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Abstract
Natural language understanding (NLU) and
natural language generation (NLG) are two
fundamental and related tasks in building
task-oriented dialogue systems with opposite
objectives: NLU tackles the transformation
from natural language to formal representa-
tions, whereas NLG does the reverse. A key
to success in either task is parallel training
data which is expensive to obtain at a large
scale. In this work, we propose a gener-
ative model which couples NLU and NLG
through a shared latent variable. This ap-
proach allows us to explore both spaces of
natural language and formal representations,
and facilitates information sharing through the
latent space to eventually benefit NLU and
NLG. Our model achieves state-of-the-art per-
formance on two dialogue datasets with both
flat and tree-structured formal representations.
We also show that the model can be trained
in a semi-supervised fashion by utilising unla-
belled data to boost its performance.

1 Introduction

Natural language understanding (NLU) and natural
language generation (NLG) are two fundamental
tasks in building task-oriented dialogue systems.
In a modern dialogue system, an NLU module first
converts a user utterance, provided by an automatic
speech recognition model, into a formal represen-
tation. The representation is then consumed by a
downstream dialogue state tracker to update a be-
lief state which represents an aggregated user goal.
Based on the current belief state, a policy network
decides the formal representation of the system re-
sponse. This is finally used by an NLG module to
generate the system response(Young et al., 2010).

It can be observed that NLU and NLG have op-
posite goals: NLU aims to map natural language

∗∗Work done while the author was an intern at Apple.

Figure 1: Generation and inference process in our
model, and how NLU and NLG are achieved. x and
y denotes utterances and formal representations respec-
tively; z represents the shared latent variable for x and
y.

to formal representations, while NLG generates
utterances from their semantics. In research liter-
ature, NLU and NLG are well-studied as separate
problems. State-of-the-art NLU systems tackle the
task as classification (Zhang and Wang, 2016) or
as structured prediction or generation (Damonte
et al., 2019), depending on the formal representa-
tions which can be flat slot-value pairs (Henderson
et al., 2014), first-order logical form (Zettlemoyer
and Collins, 2012), or structured queries (Yu et al.,
2018; Pasupat et al., 2019). On the other hand,
approaches to NLG vary from pipelined approach
subsuming content planning and surface realisation
(Stent et al., 2004) to more recent end-to-end se-
quence generation (Wen et al., 2015; Dušek et al.,
2020).

However, the duality between NLU and NLG
has been less explored. In fact, both tasks can be
treated as a translation problem: NLU converts
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natural language to formal language while NLG
does the reverse. Both tasks require a substantial
amount of utterance and representation pairs to
succeed, and such data is costly to collect due to
the complexity of annotation involved. Although
unannotated data for either natural language or for-
mal representations can be easily obtained, it is
less clear how they can be leveraged as the two
languages stand in different space.

In this paper, we propose a generative model
for Joint natural language Understanding and
Generation (JUG), which couples NLU and NLG
with a latent variable representing the shared intent
between natural language and formal representa-
tions. We aim to learn the association between
two discrete spaces through a continuous latent
variable which facilitates information sharing be-
tween two tasks. Moreover, JUG can be trained
in a semi-supervised fashion, which enables us to
explore each space of natural language and for-
mal representations when unlabelled data is acces-
sible. We examine our model on two dialogue
datasets with different formal representations: the
E2E dataset (Novikova et al., 2017) where the se-
mantics are represented as a collection of slot-value
pairs; and a more recent weather dataset (Balakrish-
nan et al., 2019) where the formal representations
are tree-structured. Experimental results show that
our model improves over standalone NLU/NLG
models and existing methods on both tasks; and
the performance can be further boosted by utilising
unlabelled data.

2 Model

Our key assumption is that there exists an abstract
latent variable z underlying a pair of utterance x
and formal representation y. In our generative
model, this abstract intent guides the standard con-
ditional generation of either NLG or NLU (Figure
1a). Meanwhile, z can be inferred from either ut-
terance x, or formal representation y (Figure 1b).
That means performing NLU requires us to infer
the z from x, after which the formal representation
y is generated conditioning on both z and x (Fig-
ure 1c), and vice-versa for NLG (Figure 1d). In
the following, we will explain the model details,
starting with NLG.

2.1 NLG

As mentioned above, the task of NLG requires
us to infer z from y, and then generate x using

both z and y. We choose the posterior distribution
q(z|y) to be Gaussian. The task of inferring z can
then be recast to computing mean µ and standard
deviation σ of the Gaussian distribution using an
NLG encoder. To do this, we use a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code formal representation y. which is linearised
and represented as a sequence of symbols. After en-
coding, we obtain a list of hidden vectors H, with
each representing the concatenation of forward and
backward LSTM states. These hidden vectors are
then average-pooled and passed through two feed-
forward neural networks to compute mean µµµy,z
and standard deviation σσσy,z vectors of the posterior
q(z|y).

H = Bi-LSTM(y)

h̄ = Pooling(H)

µµµy,z = Wµh̄ + bµ

σσσy,z = Wσh̄ + bσ

(1)

where W and b represent neural network weights
and bias. Then the latent vector z can be sam-
pled from the approximated posterior using the
re-parameterisation trick of Kingma and Welling
(2013):

εεε ∼ N (0, I)

z = µµµy,z + σσσy,zεεε
(2)

The final step is to generate natural language x
based on latent variable z and formal representation
y. We use an LSTM decoder relying on both z and
y via attention mechanism (Bahdanau et al., 2014).
At each time step, the decoder computes:

gxi = LSTM(gxi−1,xi−1)

ci = attention(gxi ,H)

p(xi) = softmax(Wv[ci⊕gxi ⊕z] + bv)

(3)

where ⊕ denotes concatenation. xi−1 is the word
vector of input token; gxi is the corresponding de-
coder hidden state and p(xi) is the output token
distribution at time step i.

2.2 NLU
NLU performs the reverse procedures of NLG.
First, an NLU encoder infers the latent variable z
from utterance x. The encoder uses a bi-directional
LSTM to convert the utterance into a list of hidden
states. These hidden states are pooled and passed
through feed-forward neural networks to compute
the mean µµµx,z and standard deviation σσσx,z of the
posterior q(z|x). This procedure follows Equation
1 in NLG.
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However, note that a subtle difference between
natural language and formal language is that the
former is ambiguous while the later is precisely
defined. This makes NLU a many-to-one mapping
problem but NLG is one-to-many. To better reflect
the fact that the NLU output requires less variance,
when decoding we choose the latent vector z in
NLU to be the mean vector µµµx,z , instead of sam-
pling it from q(z|x) like Equation 2.1

After the latent vector is obtained, the formal
representation y is predicted from both z and x us-
ing an NLU decoder. Since the space of y depends
on the formal language construct, we consider two
common scenarios in dialogue systems. In the first
scenario, y is represented as a set of slot-value pairs,
e.g., {food type=British, area=north} in restaurant
search domain (Mrkšić et al., 2017). The decoder
here consists of several classifiers, one for each slot,
to predict the corresponding values.2 Each classi-
fier is modelled by a 1-layer feed-forward neural
network that takes z as input:

p(ys) = softmax(Wsz + bs) (4)

where p(ys) is the predicted value distribution of
slot s.

In the second scenario, y is a tree-structured
formal representation (Banarescu et al., 2013). We
then generate y as a linearised token sequence using
an LSTM decoder relying on both z and x via
the standard attention mechanism (Bahdanau et al.,
2014). The decoding procedure follows exactly
Equation 3.

2.3 Model Summary

One flexibility of the JUG model comes from the
fact that it has two ways to infer the shared latent
variable z through either x or y; and the inferred z
can aid the generation of both x and y. In this next
section, we show how this shared latent variable
enables the JUG model to explore unlabelled x and
y, while aligning the learned meanings inside the
latent space.

3 Optimisation

We now describe how JUG can be optimised with
a pair of x and y (§3.1), and also unpaired x or

1Note that it is still necessary to compute the standard de-
viation σσσx,z in NLU, since the term is needed for optimisation.
See more details in Section 3.

2Each slot has a set of corresponding values plus a special
one not_mention.

y (§3.2). We specifically discuss the prior choice
of JUG objectives in §3.3. A combined objective
can be thus derived for semi-supervised learning:
a practical scenario when we have a small set of
labelled data but abundant unlabelled ones (§3.4).

3.1 Optimising p(x, y)
Given a pair of utterance x and formal represen-
tation y, our objective is to maximise the log-
likelihood of the joint probability p(x, y):

log p(x, y) = log

∫
z
p(x, y, z) (5)

The optimisation task is not directly tractable since
it requires us to marginalise out the latent variable
z. However, it can be solved by following the
standard practice of neural variational inference
(Kingma and Welling, 2013). An objective based
on the variational lower bound can be derived as

Lx,y = Eq(z|x) log p(y|z, x) + Eq(z|x) log p(x|z, y)
− KL[q(z|x)||p(z)]

(6)

where the first term on the right side is the NLU
model; the second term is the reconstruction of x;
and the last term denotes the Kullback−Leibler di-
vergence between the approximate posterior q(z|x)
with the prior p(z). We defer the discussion of
prior to Section 3.3 and detailed derivations to Ap-
pendix.

The symmetry between utterance and semantics
offers an alternative way of inferring the posterior
through the approximation q(z|y). Analogously
we can derive a variational optimisation objective:

Ly,x = Eq(z|y) log p(x|z, y) + Eq(z|y) log p(y|z, x)
− KL[q(z|y)||p(z)]

(7)

where the first term is the NLG model; the second
term is the reconstruction of y; and the last term
denotes the KL divergence.

It can be observed that our model has two pos-
terior inference paths from either x or y, and also
two generation paths. All paths can be optimised.

3.2 Optimising p(x) or p(y)
Additionally, when we have access to unlabelled
utterance x (or formal representation y), the optimi-
sation objective of JUG is the marginal likelihood
p(x) (or p(y)):

log p(x) = log

∫
y

∫
z
p(x, y, z) (8)
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Note that both z and y are unobserved in this case.
We can develop an objective based on the varia-

tional lower bound for the marginal:

Lx = Eq(y|z,x)Eq(z|x) log p(x|z, y)
− KL[q(z|x)||p(z)]

(9)

where the first term is the auto-encoder reconstruc-
tion of x with a cascaded NLU-NLG path. The sec-
ond term is the KL divergence which regularizes
the approximated posterior distribution. Detailed
derivations can be found in Appendix.

When computing the reconstruction term of x,
it requires us to first run through the NLU model
to obtain the prediction on y, from which we run
through NLG to reconstruct x. The full informa-
tion flow is (x→ z→ y→ z→x).3 Connections
can be drawn with recent work which uses back-
translation to augment training data for machine
translation (Sennrich et al., 2016; He et al., 2016).
Unlike back-translation, the presence of latent vari-
able in our model requires us to sample z along
the NLU-NLG path. The introduced stochasticity
allows the model to explore a larger area of the data
manifold.

The above describes the objectives when we
have unlabelled x. We can derive a similar ob-
jective for leveraging unlabelled y:

Ly = Eq(x|z,y)Eq(z|y) log p(y|z, x)
− KL[q(z|y)||p(z)]

(10)

where the first term is the auto-encoder reconstruc-
tion of y with a cascaded NLG-NLU path. The full
information flow here is (y→z→x→z→y).

3.3 Choice of Prior
The objectives described in 3.1 and 3.2 require us
to match an approximated posterior (either q(z|x)
or q(z|y)) to a prior p(z) that reflects our belief. A
common choice of p(z) in the research literature
is the Normal distribution (Kingma and Welling,
2013). However, it should be noted that even if we
match both q(z|x) and q(z|y) to the same prior, it
does not guarantee that the two inferred posteriors
are close to each other; this is a desired property of
the shared latent space.

To better address the property, we propose a
novel prior choice: when the posterior is inferred

3This information flow requires us to sample both z and
y in reconstructing x. Since y is a discrete sequence, we use
REINFORCE (Williams, 1992) to pass the gradient from NLG
to NLU in the cascaded NLU-NLG path.

from x (i.e., q(z|x)), we choose the parameterised
distribution q(z|y) as our prior belief of p(z). Sim-
ilarly, when the posterior is inferred from y (i.e.,
q(z|y)), we have the freedom of defining p(z) to
be q(z|x). This approach directly pulls q(z|x) and
q(z|y) closer to ensure a shared latent space.

Finally, note that it is straightforward to com-
pute both q(z|x) and q(z|y) when we have parallel
x and y. However when we have the access to un-
labelled data, as described in Section 3.2, we can
only use the pseudo x-y pairs that are generated by
our NLU or NLG model, such that we can match an
inferred posterior to a pre-defined prior reflecting
our belief of the shared latent space.

3.4 Training Summary
In general, JUG subsumes the following three train-
ing scenarios which we will experiment with.

When we have fully labelled x and y, the JUG
jointly optimises NLU and NLG in a supervised
fashion with the objective as follows:

Lbasic =
∑

(x,y)∼(X,Y )

(Lx,y + Ly,x) (11)

where (X,Y ) denotes the set of labelled examples.
Additionally in the fully supervised setting, JUG

can be trained to optimise both NLU, NLG and
auto-encoding paths. This corresponds to the fol-
lowing objective:

Lmarginal = Lbasic+
∑

(x,y)∼(X,Y )

(Lx+Ly) (12)

Furthermore, when we have additional unla-
belled x or y, we optimise a semi-supervised JUG
objective as follows:

Lsemi = Lbasic +
∑
x∼X
Lx +

∑
y∼Y
Ly (13)

where X denotes the set of utterances and Y de-
notes the set of formal representations.

4 Experiments

We experiment on two dialogue datasets with dif-
ferent formal representations to test the generality
of our model. The first dataset is E2E (Novikova
et al., 2017), which contains utterances annotated
with flat slot-value pairs as their semantic represen-
tations. The second dataset is the recent weather
dataset (Balakrishnan et al., 2019), where both ut-
terances and semantics are represented in tree struc-
tures. Examples of the two datasets are provided in
tables 1 and 2.
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Natural Language
"sousa offers british food in the low price range.
it is family friendly with a 3 out of 5 star rating.

you can find it near the sunshine vegetarian cafe."
Semantic Representation

restaurant_name=sousa, food=english,
price_range=cheap, customer_rating=average,

family_friendly=yes, near=sunshine vegetarian cafe

Table 1: An example in E2E dataset.

Natural Language (original)
"[__DG_YES__ Yes ] , [__DG_INFORM__

[__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ today’s ] ]
forecast is [__ARG_CLOUD_COVERAGE__ mostly cloudy ]

with [__ARG_CONDITION__ light rain showers ] ] ."
Natural Language (processed by removing tree annotations)
"Yes, today’s forecast is mostly cloudy with light rain showers."

Semantic Representation
[__DG_YES__ [__ARG_TASK__ get_weather_attribute ] ]

[__DG_INFORM__ [__ARG_TASK__ get_forecast ]
[__ARG_CONDITION__ light rain showers ]

[__ARG_CLOUD_COVERAGE__ mostly cloudy ]
[__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ today’s ] ] ]

Table 2: An example in weather dataset. The natural
language in original dataset (first row) is used for train-
ing to have a fair comparison with existing methods.
The processed utterances (second row) is used in our
semi-supervised setting.

4.1 Training Scenarios

We primarily evaluated our models on the raw
splits of the original datasets, which enables us
to fairly compare fully-supervised JUG with exist-
ing work on both NLU and NLG.4 Statistics of the
two datasets can be found in Table 3.

In addition, we set up an experiment to evaluate
semi-supervised JUG with a varying amount of la-
belled training data (5%, 10%, 25%, 50%, 100%,
with the rest being unlabelled). Note that the origi-
nal E2E test set is designed on purpose with unseen
slot-values in the test set to make it difficult (Dušek
et al., 2018, 2020); we remove the distribution bias
by randomly re-splitting the E2E dataset. On the
contrary, utterances in the weather dataset contains
extra tree-structure annotations which make the
NLU task a toy problem. We therefore remove
these annotations to make NLU more realistic, as
shown in the second row of Table 2.

As described in Section 3.4, we can optimise
our proposed JUG model in various ways. We
investigate the following approaches:
JUGbasic: this model jointly optimises NLU

4Following Balakrishnan et al. (2019), the evaluation code
https://github.com/tuetschek/e2e-metrics provided by the E2E
organizers is used here for calculating BLEU in NLG.

Dataset Train Valid Test
E2E 42061 4672 4693
Weather 25390 3078 3121

Table 3: Number of examples in two datasets

E2E NLU F1
Dual supervised learning (Su et al., 2019) 0.7232
JUGbasic 0.7337
E2E NLG BLEU
TGEN (Dušek and Jurcicek, 2016) 0.6593
SLUG (Juraska et al., 2018) 0.6619
Dual supervised learning (Su et al., 2019) 0.5716
JUGbasic 0.6855
Weather NLG BLEU
S2S-CONSTR (Balakrishnan et al., 2019) 0.7660
JUGbasic 0.7768

Table 4: Comparison with previous systems on two
datasets. Note that there is no previous system trained
for NLU in weather dataset.

and NLG with the objective in Equation 11. This
uses labelled data only.
JUGmarginal: jointly optimises NLU, NLG and

auto-encoders with only labelled data, per Equation
12.
JUGsemi: jointly optimises NLU and NLG with

labelled data and auto-encoders with unlabelled
data, per Equation 13.

4.2 Baseline Systems
We compare our proposed model with some exist-
ing methods as shown in Table 4 and two designed
baselines as follows:
Decoupled: The NLU and NLG models are

trained separately by supervised learning. Both
of the individual models have the same encoder-
decoder structure as JUG. However, the main dif-
ference is that there is no shared latent variable
between the two individual NLU and NLG models.
Augmentation: We pre-train Decoupled

models to generate pseudo label from the unla-
belled corpus (Lee, 2013) in a setup similar to back-
translation (Sennrich et al., 2016). The pseudo data
and labelled data are then used together to fine-tune
the pre-trained models.

Among all systems in our experiments, the num-
ber of units in LSTM encoder/decoder are set to
{150, 300} and the dimension of latent space is
150. The optimiser Adam (Kingma and Ba, 2014)
is used with learning rate 1e-3. Batch size is set to
{32, 64}. All the models are fully trained and the

https://github.com/tuetschek/e2e-metrics
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Model / Data 5% 10% 25% 50% 100%
Decoupled 52.77 (0.874) 62.32 (0.902) 69.37 (0.924) 73.68 (0.935) 76.12 (0.942)
Augmentation∗ 54.71 (0.878) 62.54 (0.902) 68.91 (0.922) 73.84 (0.935) -
JUGbasic 60.30 (0.902) 67.08 (0.918) 72.49 (0.932) 74.74 (0.937) 78.05 (0.945)
JUGmarginal 62.96 (0.907) 68.43 (0.920) 73.35 (0.933) 75.74 (0.939) 78.93 (0.948)
JUG∗semi 68.09 (0.921) 70.33 (0.925) 73.79 (0.935) 75.46 (0.939) -

Table 5: NLU results on E2E dataset. Joint accuracy (%) and F1 score (in bracket) are both reported with varying
percentage of labelled training data. Models using unlabelled data are marked with *.

Model / Data 5% 10% 25% 50% 100%
Decoupled 0.693 (83.47) 0.723 (87.33) 0.784 (92.52) 0.793 (94.91) 0.813 (96.98)
Augmentation∗ 0.747 (84.79) 0.770 (90.13) 0.806 (94.06) 0.815 (96.04) -
JUGbasic 0.685 (84.20) 0.734 (88.68) 0.769 (93.83) 0.788 (95.11) 0.810 (95.07)
JUGmarginal 0.724 (85.57) 0.775 (93.59) 0.803 (94.99) 0.817 (98.67) 0.830 (99.11)
JUG∗semi 0.814 (90.47) 0.792 (94.76) 0.819 (95.59) 0.827 (98.42) -

Table 6: NLG results on E2E dataset. BLEU and semantic accuracy (%) (in bracket) are both reported with varying
percentage of labelled training data. Models using unlabelled data are marked with *.

Model / Data 5% 10% 25% 50% 100%
Decoupled 73.46 80.85 86.00 88.45 90.68
Augmentation∗ 74.77 79.84 86.24 88.69 -
JUGbasic 73.62 80.13 86.15 87.94 90.55
JUGmarginal 74.61 81.14 86.83 89.06 91.28
JUG∗semi 79.19 83.22 87.46 89.17 -

Table 7: NLU results with exact match accuracy (%)
on weather dataset.

best model is picked by the average of NLU and
NLG results on validation set during training.

4.3 Main Results

We start by comparing the JUGbasic performance
with existing work following the original split of
the datasets. The results are shown in Table 4. On
E2E dataset, we follow previous work to use F1
of slot-values as the measurement for NLU, and
BLEU-4 for NLG. For weather dataset, there is
only published results for NLG. It can be observed
that the JUGbasic model outperforms the previous
state-of-the-art NLU and NLG systems on the E2E
dataset, and also for NLG on the weather dataset.
The results prove the effectiveness of introducing
the shared latent variable z for jointly training NLU
and NLG. We will further study the impact of the
shared z in Section 4.4.2.

We also evaluated the three training scenarios of
JUG in the semi-supervised setting, with different
proportion of labelled and unlabelled data. The
results for E2E is presented in Table 5 and 6. We
computed both F1 score and joint accuracy (Mrkšić

Model / Data 5% 10% 25% 50% 100%
Decoupled 0.632 0.667 0.703 0.719 0.725
Augmentation∗ 0.635 0.677 0.703 0.727 -
JUGbasic 0.634 0.673 0.701 0.720 0.726
JUGmarginal 0.627 0.671 0.711 0.721 0.722
JUG∗semi 0.670 0.701 0.725 0.733 -

Table 8: NLG results with BLEU on weather dataset.

et al., 2017) of slot-values as a more solid NLU
measurement. Joint accuracy is defined as the pro-
portion of test examples whose slot-value pairs are
all correctly predicted. For NLG, both BLEU-4 and
semantic accuracy are computed. Semantic accu-
racy measures the proportion of correctly generated
slot values in the produced utterances. From the
results, we observed that Decoupled can be im-
proved with techniques of generating pseudo data
(Augmentation), which forms a stronger base-
line. However, all our model variants perform bet-
ter than the baselines on both NLU and NLG. When
using only labelled data, our model JUGmarginal
can surpass Decoupled across all the four mea-
surements. The gains mainly come from the fact
that the model uses auto-encoding objectives to
help learn a shared semantic space. Compared to
Augmentation, JUGmarginal also has a ‘built-
in mechanism’ to bootstrap pseudo data on the fly
of training (see Section 3.4). When adding extra
unlabelled data, our model JUGsemi gets further
performance boosts and outperforms all baselines
by a significant margin.

With the varying proportion of unlabelled data in
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Figure 2: Visualisation of latent variable z. Given a pair
of x and y, z can be sampled from the posterior q(z|x)
or q(z|y), denoted by blue and orange dots respectively.

the training set, we see that unlabelled data is help-
ful in almost all cases. Moreover, the performance
gain is the more significant when the labelled data
is less. This indicates that the proposed model is es-
pecially helpful for low resource setups when there
is a limited amount of labelled training examples
but more available unlabelled ones.

The results for weather dataset are presented in
Table 7 and 8. In this dataset, NLU is more like
a semantic parsing task (Berant et al., 2013) and
we use exact match accuracy as its measurement.
Meanwhile, NLG is measured by BLEU. The re-
sults reveal a very similar trend to that in E2E. The
generated examples can be found in Appendix.

4.4 Analysis

In this section we further analyse the impact of
the shared latent variable and also the impact of
utilising unlabelled data.

4.4.1 Visualisation of Latent Space
As mentioned in Section 2.1, the latent variable z
can be sampled from either posterior approxima-
tion q(z|x) or q(z|y). We inspect the latent space
in Figure 2 to find out how well the model learns
intent sharing. We plot z with the E2E dataset on 2-
dimentional space using t-SNE projection (Maaten
and Hinton, 2008).

We observe two interesting properties. First,
for each data point (x, y), the z values sampled
from q(z|x) and q(z|y) are close to each other.
This reveals that the meanings of x and y are tied
in the latent space. Second, there exists distinct
clusters in the space of z. By further inspect-
ing the actual examples within each cluster, we
found that a cluster represents a similar mean-
ing composition. For instance, the cluster cen-

Model NLU NLG
JUGbasic 90.55 0.726
JUGbasic (feed random z) 38.13 0.482

Table 9: A comparative study to evaluate the contri-
bution of the learned latent variable z in NLU/NLG
decoding. Models are trained on the whole weather
dataset.

Method NLU NLG
Mi Re Wr Mi Wr

Decoupled 714 256 2382 5714 2317
JUGbasic 594 169 1884 4871 2102

Table 10: Error analysis on E2E dataset. Numbers of
missing (Mi), redundant (Re) and wrong (Wr) predic-
tions on slot-value pairs are reported for NLU; numbers
of missing or wrong generated slot values are listed for
NLG. Lower number indicates the better results. Both
models are trained on 5% of the training data.

tered at (-20, -40) contains {name, foodtype,
price, rating, area, near}, while the clus-
ter centered at (45, 10) contains {name, eattype,
foodtype, price}. This indicates that the
shared latent serves as conclusive global feature
representations for NLU and NLG.

4.4.2 Impact of the Latent Variable
One novelty of our model is the introduction of
shared latent variable z for natural language x and
formal representations y. A common problem in
neural variational models is that when coupling a
powerful autogressive decoder, the decoder tends to
learn to ignore z and solely rely on itself to generate
the data (Bowman et al., 2016; Chen et al., 2017;
Goyal et al., 2017). In order to examine to what
extent does our model actually rely on the shared
variable in both NLU and NLG, we seek for an em-
pirical answer by comparing the JUGbasic model
with a model variant which uses a random value
of z sampled from a normal distribution N(0,1)
during testing. From Table 9, we can observe that
there exists a large performance drop if z is as-
signed with random values. This suggests that JUG
indeed relies greatly on the shared variable to pro-
duce good-quality x or y.

We further analyse the various sources of errors
to understand the cases which z helps to improve.
On E2E dataset, wrong prediction in NLU comes
from either predicting not_mention label for
certain slots in ground truth semantics; predicting
arbitrary values on slots not present in the ground
truth semantics; or predicting wrong values com-
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E2E Weather
Method NLU NLG NLU NLG
JUGbasic 60.30 0.685 73.62 0.634

+unlabelled x 62.89 0.765 74.97 0.654
+unlabelled y 59.55 0.815 76.98 0.621
+unlabelled x and y 68.09 0.814 79.19 0.670

Table 11: Comparison on sources of unlabelled data
for semi-supervised learning using only utterances (x),
only semantic representations (y) or both (x and y).
JUGbasic model is trained on 5% of training data.

paring to ground truth. Three types of error are re-
ferred to Missing (Mi), Redundant (Re) and Wrong
(Wr) in Table 10. For NLG, semantic errors can be
either missing or generating wrong slot values in
the given semantics (Wen et al., 2015). Our model
makes fewer mistakes in all these error sources
comparing to the baseline Decoupled. We be-
lieve this is because the clustering property learned
in the latent space provides better feature represen-
tations at a global scale, eventually benefiting NLU
and NLG.

4.4.3 Impact of Unlabelled Data Source
In Section 4.3, we found that the performance of
our model can be further enhanced by leveraging
unlabelled data. As we used both unlabelled ut-
terances and unlabelled semantic representations
together, it is unclear if both contributed to the per-
formance gain. To answer this question, we start
with the JUGbasic model, and experimented with
adding unlabelled data from 1) only unlabelled ut-
terances x; 2) only semantic representations y; 3)
both x and y. As shown in Table 11, when adding
any uni-sourced unlabelled data (x or y), the model
is able to improve to a certain extent. However,
the performance can be maximised when both data
sources are utilised. This strengthens the argument
that our model can leverage bi-sourced unlabelled
data more effectively via latent space sharing to
improve NLU and NLG at the same time.

5 Related Work

Natural Language Understanding (NLU) refers to
the general task of mapping natural language to
formal representations. One line of research in the
dialogue community aims at detecting slot-value
pairs expressed in user utterances as a classification
problem (Henderson et al., 2012; Sun et al., 2014;
Mrkšić et al., 2017; Vodolán et al., 2017). Another
line of work focuses on converting single-turn user
utterances to more structured meaning representa-

tions as a semantic parsing task (Zettlemoyer and
Collins, 2005; Jia and Liang, 2016; Dong and Lap-
ata, 2018; Damonte et al., 2019).

In comparison, Natural Language Generation
(NLG) is scoped as the task of generating natural
utterances from their formal representations. This
is traditionally handled with a pipelined approach
(Reiter and Dale, 1997) with content planning and
surface realisation (Walker et al., 2001; Stent et al.,
2004). More recently, NLG has been formulated as
an end-to-end learning problem where text strings
are generated with recurrent neural networks con-
ditioning on the formal representation (Wen et al.,
2015; Dušek and Jurcicek, 2016; Dušek et al., 2020;
Balakrishnan et al., 2019; Tseng et al., 2019).

There has been very recent work which does
NLU and NLG jointly. Both Ye et al. (2019) and
Cao et al. (2019) explore the duality of seman-
tic parsing and NLG. The former optimises two
sequence-to-sequence models using dual informa-
tion maximisation, while the latter introduces a
dual learning framework for semantic parsing. Su
et al. (2019) proposes a learning framework for
dual supervised learning (Xia et al., 2017) where
both NLU and NLG models are optimised towards
a joint objective. Their method brings benefits with
annotated data in supervised learning, but does
not allow semi-supervised learning with unlabelled
data. In contrast to their work, we propose a gen-
erative model which couples NLU and NLG with
a shared latent variable. We focus on exploring
a coupled representation space between natural
language and corresponding semantic annotations.
As proved in experiments, the information sharing
helps our model to leverage unlabelled data for
semi-supervised learning, which eventually bene-
fits both NLU and NLG.

6 Conclusion

We proposed a generative model which couples
natural language and formal representations via
a shared latent variable. Since the two space is
coupled, we gain the luxury of exploiting each un-
paired data source and transfer the acquired knowl-
edge to the shared meaning space. This eventually
benefits both NLU and NLG, especially in a low-
resource scenario. The proposed model is also
suitable for other translation tasks between two
modalities.

As a final remark, natural language is richer and
more informal. NLU needs to handle ambiguous
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or erroneous user inputs. However, formal rep-
resentations utilised by an NLG system are more
precisely-defined. In future, we aim to refine our
generative model to better emphasise this differ-
ence of the two tasks.
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the e2e nlg challenge. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 322–328.
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A Appendices

A.1 Derivation of Lower Bounds
We derive the lower bounds for log p(x, y) as fol-
lows:

log p(x, y) = log

∫
z
p(x, y, z)

= log

∫
z

p(x, y, z)q(z|x)
q(z|x)

= log

∫
z

p(x|z, y)p(y|z, x)p(z)q(z|x)
q(z|x)

= logEq(z|x)
p(x|z, y)p(y|z, x)p(z)

q(z|x)

≥ Eq(z|x) log
p(x|z, y)p(y|z, x)p(z)

q(z|x)
= Eq(z|x)[log p(x|z, y) + log p(y|z, x)]
− KL[q(z|x)||p(z)]

(14)
where q(z|x) represents an approximated posterior.
This derivation gives us the Equation 6 in the pa-
per. Similarly we can derive an alternative lower
bound in Equation 7 by introducing q(z|y) instead
of q(z|x).

For marginal log-likelihood log p(x) or log p(y),
its lower bound is derived as follows:

log p(x) = log

∫
y

∫
z
p(x, y, z)

= log

∫
y

∫
z

p(x|z, y)p(y)p(z)q(z|x)q(y|z, x)
q(z|x)q(y|z, x)

= logEq(y|z,x)Eq(z|x)
p(x|z, y)p(y)p(z)
q(z|x)q(y|z, x)

≥ Eq(y|z,x)Eq(z|x) log
p(x|z, y)p(y)p(z)
q(z|x)q(y|z, x)

= Eq(y|z,x)Eq(z|x) log p(x|z, y)
− KL[q(z|x)||p(z)]− KL[q(y|x, z)||p(y)]

(15)
Note that the resulting lower bound consists of
three terms: a reconstruction of x, a KL divergence
which regularises the space of z, and also a KL di-
vergence which regularises the space of y. We have
dropped the last term in our optimisation objective
in Equation 9, since we do not impose any prior
assumption on the output space of the NLU model.

Analogously we can derive the lower bound for
log p(y). We also do not impose any prior assump-
tion on the output space of the NLG model, which
leads us to Equation 10.
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A.2 Generated Examples

Reference of example
x: "for those prepared to pay over £30 , giraffe is a restaurant located near the six bells ."
y: {name=giraffe, eat_type=restaurant, price_range=more than £30, near=the six bells}
Prediction by Decoupled model
x: "near the six bells , there is a restaurant called giraffe that is children friendly ." (miss price_range)
y: {name=travellers rest beefeater, price_range=more than £30, near=the six bells} (wrong name, miss eat_type)
Prediction by JUGsemi model
x: "giraffe is a restaurant near the six bells with a price range of more than £30 ." (semantically correct)
y: {name=giraffe, eat_type=restaurant, price_range=more than £30, near=the six bells} (exact match)

Table 12: An example of E2E dataset and predictions generated by the baseline model Decoupled and the
proposed model JUGsemi. x and y denotes natural language and the corresponding semantic representation. Errors
are highlighted following predictions.

Reference of example
x: "it’s going to be __arg_temp__ and __arg_cloud_coverage__
__arg_colloquial__ between __arg_start_time__ and __arg_end_time__"
y: [__dg_inform__ [__arg_task__ get_forecast ] [__arg_temp__ __arg_temp__ ]
[__arg_cloud_coverage__ __arg_cloud_coverage__ ]
[__arg_ date_time_range__ [__arg_start_time__ __arg_start_time__ ]
[__arg_end_time__ __arg_end_time__ ] [__arg_colloquial__ __arg_colloquial__ ] ] ]
Prediction by Decoupled model
x: "it will be __arg_temp__ degrees and __arg_cloud_coverage__ from
__arg_start_time__ to __arg_end_time__"
y: [__dg_inform__ [__arg_task__ get_forecast ] [__arg_temp__ __arg_temp__ ] [__arg_cloud_coverage__
__arg_cloud_coverage__ ] [__arg_ date_time__ [__arg_colloquial__ __arg_colloquial__ ] ] ]
[__dg_inform__ [__arg_task__ get_forecast ] [__arg_temp__ __arg_temp__ ] [__arg_cloud_coverage__
__arg_cloud_coverage__ ] [__arg_date_time_range__ [__arg_start_time__ __arg_start_time__ ]
[__arg_end_time__ __arg_end_time__ ] ] ] (not match)
Prediction by JUG_semi model
x: "the temperature will be around __arg_temp__ degrees
__arg_colloquial__ between __arg_start_time__ and __arg_end_time__"
y: [__dg_inform__ [__arg_task__ get_forecast ] [__arg_temp__ __arg_temp__ ]
[__arg_cloud_coverage__ __arg_cloud_coverage__ ]
[__arg_ date_time_range__ [__arg_start_time__ __arg_start_time__ ]
[__arg_end_time__ __arg_end_time__ ] [__arg_colloquial__ __arg_colloquial__ ] ] ] (exact match)

Table 13: An example of weather dataset and predictions generated by the baseline model Decoupled and the
proposed model JUGsemi. x and y denotes natural language and the corresponding semantic representation. NLU
result are highlighted following predictions.


