, the decoder usually contains a
recursive structure for computing p(yt|y<t,x) by

p(yt|y<t,x) = F(Gt,H(x), yt−1),

where Gt denotes the hidden representation of the
decoder for the t-th position of the sequence, and
F denotes a multi-layered network that outputs
the probability of yt. Notice that Gt is generated
by the Gt−1,H(x), and the previous word yt−1.
Given N pairs of source/target sequences denoted
by {xi,yi}ni=1, we train the NMT model by mini-
mizing the cross-entropy loss as follows,

minH,G,F Lgen = 1
n

∑n
i=1− log p(yi|xi)

where p(yi|xi) =
∏m

t=1 p(yi,t|yi,<t,xi).

Transformer is one of the most popular NMT mod-
els (Vaswani et al., 2017; Tubay and Costa-jussà,
2018; Devlin et al., 2018). The encoder and de-
coder in Transformer contain stacked self-attention
and point-wise, fully connected layers without any
explicit recurrent structure, which is different from
existing RNN-based NMT models.

Specifically, Vaswani et al. (2017) propose a new
attention function using the scaled dot-product as
the alignment score, which takes the form,

Attention(Q,K, V ) = softmax
(QK>√

d

)
V, (1)

where Q,K, V ∈ R`×d are the vector representa-
tions of all the words in the sequences of queries,
keys and values accordingly. For the self-attention
modules in the encoder and decoder, Q = K = V ;
For the attention module that takes into account the
encoder and the decoder sequences, Q is different
from the sequence represented by V and K.

Based on the above attention function in (1),
Vaswani et al. (2017) further develop a multi-head
attention module, which allows the NMT model
to jointly attend to information from different rep-
resentations at different positions. In particular,
we consider a multi-head attention module with m
heads. For the i-th head Hi, three point-wise linear
transformations Wi,Q, Wi,K , Wi,V ∈ Rd×d/m

are first applied to the input Q, K and V , respec-
tively, and then the scaled dot-product attention

Figure 1: Multi-head Scaled Dot-Product Attention.

is applied: Let Q̃i = QWi,Q, K̃i = KWi,K and
Ṽ = VWi,V ,

Hi = Attention(Q̃i, K̃i, Ṽi). (2)

Eventually, the final output applies a point-wise
linear transformation WO ∈ Rd×d to the concate-
nation of the output from all heads:

MultiHead(Q,K, V ) = Concat(H1, ...,Hm)WO.

An illustrative example of the multihead attention
architecture is provided in Figure 1.

In addition to the above multi-head attention
modules, each layer in the encoder and decoder in
Transformer contains a point-wise two-layer fully
connected feed-forward network.

3 Model

We present our Transformer-based multi-domain
neural machine translation model with word-level
layer-wise domain mixing.

3.1 Domain Proportion
Our proposed model is motivated by the observa-
tion that although every sentence in the training
data has a domain label, a word in the sentence
does not necessarily only belong to that single do-
main. Therefore, we assume that every word in
the vocabulary has a domain proportion, which in-
dicates its domain preference. Specifically, given
the embedding x ∈ Rd of a word, k domains and
R ∈ Rk×d, our model represents the domain pro-
portion by a smoothed softmax layer as follows,

D(x) = (1− ε) · softmax(Rx) + ε/k,

where ε ∈ (0, 1) is a smoothing parameter to pre-
vent the output of D(x) from collapsing towards 0
or 1. Specifically, setting ε as a large value encour-
ages the word to be shared across domains.
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3.2 Word-Level Adaptive Domain Mixing
In our proposed model, each domain has its own
multi-head attention modules. Recall that the point-
wise linear transformations in the multi-head atten-
tion module Wi,Q’s, Wi,K’s, Wi,V ’s and WO are
applied to each word separately and identically, as
shown in Figure 2. Therefore, we can naturally

Figure 2: The Point-wise Linear Transformations are
applied at the word-level.

integrate the domain proportions of the words with
these multi-head attention modules. Specifically,
we take the weighted averaging of the linear trans-
formation based on the domain proportion D(x).
For example, we consider the point-wise linear
transformations {Wi,Q,j}kj=1 on the t-th word of
the input, Qt, of all domains. The mixed linear
transformation can be written as

Qi,t =
∑k

j=1Q
>
t Wi,Q,jDQ,j(Qt),

where DQ,j(Qt) denotes the j-th entry of DQ(Qt),
and DQ is the domain proportion layer related to
Q. Then we only need to replace Q̃i in (2) with

[Qi,1, ..., Qi,n].

An illustrative example is presented in Figure 3.
For other linear transformations, we applied the
domain mixing scheme in the same way. We re-

Figure 3: Word-level mixing with 3 domains. For sim-
plicity, we omit the subscripts Q, i.

mark that the Transformer model, though does not
have any explicit recurrent structure, handles the
sequence through adding additional positional em-
bedding for each word (in conjunction with se-
quential masking). Therefore, if a word appears

in different positions of a sentence, its correspond-
ing embedding is different. This indicates that the
domain proportions of the same word can also be
different across positions. This feature makes our
model more flexible, as the same word in different
positions can carry different domain information.

3.3 Layer-wise Domain Mixing

Recall that the Transformer model contains multi-
ple multi-head attention modules/layers. Therefore,
our proposed model inherits the same architecture
and applies the word-level domain mixing to all
these attention layers. Since the words have differ-
ent representations at each layer, the corresponding
domain proportions at each layer are also different,
as shown in Figure 4. In addition to the multi-head
attention layers, we also apply similar word-level
domain mixing to the point-wise two-layer fully
connected feed-forward network.

The layer-wise domain mixing allows the do-
main proportions to be context dependent. This is
because the domain proportions are determined by
the word embedding, and the word embedding at
top layers is essentially learnt from the represen-
tations of all words at bottom layers. As a result,
when the embedding of a word at some attention
layer is already learned well through previous lay-
ers (in the sense that it contains sufficient contex-
tual information and domain knowledge), we no
longer need to borrow knowledge from other do-
mains to learn the embedding of the word at the cur-
rent layer. Accordingly, the associated domain pro-
portion is expected to be skewed and discourages
knowledge sharing across domains. This makes the
process of knowledge sharing of our model more
adaptive.

3.4 Training

Recall that H denotes the encoder, F denotes the
decoder, andD denotes the domain proportion. De-
fine Θ = {F ,H,D}. The proposed model can be
efficiently trained by minimizing a composite loss
function defined as follows,

L∗ = Lgen(Θ) + Lmix(Θ),

where Lgen(Θ) denotes the cross-entropy loss over
the training data {xi,yi}ni=1, and Lmix(Θ) denotes
the cross entropy loss over the words/domain (hard)
labels.

For Lmix(Θ), the domain labels are obtained
from the training data. Specifically, for all words
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Figure 4: Illustration of Our Multi-domain NMT
Model: Normalization and residual connection are
omitted for simplicity. For all other detail, please re-
fer to Vaswani et al. (2017).

in a sentence belonging to the J-th domain, we
specify their domain hard labels as J . Then given
the embedding x of a word, we compute the cross
entropy loss of its domain proportion D(x) as
− log(DJ(x)). Accordingly, Lmix(Θ) is the sum
of the cross entropy loss over all such pairs of
word/domain label of the training data.

4 Experiment

We conduct experiments on three different machine
translation tasks:

• English-to-German. We use a dataset from two
domains: News and TED. We collect the News
domain data from Europarl (Koehn, 2005) and

the TED domain data from IWLST (Cettolo et al.,
2014).

• English-to-French We use a dataset containing
two domains: TED and Medical domain. We
collect TED domain data from IWLST (Cettolo
et al., 2017) and medical domain data from Med-
line (Yepes et al., 2017).

• Chinese-to-English We use a dataset containing
four domains: News, Speech, Thesis and Laws.
We collect the Laws, Speech, and Thesis data from
UM-Corpus (Tian et al.), and the News data from
LDC (Consortium, 1992). The translation from
Chinese-to-English is inherently difficult. The four-
domains setting makes it even more challenging.
This dataset is also used in Zeng et al. (2018).

The sizes of training, validation, and testing sets
for different language pairs are summarized in Ta-
ble 1. We tokenize English, German and French
sentences using MOSES script (Koehn et al., 2007)
and perform word segmentation on Chinese sen-
tences using Stanford Segmenter (Tseng et al.,
2005). All sentences are then encoded using byte-
pair encoding (Sennrich et al., 2015b). We evaluate
the performance using two metrics: BLEU (Pa-
pineni et al., 2002) and perplexity following the
default setting in fairseq with beam search steps of
5.

Language Domain Train Valid Test

EN-DE News 184K 18K 19K
TED 160K 7K 7K

EN-FR TED 226K 10K 10K
MEDICAL 516K 25K 25K

ZH-EN

Laws 219K 600 456
News 300K 800 650

Speech 219K 600 455
Thesis 299K 800 625

Table 1: The numbers of sentences in the datasets.

4.1 Baselines

Our baselines include the Transformer models
trained using data from single and all domains.
We also include several domain aware embedding
based methods, which train the embedding of the
encoder along with domain information.

• Multitask Learning (MTL) proposed in Britz
et al. (2017) uses one sentence-level domain classi-
fier to train the embedding. Note that their classifier
is only used to predict the domain, while our model
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uses multiple word-level domain classifiers to ob-
tain the domain proportions for different layers
(further used for domain mixing).

• Adversarial Learning (AdvL) proposed in
Britz et al. (2017) is a variant of MTL, which flips
the gradient before it is back-propagated into the
embedding. This encourages the embedding from
different domains to be similar.

• Partial Adversarial Learning (PAdvL) To
combine the advantages of the above two meth-
ods, we split the embedding into half of multitask
part and half of adversarial part.

• Word-Level Domain Context Discrimination
(WDC) Zeng et al. (2018) integrates MTL and
AdvL with word-level domain contexts. This
method requires the dimension of the embedding
to be doubled and, thus, is not directly applicable
in Transformer. We use a point-wise linear trans-
formation to reduce the dimension.

Moreover, Zeng et al. (2018) consider the word-
level domain aware weighted loss (WL). Specifi-
cally, they assign a domain-aware attention weight
βj to the j-th position in the output sentence, and
the corresponding weighted loss is:

Lgen = − 1
n

∑n
j=1(1 + βj) log p(yj |x, y<j).

Here βj is obtained by an attention based domain
classifier built upon the last hidden layer.

4.2 Details of Our Implementation
All of our experiments are conducted under fairseq
(Ott et al., 2019) environment. We follow the
fairseq re-implementation of 12-layer Transformer
designed for IWLST data. Specifically, the embed-
ding dimension is 512 for both the encoder and
decoder, the number of heads is 4, and the embed-
ding dimension in the feed-forward layer is 1024.
Such a model is actually larger than the base model
in Vaswani et al. (2017) (76M vs. 65M parame-
ters). Notice that, the number of parameters of the
mixing model is k times larger (k is the number
of domains). For a fair comparison, all baselines
are tested using both the above model and an en-
larged model, which has

√
k times larger embed-

ding dimension (so the weight matrices are k times
larger). The enlarged model and the mixing model
has the same number of parameters. The presented
baseline results are the best of the two. In terms
of the optimization, we follow the training recipe

provided by fairseq. Specifically, we use Adam
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.98
with a weight decay parameter of 10−4. The learn-
ing rate follows the inverse square root schedule
(Vaswani et al., 2017) with warm-up steps of 4000,
initial warm-up learning rate of 10−7, and the high-
est learning rate of 5×10−4. For effective training,
Lgen is replaced by a label-smoothing cross-entropy
loss with a smoothing parameter of 0.1 (Szegedy
et al., 2016).

For our domain mixing methods, we set the
smoothing parameter ε of the domain proportion as
0.05. Besides applying domain mixing to both the
encoder and decoder (E/DC), we consider applying
domain mixing to only the Encoder. The domain
proportion layersD are only used for estimating the
domain proportion and should not intervene in the
training of the translation model. So the gradient
propagation is cut off between the Transformer and
the domain proportion as Figure 5 shows. More dis-
cussion about the training procedure can be found
in Section 4.6.

Figure 5: Computational graph for training the domain
proportion layers.

4.3 Experimental Results
Table 2 shows the BLEU scores of the baselines
and our domain mixing methods for English-to-
German translation. As can be seen, our methods
outperform the baselines on both domains. Notice
that, our baseline method achieves 29.09 BLEU
when training and testing on TED domain only,
where Liu et al. (2019) only achieves 28.56 with
the same training/testing data, the codebase (i.e.,
fairseq), and the network structure. This indicates
that our reimplemented baseline is rather strong.

We also compare the perplexity on the validation
set in Figure 6. As can be seen, our domain mixing
methods converge faster than the baselines and all
methods converge after 50 epochs. We also observe
that the baselines get stuck at plateaus at the early
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Method News TED
Direct Training

News 26.09 6.15
TED 4.90 29.09

News + TED 26.06 28.11
Embedding based Methods

MTL 26.90 29.27
AdvL 25.68 27.46
PAdvL 27.06 29.49

WDC + WL 27.25 29.43
Our Domain Mixing Methods

Encoder 27.78 30.30
Encoder + WL 27.67 30.11

E/DC 27.58 30.33
E/DC + WL 27.55 30.22

Table 2: English-to-German.
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Figure 6: Perplexity v.s. Number of epochs for English-
to-German.

stage of training. The possible reason is that their
training enforces one unified model to fit data from
two different domains simultaneously, which is
computationally more difficult.

Table 3 shows the BLEU scores of the baselines
and our domain mixing methods for English-to-
French translation. Note that though the data from
the Medical and TED domains are slightly imbal-
anced (about 1:2.5), our methods can still outper-
form the baselines on both domains.

Method TED Medical
Direct Training

TED 28.22 7.32
Medical 7.03 53.73

Medical + TED 39.21 53.40
Embedding based Methods
MTL 39.14 53.37
AdvL 39.54 53.46
PAdvL 39.56 53.23

WDC + WL 39.79 53.85
Our Domain Mixing Methods
Encoder 40.30 54.05

Encoder + WL 40.43 54.14
E/DC 40.52 54.28

E/DC + WL 40.60 54.39

Table 3: English-to-French.

Table 4 shows the BLEU scores of the baselines
and our domain mixing methods for Chinese-to-

Method Laws News Speech Thesis
Direct Training

Laws 51.98 3.80 2.38 2.64
News 6.88 31.99 8.12 4.17

Speech 3.33 4.90 18.63 3.08
Thesis 5.90 5.55 4.77 11.06
Mixed 48.87 26.92 16.38 12.09

Embedding based Methods
MTL 49.14 27.15 16.34 11.80
AdvL 48.93 26.51 16.18 12.08
PAdvL 48.72 27.07 15.93 12.23

WDC + WL 42.16 25.81 15.29 10.14
Our Domain Mixing Methods

Encoder 50.21 27.94 16.85 12.03
Encoder + WL 50.11 27.48 16.79 11.93

E/DC 50.64 28.48 17.41 11.71
E/DC + WL 50.04 28.17 17.60 11.59

Table 4: Chinese-to-English.

English translation. As can be seen, our methods
outperform the baselines on all domains except
Thesis. We remark that the translation for the The-
sis domain is actually very difficult, and all meth-
ods obtain poor performance.

Moreover, we find that for Chinese-to-English
task, all our baselines are sensitive to the architec-
ture of the Transformer. Their training will fail, if
we place the layer normalization at the end of each
encoder and decoder layer (as Vaswani et al. (2017)
suggest). Therefore, we move the layer normaliza-
tion to their beginnings. Surprisingly, our domain
mixing methods are very stable regardless of the
position of the layer normalization. More details
can be found in Table 8 of Appendix A.

4.4 Ablation Study
We further shows that the performance gains are
from the domain mixing methods, instead of from
the new model architecture design. Table 5 shows
the BLEU scores with and without using domain la-
bels under the same network structure and the same
number of parameters as in the domain mixing
methods. The only difference is that we remove do-
main label to guide the training of domain propor-
tion, i.e., only Lgen is used in the training loss, and
Lmix is removed. Training without domain labels
shows a slight improvement over baseline, but is
still significantly worse than our proposed method
for most of the tasks. Therefore, we can conclude
that our proposed domain mixing approach indeed
improves performance.

4.5 Visualizing Domain Proportions
To further investigate our domain mixing methods,
we plot the domain proportions of the word em-
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Method Direct Training w/o DL with DL (Ours)
English-to-Germany

News 26.06 26.25 27.78
TED 28.11 28.27 30.30

English-to-French
TED 39.21 39.39 40.30

Medical 53.40 53.33 54.05
Chinese-to-English

Laws 48.87 48.96 50.21
News 26.92 27.02 27.94

Speech 16.38 16.15 16.85
Thesis 12.09 12.03 12.03

Table 5: BLEU Scores with and without domain labels
(DL) under equal model capacity.

bedding at different layers. A uniform proportion,
e.g., (0.5, 0.5), is encouraging knowledge sharing
across domains, while a skewed proportion, e.g.,
(0.1, 0.9), means there is little knowledge to share
across domains. Figure 7 illustrates how the knowl-

Figure 7: Domain proportion of a sentence from the
TED domain for English-to-French task. The domain
proportion is extracted from all layers of the encoder.

edge sharing is controlled via the domain propor-
tion. The selected sentence is from the English-to-
French task, containing TED and Medical domains.
Specifically, we observe :

• The domain proportions of different words at
different layers have various patterns.

• At the bottom layers, the domain proportion of
a word is closely related to its frequency of occur-
rence.

• Some words with simple semantic meanings do
not need to borrow much knowledge from other do-
mains, e.g., and; Some other words need to borrow
knowledge from other domains to better understand
their own semantic meaning. For example, the

word phenomenon keeps borrowing/sharing knowl-
edge from/to the medical domain at every layer.

• The ending of the sentence only conveys a stop-
ping signal, and thus is shared across all domains.

• The domain proportions at the bottom layers tend
to be more diverse, while those at the top layers
tend to be more skewed, as shown in Figure 8 for
English-to-German task.

• The domain proportions of the decoder tend to
be more skewed than those of the encoder, which
demonstrates little knowledge sharing. Figure 9
shows the histograms of word-level domain pro-
portions at different layers in both the encoder and
decoder. This might explain why the mixing de-
coder only contributes limited performance gain
for the English-to-German task.

Figure 8: Domain proportions of a sentence pair for
English-to-German task. White represents the News
domain and black represents the TED domain. The do-
main proportions of both the encoder (bottom) and the
decoder (top) are presented.

Layer-1 2 3 4 5 6

Encoder

0.0 1.0

Decoder

Figure 9: Histograms of the domain proportions of
each layer in our domain mixing model for English-to-
German Task. Within each histogram, 0 means pure
News domain, and 1 means pure TED domain.

4.6 Combining Domain Mixing with Domain
Aware Embedding

The embedding based methods can be naturally
combined with our domain mixing methods. As
we mentioned in 4.2, the domain proportion is
trained solely, meaning gradient does not propa-
gate between the domain proportion layers D and
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Figure 10: Back-propagation for different embedding
based methods.

the Transformer. The computation of the gradi-
ent, on the other hand, is the key to combining
two methods. Specifically, we encourage the em-
bedding to be domain aware via MTL, AdvL and
PAdvL, where we use the domain proportion lay-
ers to guide the training of the embedding. Fig-
ure 10 illustrates the back-propagation under dif-
ferent methods. Table 6 shows the performance for
Chinese-to-English task under this setting. Here
we consider applying domain mixing only to the
encoder as the baseline. As can be seen, by ap-
plying appropriate domain aware embedding, the
performance can be further improved.

Method Laws News Speech Thesis
Encoder 50.21 27.94 16.85 12.03
+MTL 49.15 26.82 15.72 11.93
+Adv 50.18 27.72 16.99 12.16

+PAdvL 49.01 26.63 16.06 12.15
+Multitask + WL 48.75 26.78 16.53 12.11

+Adv + WL 50.24 28.21 16.98 12.00
+PAdv + WL 48.87 26.86 16.14 11.89

Table 6: BLEU Scores of Domain Mixing + Domain
Aware Embedding for Chinese-to-English Task

5 Discussions

One major challenge in multi-domain machine
translation is the word ambiguity in different do-
mains. For example, the word “article” has differ-
ent meanings in the domains of laws and media.
When translating “article” into Chinese, the trans-
lated words are “条款” and “文章” , meaning
a separate clause of a legal document and a piece
of writing. Our proposed word-level layer-wise
domain mixing approach tends to reduce the word
ambiguity. As mentioned in Section 3.3, our model
extracts different representations of each word from
contexts at different layers. Accordingly, the do-
main proportion of each word evolves from bottom
to top layers, and can eventually help identify the
corresponding domains.

Laws “Article 37 The freedom of marriage ...”
“第三十七条条条:婚姻的自由...”

Media “... working on an article about the poems ...”
“... 正在写一篇诗的文文文章章章 ...”

Table 7: The ambiguity of “articles”.

Moreover, as mentioned in Section 3.2, the po-
sitional embedding also contributes to the word
disambiguation in multi-domain translation. For
example, in the law domain, we find that “article”
often appears at the beginning of a sentence, while
in the media domain, the word “article” may ap-
pear in other positions. Therefore, varying domain
proportions for different positions can help with
word disambiguation.

We remark that word disambiguation across do-
mains actually requires D(x) to be powerful for
predicting the domain of the word. However, a
powerful D(x) tends to yield skewed domain pro-
portions and is not flexible enough for domain
knowledge sharing. To trade off between strength
and flexibility of D(x), the smoothing parameter ε
of D(x) (see Section 3.1) needs to be properly set.

6 Conclusions

We present a novel multi-domain NMT with word-
level layer-wise domain mixing, which can adap-
tively exploit the domain knowledge. Unlike the
existing work, we construct multi-head dot-product
modules for each domain and then combine them
by the layer-wise domain proportion of every word.
The proposed method outperforms the existing em-
bedding based methods. We also show mixing
method can be combined with embedding based
methods to make further improvement.

Moreover, we remark that our approach can be
extended to other multi-domain or multi-task NLP
problems.
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A Complementary Experiments –
Chinese to English

Experiment results of the original Transformer,
where layer normalization is at the end each layer.

Method Laws News Spoken Thesis
Laws 10.37 0.45 0.27 0.27
News 0.39 5.12 0.91 0.57

Spoken 0.70 1.11 6.19 0.83
Thesis 0.63 0.25 0.16 1.24
Mixed 5.45 4.09 2.67 1.85

Multitask 6.16 3.83 1.91 1.53
Adversarial 5.93 3.38 1.85 1.37

PAdv 6.58 3.90 2.32 1.80
WDC. w/ WL 7.13 3.87 2.45 1.88

Our Proposed Mixing Method
Encoder 50.16 27.61 16.92 11.85

+ Decoder 50.45 28.15 17.45 11.62

Table 8: Chinese to English

Figure 11: Two variants of layer normalization


