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Abstract

Despite the recent progress, little is known
about the features captured by state-of-the-art
neural relation extraction (RE) models. Com-
mon methods encode the source sentence, con-
ditioned on the entity mentions, before classi-
fying the relation. However, the complexity of
the task makes it difficult to understand how
encoder architecture and supporting linguistic
knowledge affect the features learned by the
encoder. We introduce 14 probing tasks tar-
geting linguistic properties relevant to RE, and
we use them to study representations learned
by more than 40 different encoder architecture
and linguistic feature combinations trained on
two datasets, TACRED and SemEval 2010
Task 8. We find that the bias induced by the
architecture and the inclusion of linguistic fea-
tures are clearly expressed in the probing task
performance. For example, adding contextu-
alized word representations greatly increases
performance on probing tasks with a focus
on named entity and part-of-speech informa-
tion, and yields better results in RE. In con-
trast, entity masking improves RE, but consid-
erably lowers performance on entity type re-
lated probing tasks.

1 Introduction

Relation extraction (RE) is concerned with extract-
ing relationships between entities mentioned in
text, where relations correspond to semantic cate-
gories such as org:founded by, person:spouse, or
org:subsidiaries (Figure 1). Neural models have
shown impressive results on this task, achieving
state-of-the-art performance on standard datasets
like SemEval2010 Task 8 (dos Santos et al.,
2015; Wang et al., 2016; Lee et al., 2019), TA-
CRED (Zhang et al., 2018; Alt et al., 2019b; Peters
et al., 2019; Joshi et al., 2019), and NYT (Lin et al.,
2016; Vashishth et al., 2018; Alt et al., 2019a). The
majority of models implement an encoder architec-

[...] included Aerolineas’s domestic subsidiary, Austral.

org:subsidiaries tail
(obj)

head
(subj)

Figure 1: Example relation from TACRED. The sen-
tence contains the relation org:subsidiaries between
the head and tail entities ‘Aerolineas’ and ‘Austral’.

ture to learn a fixed size representation of the input,
e.g. a sentence, which is passed to a classification
layer to predict the target relation label.

These good results suggest that the learned rep-
resentations capture linguistic and semantic prop-
erties of the input that are relevant to the down-
stream RE task, an intuition that was previously
discussed for a variety of other NLP tasks by Con-
neau et al. (2018). However, it is often unknown
which exact properties the various models have
learned. Our aim is to pinpoint the information a
given RE model is relying on, in order to improve
model performance as well as to diagnose errors.

A general approach to model introspection is
the use of probing tasks. Probing tasks (Shi et al.,
2016; Adi et al., 2017), or diagnostic classifiers, are
a well established method to analyze the presence
of specific information in a model’s latent represen-
tations, e.g. in machine-translation (Belinkov et al.,
2017), language modeling (Giulianelli et al., 2018),
and sentence encoding (Conneau et al., 2018). For
each probing task, a classifier is trained on a set
of representations, and its performance measures
how well the information is encoded. The probing
task itself is typically selected in accordance with
the downstream task, e.g. an encoder trained on RE
may be probed for the entity type of a relation argu-
ment. If the classifier correctly predicts the type, it
implies the encoder retains entity type information
in the representations, which also directly inform
the relation prediction. The simplicity of this ap-



1535

proach makes it easier to pinpoint the information
a model is relying on, as opposed to probing the
downstream task directly.

Our goal in this paper is to understand which
features of the input a model conditioned on rela-
tion extraction has learned as useful for the task,
in order to be able to better interpret and explain
model predictions. Relation extraction literature is
rich with information about useful features for the
task (Zhou et al., 2005; Mintz et al., 2009; Surdeanu
et al., 2011). Consequently, our initial question is
whether and how good the sentence representations
learned by state-of-the-art neural RE models en-
code these well-known features, such as e.g. argu-
ment entity types, dependency path or argument
distance features. Another question is how the
prior imposed by different encoding architectures,
e.g. CNN, RNN, Graph Convolutional Network
and Self-Attention, affects the features stored in
the learned sentence representations. Finally, we
would like to understand the effect of additional
input features on the learned sentence representa-
tions. These include explicit semantic and syntactic
knowledge like entity information and grammatical
role, and as recently proposed, contextualized word
representations such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2018). We therefore sig-
nificantly extend earlier work on probing tasks as
follows:

• Following the framework of Conneau et al.
(2018), we propose a set of 14 probing tasks
specifically focused on linguistic properties
relevant to relation extraction.
• We evaluate four encoder architectures, also in

combination with supporting linguistic knowl-
edge, on two datasets, TACRED (Zhang et al.,
2017) and SemEval 2010 Task 8 (Hendrickx
et al., 2010), for a total of more than 40 vari-
ants.
• We follow up on this analysis with an evalua-

tion on the proposed probing tasks to establish
a connection between task performance and
captured linguistic properties.
• To facilitate further research and wider adop-

tion, we open-source our relation extraction
framework1 based on AllenNLP (Gardner
et al., 2018), and REval2, a framework extend-
ing the SentEval toolkit (Conneau and Kiela,
2018) with our probing tasks.

1https://github.com/DFKI-NLP/RelEx
2https://github.com/DFKI-NLP/REval

2 Probing Tasks

This section introduces the probing tasks we use to
evaluate the learned sentence representations. We
base our work on the setup and tasks introduced by
Conneau et al. (2018), but focus on probing tasks
related to relation extraction. We therefore adopt
some of the tasks they propose, and introduce new
probing tasks specifically designed for RE. As in
their work, the probing task classification problem
requires only single sentence embeddings as input
(as opposed to, e.g., sentence and word embed-
dings, or multiple sentence representations). This
fits the standard RE setup quite well, where the task
is typically to classify the relation(s) expressed be-
tween a pair of entity mentions in a single sentence.
While we focus on supervised relation extraction,
this setup is also applicable in a distantly super-
vised RE setting, where state-of-the-art approaches
are often based on passing sentence representations
to a bag-level classifier that computes classifica-
tion label(s) over all sentences for a given entity
pair (Mintz et al., 2009; Lin et al., 2016). Similar
to Conneau et al. (2018), we also aim to address a
set of linguistic properties related to relation extrac-
tion ranging from simple surface phenomena (e.g.
relation argument distance) to syntactic informa-
tion (e.g. parse tree depth and argument ordering)
and semantic information (e.g. the entity types of
relation arguments). We use the standard train-
ing, validation, test split of the original TACRED
dataset for RE and probing task experiments. For
SemEval we reuse test and use 10% of the train-
ing set for validation. For TACRED we use the
provided named entity, part-of-speech, and depen-
dency parsing information, and parse SemEval with
the Stanford Parser (2018-10-05 version) (Manning
et al., 2014).

Surface information These tasks test whether
sentence embeddings capture simple surface prop-
erties of sentences they encode. The sentence
length (SentLen) task, introduced by Adi et al.
(2017), predicts the number of tokens in a sentence.
We group sentences into n = 10 bins (TACRED, 7
bins for SemEval) by length, selecting bin widths
so that training sentences are distributed approxi-
mately uniformly across bins, and treat SentLen as
a n-way classification task. Our next probing task,
argument distance (ArgDist), predicts the number
of tokens between the two relation arguments. Sim-
ilar to SentLen, we group sentences into 10 bins

https://github.com/DFKI-NLP/RelEx
https://github.com/DFKI-NLP/REval
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(5 for SemEval) by relative distance. Inspired by
a common feature in classical RE (Surdeanu et al.,
2011), we also test if any named entity exists be-
tween the two relation arguments (EntExist), treat-
ing it as a binary classification problem. Address-
ing this task requires the encoder to produce a sen-
tence embedding that (at least partially) represents
the inner context of the relation arguments.

Syntactic information Syntactic information is
highly relevant for relation extraction. Many
RE approaches utilize e.g. dependency path in-
formation (Bunescu and Mooney, 2005; Krause
et al., 2012; Mintz et al., 2009), or part-of-speech
tags (Zhou et al., 2005; Surdeanu et al., 2011). We
therefore include the tree depth task (TreeDepth)
described by Conneau et al. (2018). This task tests
whether an encoder can group sentences by the
depth of the longest path from root to any leaf.
We group tree depth values into 10 (TACRED,
SemEval 7) approximately uniformly distributed
classes, ranging from from depth 1 to depth 15.
To account for shortest dependency path (SDP)
information, we include an SDP tree depth task
(SDPTreeDepth), which tests if the learned sen-
tence embedding stores information about the syn-
tactical link between the relation arguments. Again,
we group SDP tree depth values into bins, in this
case only 6 (4) classes, since the SDP trees are
generally more shallow than the original sentence
dependency parse tree. The argument ordering task
(ArgOrd) tests if the head argument of a relation
occurs before the tail argument in the token se-
quence. An encoder that successfully addresses
this challenge captures some information about
syntactic structures where the order of a relation’s
arguments is inverted, e.g. in constructions such as
“The acquisition of Monsanto by Bayer”, as com-
pared to default constructions like “Bayer acquired
Monsanto”. We also include 4 tasks that test for the
part-of-speech tag of the token directly to the left
or right of the relation’s arguments: PosHeadL,
PosHeadR, PosTailL, PosTailR. These tasks test
whether the encoder is sensitive to the immediate
context of an argument. Some relation types, e.g.
per:nationality or org:top member, can often be
identified based on the immediate argument con-
text, e.g. “US president-NN Donald Trump”, or
“Google ’s-POSS CEO-NN Larry Page”. Repre-
senting this type of information in the sentence
embedding should be useful for the relation classi-
fication.

Argument information Finally, we include
probing tasks that require some understanding of
what each argument denotes. The argument entity
type tasks (TypeHead, TypeTail) ask for the entity
tag of the head, and respectively the tail, argument.
Entity type information is highly relevant for rela-
tion extraction systems since it strongly constrains
the set of possible relation labels for a given ar-
gument pair. We treat these tasks as multi-class
classification problems over the set of possible ar-
gument entity tags (see Section 3.3).

Our last task concerns the grammatical function
of relation arguments. The grammatical role tasks
(GRHead, GRTail) ask for the role of each argu-
ment, as given by the dependency label connecting
the argument and its syntactic head token. The
motivation is that the subject and object of ver-
bal constructions often correspond to relation ar-
guments for some relation types, e.g. “Bayer ac-
quired Monsanto”. We currently test for four roles,
namely nsubj, nsubjpass, dobj and iobj, and group
all other dependency labels into the other class.
Note that there are other grammatical relations that
may be of interest for relation extraction, for exam-
ple possessive modifiers (“Google’s Larry Page”),
compounds (“Google CEO Larry Page”), and ap-
positions (“Larry Page, CEO of Google”).

3 Experiment Setup

This section first introduces the four sentence
encoding architectures we consider for evalua-
tion (§3.1), followed by a description of the sup-
porting linguistic knowledge we evaluate: entity
masking and contextualized word representations
(§3.2). We also introduce the two datasets we use
for training the relation extraction models and prob-
ing the sentence representations (§3.3).

3.1 Sentence Encoders

Generally, methods in relation extraction follow
the sequence to vector approach, encoding the
input (often a single sentence) into a fixed-size
representation, before applying a fully connected
relation classification layer (Figure 2). A single
input is represented as a sequence of T tokens
{wt}t=1,...,T , and the spans (headstart, headend)
and (tailstart, tailend) of the two entity mentions
in question. We focus our evaluation on four widely
used approaches that have shown to perform well
on RE. For all architectures we signal the position
of head and tail by the relative offset to each to-
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Figure 2: Probing task setup. In the first step, we train a RE model (sentence encoder and relation classifier) on
a dataset D. In the second step, we fix the encoder and for each probing task train a classifier on the encoder
representations {sj}j=1,...,|D| of all sentences in D. The probing classifier performance indicates how well the
sentence representations encode the information probed by the classifier, e.g. the entity type of the tail relation
argument.

ken wi as a positional embedding phi ∈ Rc and
pti ∈ Rc concatenated to the input token representa-
tion eti = [ewi , p

h
i , p

t
i], where ewi ∈ Rd is the token

embedding.

CNN We follow the work of Zeng et al. (2014)
and Nguyen and Grishman (2015), who both use
a convolutional neural network for relation extrac-
tion. Their models encode the input token sequence
{wt}t=1,...,T by applying a series of 1-dimensional
convolutions of different filter sizes, yielding a set
of output feature maps Mf , followed by a max-
pooling operation that selects the maximum values
along the temporal dimension of Mf to form a
fixed-size representation.

Bi-LSTM max Similar to Zhang and Wang
(2015) and Zhang et al. (2017), we use a Bi-LSTM
to encode the input sequence. A Bi-LSTM yields a
sequence of hidden states {ht}t=1,...,T , where ht is
a concatenation [hft , h

b
t ] of the states of a forward

LSTM hf and a backward LSTM hb. Similar to
the CNN, we use max pooling across the temporal
dimension to obtain a fixed-size representation3.

GCN Graph convolutional networks (Kipf and
Welling, 2016) adapt convolutional neural net-
works to graphs. Following the approach of Zhang
et al. (2018), we treat the input token sequence
{wt}t=1,...,T as a graph consisting of T nodes,
with an edge between wi and wj , if there exists
a dependency edge between the two tokens. We

3We considered taking the final hidden state but found max
pooling to perform superior.

convert the dependency tree into a T × T adja-
cency matrix, after pruning the graph to the short-
est dependency path between head and tail. A
L-layer GCN applied to {wt}t=1,...,T yields a se-
quence of hidden states {ht}t=1,...,T contextual-
ized on neighboring tokens with a graph distance
of at most L. Forming a fixed size representation
is done by max pooling over the temporal dimen-
sion and local max pooling over the tokens {wt},
for t ∈ [headstart, . . . , headend] and similar for
t ∈ [tailstart, . . . , tailend].

Multi-Headed Self-Attention Similar to the
Transformer (Vaswani et al., 2017), we com-
pute a sequence of contextualized representa-
tions {ht}t=1,...,T by applying L layers of multi-
headed self-attention to the input token sequence
{wt}t=1,...,T . The representation ht of wt is com-
puted as a weighted sum of a projection V of the
input tokens, with respect to the scaled, normalized
dot product of Q and K, which are also both linear
projections of the input with the procedure repeated
for each attention head. A fixed-size representation
is obtained by taking the final state hT at the last
layer L.

3.2 Supporting Linguistic Knowledge

Adding additional lexical, syntactic, and semantic
input features to neural RE approaches has been
shown to considerably improve performance (Zeng
et al., 2014; Zhang et al., 2017, 2018). Features
include e.g. casing, named entity, part-of-speech
and dependency information. Most recently, pre-
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learned contextualized word representations (deep
language representations) emerged, capturing syn-
tactic and semantic information useful to a wide
range of downstream tasks (Peters et al., 2018; Rad-
ford et al., 2018; Devlin et al., 2018). We therefore
evaluate the effect of adding explicit named entity
and grammatical role information (through entity
masking) on our pre-learned sentence representa-
tions, and compare it to adding contextualized word
representations computed by ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2018) as additional
input features.

Entity Masking Entity masking has been shown
to provide a significant gain for RE performance
on the TACRED dataset (Zhang et al., 2017) by
replacing each entity mention with a combination
of its entity type and grammatical role (subject
or object). It limits the information about entity
mentions available to a model, possibly prevent-
ing overfitting to specific mentions and forcing the
model to focus more on the context.

ELMo Embeddings from Language Models, as
introduced by Peters et al. (2018), are an approach
to compute contextualized word representations by
applying a pre-learned, two-layer Bi-LSTM neural
network to an input token sequence {wt}t=1,...,T .
ELMo operates on a character level and is pre-
trained with the forward and backward direction
as a separate unidirectional language model. It
yields a representation hi = [hfi , h

b
i ] for each token

wi, with hfi conditioned on the preceding context
{wt}t=1,...,i−1 and independently hbi , conditioned
on the succeeding context {wt}t=i+1,...,T .

BERT Bidirectional Encoder Representations
from Transformers (Devlin et al., 2018) improves
upon methods such as ELMo and the OpenAI Gen-
erative Pre-trained Transformer (GPT) (Radford
et al., 2018) by using a masked language model that
allows for jointly training forward and backward
directions. Compared to ELMo, BERT operates on
word-piece input and is based on the self-attentive
Transformer architecture (Vaswani et al., 2017). It
computes a representation for a token wi jointly
conditioned on the preceding {wt}t=1,...,i−1 and
succeeding context {wt}t=i+1,...,T .

3.3 Datasets

Table 1 shows key statistics of the TACRED and
SemEval datasets. TACRED is approximately 10x
the size of SemEval 2010 Task 8, but contains a

much higher fraction of negative training examples,
making classification more challenging.

Dataset # Relations # Examples Neg. examples

SemEval 19 10,717 17.4%
TACRED 42 106,264 79.5%

Table 1: Comparison of datasets used for evaluation

TACRED The TAC Relation Extraction
Dataset4 (Zhang et al., 2017) contains 106k sen-
tences with entity mention pairs collected from the
TAC KBP5 evaluations. Sentences are annotated
with person- and organization-oriented relation
types, e.g. per:title, org:founded and no relation
for negative examples. In contrast to the SemEval
dataset the entity mentions are typed with subjects
classified into person and organization and objects
categorized into 16 fine-grained classes (e.g., date,
location, title). As per convention, we report our
results as micro-averaged F1 scores.

SemEval 2010 Task 8 The SemEval 2010 Task 8
dataset6 (Hendrickx et al., 2010) is a standard
benchmark for binary relation classification, and
contains 8,000 sentences for training and 2,717 for
testing. Sentences are annotated with a pair of
untyped nominals and one of 9 directed semantic
relation types, such as Cause-Effect, Entity-Origin
as well as the undirected Other type to indicate
no relation, resulting in 19 distinct types in total.
We follow the official convention and report macro-
averaged F1 scores with directionality taken into
account.

4 Results

Table 2 and Table 3 report the accuracy scores of
the probing task experiments for models trained
on the TACRED and SemEval dataset. We did
not include the ArgOrd and EntExists task in the
SemEval evaluation, since SemEval relation argu-
ments are always ordered in the sentence as indi-
cated by the relation type, and entity types recogniz-
able by standard tools such as Stanford CoreNLP
that might occur between head and tail are not rele-
vant to the dataset’s entity types and relations.

4https://catalog.ldc.upenn.edu/
LDC2018T24

5https://tac.nist.gov/2017/KBP/index.
html

6http://www.kozareva.com/downloads.
html

https://catalog.ldc.upenn.edu/LDC2018T24
https://catalog.ldc.upenn.edu/LDC2018T24
https://tac.nist.gov/2017/KBP/index.html
https://tac.nist.gov/2017/KBP/index.html
http://www.kozareva.com/downloads.html
http://www.kozareva.com/downloads.html
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Type
Head

Type
Tail

Sent
Len

Arg
Dist

Arg
Ord

Ent
Exist

PosL
Head

PosR
Head

PosL
Tail

PosR
Tail

Tree
Dep

SDP
Dep

GR
Head

GR
Tail

F1
score

Majority vote 66.4 33.5 14.5 14.8 54.7 51.0 22.8 23.0 26.9 20.0 23.7 28.4 58.4 75.2 -
Length 66.4 33.5 100.0 13.8 54.8 59.4 18.6 24.7 26.9 20.1 30.5 29.6 58.4 75.2 -
ArgDist 66.4 33.5 16.5 100.0 54.7 77.5 14.9 23.0 26.9 19.8 23.8 35.3 58.4 75.2 -
BoE 77.7 47.6 61.1 22.6 97.3 66.5 33.7 41.5 32.5 36.3 29.8 31.0 66.3 77.4 39.4

CNN 94.0 85.8 47.6 88.1 98.8 84.5 70.7 76.1 84.0 86.5 28.5 44.0 78.0 88.6 55.9
+ ELMo 97.0 90.2 48.7 91.7 99.1 84.3 76.1 81.2 86.6 90.1 28.3 45.0 82.8 91.9 58.8
+ BERT ↓ 95.9 88.8 44.7 46.0 93.8 79.9 64.7 74.4 80.8 88.4 29.4 41.0 77.7 90.0 59.7
+ BERT ↑ 96.1 88.8 48.0 43.7 91.9 80.0 56.9 70.3 80.1 87.5 28.0 41.3 75.0 89.6 61.0

CNN ⊗ 84.2 60.9 46.4 58.3 94.3 81.5 44.3 50.9 54.4 63.9 27.7 40.0 68.5 82.0 59.5
+ ELMo 82.8 69.8 47.4 75.6 98.1 82.9 54.2 60.2 65.4 77.3 28.7 42.4 71.9 85.0 61.7
+ BERT ↓ 87.6 80.3 50.9 29.3 83.2 72.4 39.3 46.1 67.7 80.7 30.1 36.9 67.1 87.4 65.3
+ BERT ↑ 87.2 79.3 50.6 25.3 78.3 69.8 39.6 42.9 59.9 77.5 30.3 35.1 65.6 86.9 66.1

Bi-LSTM 93.4 81.2 42.0 47.9 99.4 79.2 41.2 50.8 50.6 68.4 28.7 41.7 69.3 85.2 55.3
+ ELMo 96.4 89.6 27.9 47.0 97.9 80.9 47.8 52.5 67.2 72.6 25.2 42.8 72.1 90.0 61.8
+ BERT ↓ 96.0 87.3 31.0 45.5 99.1 78.8 46.1 55.6 61.7 71.3 26.6 42.7 72.2 87.7 62.5
+ BERT ↑ 96.0 87.7 28.6 45.3 97.7 80.4 48.0 50.9 61.4 67.4 25.1 42.3 70.8 87.0 63.1

Bi-LSTM ⊗ 81.9 71.4 27.6 35.6 90.6 73.2 36.1 40.5 59.3 66.4 25.7 38.4 64.6 85.3 62.9
+ ELMo 82.8 50.7 30.6 19.7 73.4 65.0 32.0 35.9 37.9 41.8 28.0 32.2 63.0 79.5 64.1
+ BERT ↓ 82.3 77.9 34.1 25.6 87.6 68.4 32.5 36.7 61.5 64.7 27.6 35.1 66.6 86.0 65.4
+ BERT ↑ 81.7 79.6 30.2 21.3 81.1 67.0 30.6 33.8 55.9 55.1 27.3 34.2 64.1 84.9 66.1

GCN 93.0 81.9 18.8 35.5 86.0 74.4 48.6 48.8 51.2 52.3 24.0 49.9 74.2 85.9 57.4
+ ELMo 96.3 86.2 18.7 29.3 77.5 74.0 50.4 52.0 48.9 51.7 23.2 47.4 77.1 86.9 62.1
+ BERT ↓ 96.0 85.2 20.7 31.2 83.6 74.2 48.6 52.4 47.4 50.4 23.9 48.7 74.4 85.3 62.9
+ BERT ↑ 96.3 85.7 21.4 32.9 84.3 75.3 50.1 54.6 48.6 52.5 24.5 49.2 76.3 85.8 61.5

GCN ⊗ 87.6 67.4 18.1 33.1 81.6 72.8 36.8 51.1 44.8 48.8 24.1 47.3 73.2 83.0 63.7
+ ELMo 92.7 68.6 18.6 26.4 76.8 71.4 41.9 50.4 43.6 45.1 23.8 47.1 76.3 83.9 65.4
+ BERT ↓ 93.5 71.5 22.0 33.3 88.5 73.8 44.9 50.6 44.7 47.7 24.4 49.1 72.6 82.3 66.3
+ BERT ↑ 93.4 72.0 23.7 33.2 90.4 73.9 42.8 50.1 44.0 48.3 24.9 48.0 72.9 83.0 65.9

S-Att. 89.9 81.8 22.7 32.8 75.7 78.1 34.1 38.9 40.8 44.8 26.1 38.2 60.7 81.1 57.6
+ ELMo 96.6 87.8 24.9 30.6 74.1 79.1 36.0 41.4 39.2 44.1 26.4 37.9 64.1 83.4 64.7
+ BERT ↓ 96.2 87.0 25.9 31.4 75.6 76.5 35.3 40.8 39.8 44.4 25.4 39.1 61.8 81.3 63.9
+ BERT ↑ 96.5 87.3 26.1 32.6 76.8 78.0 34.7 40.9 40.0 44.0 25.7 38.1 62.2 81.7 63.8

S-Att. ⊗ 79.5 56.5 29.0 44.3 91.2 79.5 29.6 43.0 36.1 60.3 26.1 39.6 64.7 79.5 65.9
+ ELMo 78.2 44.4 25.1 31.5 72.3 77.1 31.6 37.5 34.4 34.8 26.2 36.7 62.1 75.9 66.6
+ BERT ↓ 82.4 66.9 36.2 33.2 74.9 76.8 32.0 37.6 38.0 41.3 27.4 37.6 63.0 79.8 66.7
+ BERT ↑ 80.0 69.0 31.9 32.8 78.6 76.6 30.3 34.2 37.5 39.2 27.0 38.2 60.4 79.9 66.9

Table 2: TACRED probing task accuracies and model F1 scores on the test set. ↑ and ↓ indicate the cased and
uncased version of BERT, ⊗ models with entity masking. Probing task classification is performed by a logistic
regression on the representations sj of all sentences in the dataset.

Baseline performances are reported in the top
section of Table 2 and Table 3. Length and ArgDist
are both linear classifiers, which use sentence
length and distance between head and tail argu-
ment as the only feature. BoE computes a repre-
sentation of the input sentence by summing over
the embeddings of all tokens it contains. Gener-
ally, there is a large gap between top baseline per-
formance and that of a trained encoder. While
SentLength and ArgDist are trivially solved by the
respective linear classifier, BoE shows surprisingly
good performance on SentLen and ArgOrd, and
a clear improvement over the other baselines for
named entity- and part-of-speech-related probing
tasks.

Encoder Architecture For most probing tasks,
except SentLen and ArgOrd, a proper encoder
clearly outperforms bag-of-embeddings (BoE),
which is coherent with the findings of Adi et al.
(2017) and Conneau et al. (2018). Similarly, the
results indicate that the prior imposed by the en-
coder architecture preconditions the information
encoded in the learned embeddings. Models with
a local or recency bias (CNN, BiLSTM) perform
well on probing tasks with local focus, such as
PosHead{L,R} and PosTail{L,R} and distance re-
lated tasks (ArgDist, ArgOrd). Similarly, models
with access to dependency information (GCN) per-
form well on tree related tasks (SDPTreeDepth).
Due to the graph pruning step (Zhang et al., 2018),
the GCN is left with a limited view of the depen-
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Type
Head

Type
Tail

Sent
Len

Arg
Dist

PosL
Head

PosR
Head

PosL
Tail

PosR
Tail

Tree
Dep

SDP
Dep

GR
Head

GR
Tail

F1
score

Majority vote 22.0 21.3 25.7 42.1 62.1 39.3 38.3 34.0 25.4 67.2 37.3 80.9 -
Length 25.8 24.7 100.0 42.1 62.1 39.1 38.3 46.3 44.3 67.2 40.6 80.9 -
ArgDist 23.6 22.3 25.7 100.0 62.1 43.7 37.9 35.3 26.2 67.8 45.4 80.9 -
BoE 58.5 58.0 82.4 84.8 65.1 66.1 49.2 72.5 44.1 69.8 65.4 83.6 55.7

CNN 76.1 76.2 34.9 87.5 66.0 85.8 74.2 73.1 34.1 72.1 70.3 89.1 80.2
+ ELMo 81.3 81.8 38.1 88.5 70.0 89.0 79.5 76.4 35.5 71.8 75.1 90.9 84.4
+ BERT ↓ 83.9 84.1 55.9 90.2 74.0 89.3 81.2 84.6 41.3 73.1 76.8 90.6 86.3
+ BERT ↑ 83.4 83.7 54.3 90.4 74.4 89.4 82.0 82.8 42.0 73.0 78.3 90.8 86.0

Bi-LSTM 77.1 77.0 50.5 74.9 63.8 75.9 61.8 68.5 41.3 70.3 69.2 87.7 80.1
+ ELMo 81.5 81.8 41.1 66.6 62.8 71.8 59.3 64.5 37.5 70.1 70.0 87.6 83.7
+ BERT ↓ 83.6 83.7 41.8 61.5 62.7 68.9 57.9 63.0 37.1 70.8 67.4 86.7 85.6
+ BERT ↑ 82.5 82.8 41.8 66.0 63.1 70.8 58.6 64.3 37.7 71.0 68.9 87.5 85.1

GCN 75.4 75.5 35.0 81.5 68.5 87.5 71.2 55.5 35.5 80.3 76.3 91.7 79.6
+ ELMo 80.7 80.8 32.2 68.1 68.3 83.4 65.8 53.2 34.4 75.8 80.0 91.1 84.2
+ BERT ↓ 82.5 83.0 42.5 66.5 73.6 84.7 69.2 66.3 38.9 77.2 82.1 91.0 85.7
+ BERT ↑ 81.5 81.9 42.7 67.3 73.8 85.1 69.6 67.8 39.6 77.6 84.2 91.9 84.3

S-Att. 77.4 77.6 34.2 50.0 62.1 56.2 49.8 47.1 35.9 67.9 54.2 84.1 80.2
+ ELMo 80.7 81.3 33.1 46.2 62.0 53.9 49.1 45.7 34.7 68.1 54.9 84.4 83.6
+ BERT ↓ 83.4 83.3 31.0 45.3 62.1 51.8 48.4 44.7 33.0 67.8 53.3 83.6 85.6
+ BERT ↑ 82.8 82.8 30.6 46.1 62.1 52.7 48.2 44.4 33.6 67.9 54.6 84.1 84.9

Table 3: SemEval probing task accuracies and model F1 scores on the test set. ↑ and ↓ indicate the cased and
uncased version of BERT. Probing task classification is performed by a logistic regression on the representations
sj of all sentences in the dataset.

dency tree, which explains the low performance
on TreeDepth. Surprisingly, while Self-Attention
exhibits superior performance on the RE task, it
consistently performs lower on the probing tasks
compared to the other encoding architectures. This
could indicate Self-Attention encodes “deeper” lin-
guistic information into the sentence representation,
not covered by the current set of probing tasks.

Probing Tasks Compared to the baselines, all
proper encoders exhibit consistently high perfor-
mance on TypeHead and TypeTail, clearly high-
lighting the importance of entity type information
to RE. In contrast, encoders trained on the down-
stream task perform worse on SentLen, which intu-
itively makes sense, since sentence length is mostly
irrelevant for RE. This is consistent with Conneau
et al. (2018), who found SentLen performance
to decrease for models trained on more complex
downstream tasks, e.g. neural machine translation,
strengthen the assumption that, as a model captures
deeper linguistic properties it will tend to forget
about this superficial feature. With the exception
of the CNN, all encoders consistently show low
performance on the argument distance (ArgDist)
task. A similar performance pattern can be ob-
served for ArgOrd, where models that are biased
towards locality (CNN and BiLSTM) perform bet-

ter, while models that are able to efficiently model
long range dependencies, such as GCN and S-Att.,
show lower performance. The superior RE task per-
formance of the latter indicates that their bias may
allow them to learn “deeper” linguistic features.
The balanced performance of CNN, BiLSTM and
GCN encoders across part-of-speech related tasks
(PosHeadL, PosHeadR, PosTailL, PosTailR) high-
lights the importance of part-of-speech-related fea-
tures to RE, again with the exception of S-Att.,
which performs just slightly above baselines. On
TreeDepth and SDPTreeDepth (with GCN as the
exception), average performance in many cases
ranges just slightly above baseline performance,
suggesting that TreeDepth requires more nuanced
syntactic information, which the models fail to
acquire. The good performance on grammatical
role tasks (GRHead, GRTail) once more empha-
sizes the relevance of this feature to RE, with the
GCN exhibiting the best performance on average.
This is unsurprising, because the GCN focuses on
token-level information along the dependency path
connecting the arguments, and hence seems to be
able to capture grammatical relations among to-
kens more readily than the other encoders (even
though the GCN also does not have access to the
dependency labels themselves).
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Entity Masking Perhaps most interestingly,
masking entity mentions with their respective
named entity and grammatical role information
considerably lowers the performance on entity type
related tasks (TypeHead and TypeTail). This indi-
cates that masking forces the encoder’s focus away
from the entity mentions, which is confirmed by the
performance decrease in probing tasks with a focus
on argument position and distance, e.g. ArgDist,
ArgOrd, and SentLen. CNN and BiLSTM encoders
exhibit the greatest decrease in performance, sug-
gesting a severe overfitting to specific entity men-
tions when no masking is applied. In comparison,
the GCN shows less tendency to overfit. Surpris-
ingly, with entity masking the self-attentive encoder
(S-Attn.) increases its focus on entity mentions and
their surroundings as suggested by the performance
increase on the distance and argument related prob-
ing tasks.

Word Representations Adding contextualized
word representations computed by ELMo or BERT
greatly increases performance on probing tasks
with a focus on named entity and part-of-speech in-
formation. This indicates that contextualized word
representations encode useful syntactic and seman-
tic features relevant to RE, which is coherent with
the findings of Peters et al. (2018) and Radford et al.
(2018), who both highlight the effectiveness of lin-
guistic features encoded in contextualized word
representations (deep language representations) for
downstream tasks. The improved performance on
syntactic and semantic abilities is also reflected in
an overall improvement in RE task performance.
Compared to ELMo, encoders with BERT gener-
ally exhibit an overall better and more balanced
performance on the probing tasks. This is also re-
flected in a superior RE performance, suggesting
that a bidirectional language model encodes linguis-
tic properties of the input more effectively. Some-
what surprisingly, BERT without casing performs
equally or better on the probing tasks focused on
entity and part-of-speech information, compared
to the cased version. While this intuitively makes
sense for SemEval, as the dataset focuses on se-
mantic relations between concepts, it is surprising
for TACRED, which contains relations between
proper entities, e.g. person and company names,
with casing information more important to identify
the entity type.

Probing vs. Relation Extraction One interest-
ing observation is that encoders that perform bet-
ter on probing tasks do not necessarily perform
better on the downstream RE task. For example,
CNN+ELMo scores highest for most of the probing
tasks, but has an 8.1 lower F1 score than the best
model on this dataset, S-Att.+BERT cased with
masking. Similarly, all variants of the self-attentive
encoder (S-Att.) show superior performance on
RE but consistently come up last on the probing
tasks, occasionally performing just above the base-
lines. Conneau et al. (2018) observed a similar
phenomena for encoders trained on neural machine
translation.

Relation Extraction The relation extraction task
performance7 on the TACRED dataset ranges be-
tween 55.3 (Bi-LSTM) and 57.6 F1 (S-Att.), with
performance improving to around 58.8 - 64.7 F1
when adding pre-learned, contextualized word rep-
resentations. As observed in previous work (Zhang
et al., 2017), masking helps the encoders to gen-
eralize better, with gains of around 4 - 8 F1 when
compared to the vanilla models. This is mainly
due to better recall, which indicates that without
masking, models may overfit, e.g. by memorizing
specific entity names. The best-performing model
achieves a score of 66.9 F1 (S-Att.+ BERT cased
and masking).

On the SemEval dataset performance of the
vanilla models is around 80.0 F1. Adding contextu-
alized word representations significantly improves
the performance of all models, by 3.5 - 6 F1. The
best-performing model on this dataset is a CNN
with uncased BERT embeddings with an F1-score
of 86.3, which is comparable to state-of-the-art
models (Wang et al., 2016; Cai et al., 2016).

5 Related Work

Shi et al. (2016) introduced probing tasks to probe
syntactic properties captured in encoders trained
on neural machine translation. Adi et al. (2017) ex-
tended this concept of “auxiliary prediction tasks”,
proposing SentLen, word count and word order
tasks to probe general sentence encoders, such
as bag-of-vectors, auto-encoder and skip-thought.
Conneau et al. (2018) considered 10 probing tasks,
including SentLen and TreeDepth, and an extended
set of encoders such as Seq2Tree and encoders

7See Appendix for more details on RE task performance,
training, and model hyperparameters
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trained on NMT and NLI for general text classifi-
cation. Their setup, however, is not directly appli-
cable to relation extraction, because the RE task
requires not only the input sentence, but also the
entity arguments. We therefore extend their frame-
work to accommodate the RE setting. Another
difference to their work is that while their probing
tasks focus on linguistic properties of general sen-
tence encoders, we specifically focus on relation
extraction. To that end, we extend the evaluation
to relation extraction by introducing a set of 14
probing tasks, including SentLen and TreeDepth,
specifically designed to probe linguistic properties
relevant to relation extraction.

6 Conclusion

We introduced a set of probing tasks to study the
linguistic features captured in sentence encoder
representations trained on relation extraction. We
conducted a comprehensive evaluation of common
RE encoder architectures, and studied the effect of
explicitly and implicitly provided semantic and syn-
tactic knowledge, uncovering interesting properties
about the architecture and input features. For ex-
ample, we found self-attentive encoders to be well
suited for the RE on sentences of different complex-
ity, though they consistently perform lower on prob-
ing tasks; hinting that these architectures capture
“deeper” linguistic features. We also showed that
the bias induced by different architectures clearly
affects the learned properties, as suggested by prob-
ing task performance, e.g. for distance and depen-
dency related probing tasks.

In future work, we want to extend the probing
tasks to also cover specific linguistic patterns such
as appositions, and also investigate a model’s abil-
ity of generalizing to specific entity types, e.g. com-
pany and person names.
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A Further Training Details

A.1 Probing Task Training

The probing task results reported in the main part
are obtained by fitting a Logistic Regression clas-
sifier to the binary and multi-class classification
task. We tune the l2 penalty of the classifier with
grid-search on the validation set.

A.2 Relation Extraction Training

For vanilla models we use 300-dimensional pre-
trained GloVe embeddings (Pennington et al.,
2014) as input. Variants with ELMo use the con-
textualized word representations in combination
with GloVe embeddings and models with BERT
only use the computed representations. For mod-
els trained on TACRED we use 30-dimensional
positional offset embeddings for head and tail (50-
dimensional embeddings for SemEval). Similar for
the batch-size we use 50 on TACRED and 30 on
SemEval. If not mentioned otherwise, we use the
same hyperparameters for models with and without
entity masking.

A.2.1 Hyperparameters

CNN For training on TACRED we use the hy-
perparameters of Zhang et al. (2017). We employ
Adagrad as an optimizer, with an initial learning
rate of 0.1 and run training for 50 epochs. Start-
ing from the 15th epoch, we gradually decrease
the learning rate by a factor of 0.9. For the CNN
we use 500 filters of sizes [2, 3, 4, 5] and apply
l2 regularization with a coefficient of 10−3 to all
filter weights. We use tanh as activation and apply
dropout on the encoder output with a probability of
0.5. We use the same hyperparameters for variants
with ELMo. For variants with BERT, we use an ini-
tial learning rate of 0.01 and decrease the learning
rate by a factor of 0.9 every time the validation F1
score is plateauing. Also we use 200 filters of sizes
[2, 3, 4, 5].

On SemEval, we use the hyperparameters of
Nguyen and Grishman (2015). We employ
Adadelta with initial learning rate of 1 and run
it for 50 epochs. We apply l2 regularization with a
coefficient of 10−5 to all filter weights. We use em-
bedding and encoder dropout of 0.5, word dropout
of 0.04 and 150 filters of sizes [2, 3, 4, 5]. For
variants using BERT, we decrease the learning rate
by a factor of 0.9 every time the validation F1 score
is plateauing.
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BiLSTM For training on TACRED we use the
hyperparameters of Zhang et al. (2017). We employ
Adagrad with an initial learning rate of 0.01, train
for 30 epochs and gradually decrease the learning
rate by a factor of 0.9, starting from the 15th epoch.
We use word dropout of 0.04 and recurrent dropout
of 0.5. The BiLSTM consists of two layers of hid-
den dimension 500 for each direction. For training
with ELMo and BERT we decrease the learning
rate by a factor of 0.9 every time the validation F1
score is plateauing.

On SemEval we instead use two BiLSTM layers
with hidden dimension 300 for each direction, and
also use embedding and encoder dropout of 0.5.

GCN On TACRED and SemEval we reuse the
hyperparameters of Zhang et al. (2018). We em-
ploy SGD as optimizer with an initial learning
rate of 0.3, which is reduced by a factor of 0.9
every time the validation F1 score plateaus. We
use dropout of 0.5 between all but the last GCN
layer, word dropout of 0.04, and embedding and
encoder dropout of 0.5. Similar to the authors we
use path-centric pruning with K=1. On TACRED
we use two 200-dimensional GCN layers and simi-
lar two 200-dimensional feedforward layers with
ReLU activation, whereas on SemEval we instead
use a single 200-dimensional GCN layer.

Self-Attention After hyperparameter tuning we
found 8 layers of multi-headed self-attention to
perform best. Each layer uses 8 attention heads
with attention dropout of 0.1, keys and values are
projected to 256 dimensions before computing the
similarity and aggregated in a feedforward layer
with 512 dimensions. For training we use Adam op-
timizer with an initial learning rate of 10−4, which
is reduced by a factor of 0.9 every time the vali-
dation F1 score plateaus. In addition we use word
dropout of 0.04, embedding dropout of 0.5, and
encoder dropout of 0.5.

B Relation Extraction Results

Table 4 and Table 5 show the relation extraction
performances we obtained after training our model
variants on the SemEval and TACRED dataset, re-
spectively.

P R F1

BoE 53.7 60.8 55.7

CNN 81.8 78.9 80.2
+ ELMo 87.5 81.6 84.4
+ BERT ↓ 89.5 83.4 86.3
+ BERT ↑ 88.9 83.3 86.0

Bi-LSTM 82.7 77.9 80.1
+ ELMo 87.3 80.6 83.7
+ BERT ↓ 88.3 83.2 85.6
+ BERT ↑ 87.5 83.0 85.1

GCN 81.9 77.5 79.6
+ ELMo 86.1 82.6 84.2
+ BERT ↓ 89.2 82.6 85.7
+ BERT ↑ 87.6 81.4 84.3

S-Att. 83.3 77.7 80.2
+ ELMo 87.7 79.9 83.6
+ BERT ↓ 89.7 81.9 85.6
+ BERT ↑ 88.9 81.5 84.9

Table 4: Relation extraction test set performance on Se-
mEval. ↑ and ↓ indicate the cased and uncased version
of BERT. Due to the small dataset size, we report the
mean across 5 randomly initialized runs.

P R F1

BoE 50.0 32.6 39.4

CNN 72.3 45.5 55.9
+ ELMo 73.8 48.9 58.8
+ BERT ↓ 71.9 51.1 59.7
+ BERT ↑ 69.8 54.3 61.0

CNN ⊗ 67.2 53.4 59.5
+ ELMo 72.3 53.8 61.7
+ BERT ↓ 69.0 62.0 65.3
+ BERT ↑ 71.9 61.1 66.1

Bi-LSTM 53.3 57.4 55.3
+ ELMo 65.1 58.8 61.8
+ BERT ↓ 65.3 59.9 62.5
+ BERT ↑ 65.2 61.2 63.1

Bi-LSTM ⊗ 62.5 63.4 62.9
+ ELMo 63.3 64.9 64.1
+ BERT ↓ 64.9 66.0 65.4
+ BERT ↑ 68.3 64.0 66.1

GCN 65.4 51.1 57.4
+ ELMo 66.2 58.5 62.1
+ BERT ↓ 66.1 59.9 62.9
+ BERT ↑ 66.2 57.4 61.5

GCN ⊗ 68.1 59.8 63.7
+ ELMo 68.5 62.6 65.4
+ BERT ↓ 68.1 64.5 66.3
+ BERT ↑ 66.6 65.3 65.9

S-Att. 56.9 58.3 57.6
+ ELMo 64.4 65.0 64.7
+ BERT ↓ 60.6 67.6 63.9
+ BERT ↑ 63.5 64.1 63.8

S-Att. ⊗ 65.0 66.8 65.9
+ ELMo 64.0 69.4 66.6
+ BERT ↓ 64.0 69.7 66.7
+ BERT ↑ 69.2 64.7 66.9

Table 5: Relation extraction test set performance on TA-
CRED. ↑ and ↓ indicate the cased and uncased version
of BERT, ⊗ models with entity masking.


