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Abstract

Implicit discourse relation recognition is a
challenging task due to the lack of connectives
as strong linguistic clues. Previous methods
primarily encode two arguments separately or
extract the specific interaction patterns for the
task, which have not fully exploited the anno-
tated relation signal. Therefore, we propose a
novel TransS-driven joint learning architecture
to address the issues. Specifically, based on the
multi-level encoder, we 1) translate discourse
relations in low-dimensional embedding space
(called TransS), which could mine the latent
geometric structure information of argument-
relation instances; 2) further exploit the seman-
tic features of arguments to assist discourse un-
derstanding; 3) jointly learn 1) and 2) to mutu-
ally reinforce each other to obtain the better
argument representations, so as to improve the
performance of the task. Extensive experimen-
tal results on the Penn Discourse TreeBank
(PDTB) show that our model achieves compet-
itive results against several state-of-the-art sys-
tems.

1 Introduction

Discourse relation describes how two adjacent text
units (e.g., clauses, sentences, and larger sentence
groups) are connected logically to one another.
A discourse relation instance is usually defined
as a connective taking two arguments (as Arg1
and Arg2, respectively). Implicit discourse rela-
tion recognition without explicit connectives (Pitler
et al., 2009) is still a challenging problem of dis-
course analysis, which needs to infer the discourse
relation from a specific context. It is beneficial
to many downstream natural language processing
(NLP) applications, such as machine translation
(Meyer and Popescu-Belis, 2012) and text summa-
rization (Gerani et al., 2014).

∗Corresponding author.

The existing neural network-based models have
shown great success in recognizing implicit dis-
course relations. It mainly includes 1) Basic neural
networks (Braud and Denis, 2015; Zhang et al.,
2015; Liu et al., 2016) can learn the dense vector
representations of discourse arguments, which can
capture the semantic information to some extent.
Further studies exploit different attention or mem-
ory mechanisms (Liu and Li, 2016; Zhang et al.,
2016) to capture the critical information of argu-
ment pairs. 2) Complex neural models (Chen et al.,
2016; Lei et al., 2017; Guo et al., 2018) utilize
gated relevance networks or neural tensor networks
to capture the deeper interactions between two dis-
course arguments. 3) Joint learning architectures
(Qin et al., 2017; Bai and Zhao, 2018; Xu et al.,
2019) exploit implicit connective cues, different
granularity of text, or topic-level relevant informa-
tion to improve the discourse relation prediction.
However, these approaches still have the following
drawbacks: 1) do not make full use of the annotated
discourse relation signal to explore the argument-
relation features; 2) neglect the extra information in
the low-dimensional continuous embedding space,
i.e., the direction or structure information of the
vectors.

Notice that Translating Embeddings (TransE) is
a method for the prediction of entities’ missing
relations in knowledge graphs. Bordes et al. (2013)
model relations by interpreting them as translating
operation not on the graph structure directly but
in a learned low-dimensional embedding of the
knowledge graph entities: if (he, le, te) holds, then
the embedding of the tail entity te should be close
to the embedding of the head entity he plus some
vector that depends on the relation le. Similar to the
entity relation extraction, our task aims to identify
the semantic relations between two arguments (i.e.,
sentences).

Inspired by TransE, we design a new method
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(TransS), which translates discourse relations in
sentence embedding spaces to mine the argument-
relation features. Intuitively, these features reflect
the latent geometric structure among the arguments
and their discourse relation by performing the al-
gebraic operation, and the argument-relation in-
stances with the same discourse relation may have
similar direction and position information in the
embedding space. Therefore, we propose a novel
TransS-driven joint learning neural network frame-
work that leverages the latent geometric structure
information of argument-relation instances, in ad-
dition to using the semantic features to improve
the comprehension of discourse argument. Among
them, we adopt a multi-level encoder to further
enrich the argument representations, which could
obtain the deeper semantics of discourse.

In summary, the main contributions of this paper
are as follows:

• Propose a novel TransS-driven joint learning
architecture, including the latent geometric
structure information learning (GSL) and se-
mantic feature learning (SFL);

• Design TransS approach to translate dis-
course relations in low-dimensional embed-
ding space from the sentence-level perspec-
tive, which could induce the geometric struc-
ture of argument-relation instances to some
extent;

• Employ the mutual reinforcing between the
GSL and SFL to optimize the argument rep-
resentations: 1) the GSL adopts its geometric
structure clues to facilitate the SFL; 2) the
SFL utilizes its semantic cues to improve the
learning capability of GSL;

• The experimental results on the PDTB demon-
strate the effectiveness of our model.

2 The Proposed Model

The implicit discourse relation recognition task is
usually formalized as a classification problem. In
this section, we give an overview of the TransS-
driven joint learning framework, which consists of
four parts: embedding layer, multi-level encoder,
latent geometric structure learning, and semantic
feature learning, as shown in Figure 1.

2.1 Embedding Layer
In order to model two discourse arguments with
neural networks, we transform the one-hot repre-

sentations of arguments and their discourse relation
into the distributed representations. Formally, the
embedding layer could be seen as a simple projec-
tion layer where the word embedding is achieved
by lookup table operation according to the indexes.
All words of two arguments Arg1, Arg2, and their
relation will be mapped into low dimensional vec-
tor representations, which are taken as the input of
our model.

2.2 Multi-level Encoder

To enrich the discourse argument representations,
we exploit multi-level encoder shown in Figure 2 to
learn the argument representations at the different
levels. Particularly, the higher-level states of multi-
level encoder could capture context-dependent as-
pects of words while the lower-level states could
model aspects of syntax (Peters et al., 2018). The
multi-level encoder is composed of stacked encoder
layers.

2.2.1 Encoder Layer
Referring to the previous work, we implement the
bidirectional LSTM (BiLSTM) neural network to
model the argument sequences, which could pre-
serve both the historical and future information in
forward and reverse directions. Therefore, we can
obtain two representations

−→
ht and

←−
ht at each time

step t of the sequence. Then we concatenate them
to get the intermediate state ht = [

−→
ht ,
←−
ht ].

Attention Controller. Due to the limitations of
treating each word equally in the general represen-
tations, we use attention mechanism to point out the
words particularly useful for our task. Let H be the
matrix consisting of output vectors [h1, h2, ..., hn]
of the last layer produced, where n is the length of
the argument. The new representation h̃ of the ar-
gument is formed by a weighted sum of the output
vectors:

M = tanh(H), (1)

α = softmax(wTM), (2)

h̃ = HαT . (3)

where H ∈ Rn×d, d is the dimension of word
embedding,w is a parameter vector. Then we could
obtain the argument representation with important
information from Eq. (4) for the next step.

h∗ = tanh(h̃) (4)
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Figure 1: TransS-driven joint learning architecture of our proposed model.
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Figure 2: The illustration of multi-level encoder.

2.2.2 Pooling Layer
Finally, we can receive the overall argument repre-
sentations by averaging pooling operation for the
word embedding sequence, defined as:

h∗Arg =
1

n

n∑
i=1

h
∗(m)
i (5)

where h∗Arg is the argument representation, h∗(m)
i

is the representation of the i-th word in the word
embedding sequence of the m-th encoder layer, n
is the number of words in an argument.

2.3 Latent Geometric Structure Learning

TransE, as a model for learning low-dimensional
embeddings of entities, is to enforce the structure
of embedding space in which different relations be-
tween entities of different types may be represented
by translation (Bordes et al., 2013). Discourse rela-
tion recognition and entity relation extraction are

similar to some extent. Intuitively, the argument-
relation instances with the same discourse relation
may also have similar direction and position infor-
mation in embedding space. However, discourse
argument embedding is a sentence-level represen-
tation, which is different from the reuse of entities
in other sentences, and more diverse and complex
than entity representation. Therefore, we design
TransS, a method which models discourse rela-
tions by interpreting them as translations operat-
ing in the low-dimensional embedding space from
the sentence perspective. Moreover, it could mine
the latent geometric structure of argument-relation
instances. Specifically, to define two arguments
as head vector hs and tail vector ts respectively,
their annotated relation signal as relation vector
rs, the latent geometric structure is reflected by
hs + rs ≈ ts, their score function is defined as
follows:

ds(hs, ts) = ||hs + rs − ts||22. (6)

where hs, ts denote the representations of Arg1 and
Arg2 respectively; rs ∈ Rd is the embedding of
discourse relation and d is the dimension of word
embedding.

GSL Loss. Under the framework of TransS, given
a training set T of triplets (hs, rs, ts) composed of
two arguments hs, ts ∈ V (the set of sentence vec-
tors) and a relation rs ∈ R (the set of relation), our
model would learn the embeddings of the words
in arguments and the discourse relation. The GSL
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loss function is defined as:

LGSL =
∑

(hs,rs,ts)∈T

∑
(h′s,rs,t

′
s)∈T ′(hs,rs,ts)

[γ + ds(hs

+ rs, ts)− ds(h′s + rs, t
′
s)]+ + λGSL‖θ‖22.

(7)

where [·]+ denotes the positive instances, γ > 0
is a margin hyper-parameter, and the set of neg-
ative triplets, constructed according to Eq.(8), in
which the head or tail is replaced by a random argu-
ment vector (but not simultaneously). θ denotes the
other parameters of the network. L2 regularization
is used to penalize the size of all parameters for
preventing overfitting, weighted by λGSL.

T ′(hs,rs,ts)
={(h′s, rs, ts)|h′s ∈ V }∪

{(hs, rs, t′s)|t′s ∈ V )}.
(8)

By optimizing the GSL loss, we could ob-
tain the latent geometric structure information
about argument-relation instances. Different from
TransE, we could not directly utilize TransS to rec-
ognize discourse relations, for that each argument
could not be reused in discourse. Therefore, we ex-
ploit TransS to mine the latent geometric structure
information and further guide the semantic feature
learning.

2.4 Semantic Feature Learning
The new argument representations (h∗Arg1, h

∗
Arg2)

with latent geometric structure information learned
by the GSL are as inputs of the semantic feature
learning (SFL). The h∗Arg1(i.e., hs) and h∗Arg2(i.e.,
ts) are obtained from the multi-level encoder. We
further stack a softmax layer upon the representa-
tions:

y = f(Wf

[
h∗Arg1,

h∗Arg2

]
+ bf ). (9)

where f is the softmax function, Wf ∈ RC×2d,
bf ∈ RC are the weights and bias term respectively,
d denotes the dimension of word embedding and
C denotes the number of relation classes.
SFL Loss. Under the framework of basic neural
networks for our task, given training set T , two
argument vectors hs, ts in the triplet (hs, rs, ts) are
concatenated to a new sentence vector during the
training process, and then the generated vector is
used for relation recognition. The SFL loss is a
cross-entropy style shown as:

LSFL = −
C∑

j=1

yjlog(ŷj) (10)

where y is the one-hot representation of the ground-
truth relation; ŷ is the predicted probabilities of
relations; C is the number of relation class.

2.5 Joint Learning
After obtaining the new representations Arg1 as
head vector hs, Arg2 as tail vector ts, and the re-
lation vector rs, our model is trained using joint
learning mechanism. The goal of our model is to
minimize the loss function (Eq.(11))

L = LGSL + λLSFL. (11)

where, LGSL and LSFL are from Eq.(7) and (10),
respectively; λ is the trade-off parameter control-
ling the balance between GSL and SFL.

Our model jointly learns the GSL and SFL to
optimize the argument representations. On the one
hand, the GSL maps the discourse relation between
two arguments to the low-dimensional embedding
space and obtains the vectors hs, rs, ts with geo-
metric structure information to constrain the SFL.
On the other hand, the SFL alternately optimizes
the discourse representations and provides the nec-
essary semantic clues for geometric structure in-
formation mining. Generally, the GSL and SFL
reinforce with each other, and finally get the better
argument representations containing the semantics
and the latent geometric structure information of
argument-relation.

3 Experiments

3.1 Datasets
The PDTB 2.0, a large scale corpus annotated on
2,312 Wall Street Journal articles, is utilized for all
experiments. It contains three hierarchies: Level-1
Class, Level-2 Type, and Level-3 Subtype. We fo-
cus on the first level, which contains four classes:
Comparison (Comp.), Contingency (Cont.), Expan-
sion (Exp.), and Temporal (Temp.). As (Rutherford
and Xue, 2014), we use Sections 2-21 as the train-
ing set, Section 22 as the development set, Section
23 as the test set.

Relation Train Dev Test
Comp. 1945 196 152
Cont. 3242 284 272
Exp. 6794 646 546
Temp. 709 61 79
Total 12690 1187 1049

Table 1: The statistical distribution of PDTB.
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3.2 Experimental Settings

All the arguments are padded at the same length
of 100. Word embedding is randomly initialized
by uniformly distributed samples [-0.1, 0.1] with
300-dimension. The learning rate is set to 0.001,
the batch size is 128, and the number of iteration
is 100. For the GSL, the margin of loss is set to
0.5, the trade-off parameter λ in Eq.(11) is set to
1.0, and we use L2 distance as dissimilarity; For
the SFL, the sizes of the input and the hidden layer
of the BiLSTMs are both 300; we choose three
encoder layers, and set the dimension of pre-trained
embeddings from ELMo (Peters et al., 2018) to
300.

3.3 The Comparison Models

3.3.1 The State-of-the-art Systems

To validate the effectiveness of our model, we se-
lect some state-of-the-art systems from the follow-
ing three aspects to compare with our model:
• Discourse Argument Representation
1) Ji2015: Ji and Eisenstein (2015) computed dis-
tributed representations for each discourse argu-
ment by composition up the syntactic parse tree.
2) Zhang2015: Zhang et al. (2015) proposed pure
neural networks with three different pooling opera-
tions to learn shallow representations in tasks.
3) Liu2016a: Liu and Li (2016) combined atten-
tion mechanism and external memory to focus on
specific words that helps determine discourse rela-
tions.
4) Lan2017: Lan et al. (2017) designed an
attention-based neural network for learning dis-
course argument representations and a multi-task
framework for learning knowledge from annotated
and unannotated corpora.
• Complex Neural Models
5) Chen2016: Chen et al. (2016) adopted a gated
relevance network to capture interaction informa-
tion between two arguments to enhance relation
recognition.
6) Qin2016: Qin et al. (2016a) adopted context-
aware character-enhanced embeddings to address
implicit discourse relation recognition task.
7) Lei2017: Lei et al. (2017) devised the Simple
Word Interaction Model (SWIM) to learn the inter-
actions between word pairs.
8) Dai2018: Dai and Huang (2018) modeled inter-
dependencies between discourse units as well as
discourse relation continuity and patterns, and pre-

dict a sequence of discourse relations in a para-
graph.
• Joint Learning
9) Liu2016b: Liu et al. (2016) designed related dis-
course classification tasks specific to a corpus, and
proposed a novel Convolutional Neural Network
embedded multi-task learning system to synthe-
size these tasks by learning both unique and shared
representations for each task.
10) Bai2018: Bai and Zhao (2018) employed dif-
ferent grained text representations, including char-
acter, subword, word, sentence, and sentence pair
levels, and transfered the knowledge from the im-
plicit connectives to support discourse relation pre-
diction.

3.3.2 The Ablation Methods

In order to validate the effectiveness of each com-
ponent of our model, we present the following ab-
lation methods:

• Baseline (Including SFL) We use three encoder
layers to encode the argument pairs separately,
then concatenate them together, and feed them
to the SFL module for relation recognition.

• +GSL We encode two arguments based on the
Baseline, and then feed them into GSL and SFL
modules, respectively. Finally, we use the two
modules to help recognize the discourse relation.

• +ELMo We utilize the Baseline to receive the
argument representations, and then we use the
pre-trained ELMo vector to enhance the argu-
ment representations. Finally, we feed them to
the SFL module for relation recognition.

• +GSL & ELMo (Ours) We feed the two argu-
ment representations, encoded by the Baseline
and enhanced by the pre-trained ELMo vector,
into GSL and SFL modules, respectively. And
then, we utilize the integrated representation to
recognize the discourse relation.

3.4 Results and Discussion

Consistent with previous studies, we choose F1

score and accuracy as evaluation metrics. For bi-
nary classification, the result is computed by F1

score, and for 4-way classification, the result is
computed by macro average F1 score.
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Model Comp. Cont. Exp. Temp. 4-way Acc.
Ji2015 35.93 52.78 - 27.63 - -
Zhang2015 33.22 52.04 69.59 30.54 - -
Liu2016a 32.13 46.09 69.88 31.82 44.98 57.27
Lan2017 40.73 58.96 72.47 38.50 47.80 57.39
Chen2016 40.17 54.76 - 31.32 - -
Qin2016 38.67 54.91 80.66 32.76 - -
Lei2017 40.47 55.36 69.50 35.34 46.46 -
Dai2018 37.72 49.39 67.45 40.70 48.82 59.75
Liu2016b 39.86 54.48 70.43 38.84 46.29 57.57
Bai2018 47.85 54.47 70.60 36.87 51.06 -
Ours 47.98 55.62 69.37 38.94 51.24 59.94

Table 2: F1 score (%) and Accuracy(Acc., %) of different comparison models on binary and 4-way classification.

Model Comp. Cont. Exp. Temp. 4-way Acc.
Baseline 32.32 49.53 65.91 34.86 46.46 54.02
+ GSL 44.88 53.17 67.91 37.38 48.91 57.65
+ ELMo 46.85 54.57 68.44 38.71 50.07 58.89
+ GSL & ELMo (Ours) 47.98 55.62 69.37 38.94 51.24 59.94

Table 3: F1 score (%) and Accuracy(Acc., %) of ablation models on binary and 4-way classification.

3.4.1 Comparison with the state-of-the-art
Systems

Table 2 shows the results of the compared state-of-
the-art systems on binary and 4-way classification.
We could make the following observations:

• Overall, i) our model achieves state-of-the-art
performance, i.e., the F1 score and accuracy
are 51.24% and 59.94% on the 4-way classi-
fication, respectively; ii) the results of binary
classification are keeping a similar tendency
with the 4-way classification. In particular,
our model gains the best F1 score on Compar-
ison relation. The main reasons may be that
the instances with different discourse relations
have different directions and position (geomet-
ric structure) features in the low-dimensional
continuous embedding space, and the Compar-
ison instances have more obvious indicative
structure features.

• Comparing our model with Chen2016 and
Lei2017, the F1 scores of our model are
higher than those of the latter two. It proves
that our model is better than the two meth-
ods only considering the content interactions,
since we jointly leverage the geometric struc-
ture information and the semantic information

of the argument-relation instances to obtain
deeper interactions.

• In the comparison models, Bai2018 with joint
learning framework achieves the best perfor-
mance, which illustrates that jointly utilizing
the discourse relation and the implicit connec-
tives are helpful to the task. Moreover, the
performance of our model is better than that
of Bai2018. It not only indicates that the ef-
fectiveness of joint learning, but also proves
considering the geometric structure is benefi-
cial to our task.

3.4.2 Ablation Models
For the ablation models, we can make the observa-
tions from Table 3:

Overall:1) Our model gains state-of-the-art per-
formance than that of the other ablation models.
This demonstrates that the geometric structure in-
formation could enrich the argument representation
and promote implicit discourse relation recognition.
2) All models have a higher F1 values on the Ex-
pansion relation than those of the other relations.
The unbalanced data may cause that.

GSL: The F1 score of our model using the GSL
module is 48.91%, higher than the performance
of Baseline. In addition, compared with ELMo,
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(a) without geometric structure features. (b) with geometric structure features.

Figure 3: Visualization of the interaction information of argument representation.

although the performance of GSL does not exceed
ELMo’s, GSL obtain comparable results. This man-
ifests that the two modules (GSL and SFL) could
reinforce with each other, which utilizes the geo-
metric structure information by the algebraic opera-
tion. Moreover, we exploit the geometric structure
clues to augment the semantic understanding of dis-
course from a new aspect, which is different from
the ELMo only focusing on the semantic informa-
tion of the text itself.

ELMo: The third row of Table 3 is the result of
our model, which only uses the pre-trained ELMo
vector to enhance argument representations. The
F1 score and accuracy are 50.07% and 58.89%,
respectively, which achieve 3.61% and 4.87% im-
provements than those of the Baseline. It verifies
that ELMo, as pre-trained contextualized word em-
beddings, could contain more contextual informa-
tion.

GSL & ELMo: Compared with ELMo, GSL
& ELMo gains better performance, which demon-
strates that inducing spatial geometry structure in-
formation based on argument enhancement could
understand the semantics of discourse better.

3.4.3 Impact of TransS
To illustrate the effectiveness of the latent geomet-
ric structure information of argument-relation in-
stances gotten by TransS, we visualize the heat
maps of the interaction information of argument
representations shown in Figure3. Every word
comes with various background colors. The darker
patches denote the correlations of word pairs are
higher. The example of Comparison relation is
listed below:

Arg1: I was prepared to be in a very bad mood
tonight.

Arg2: Now, I feel maybe there’s a little bit of eu-
phoria.

From the semantics of perspective, this example
could be identified as Comparison or Temporal re-
lation. Since argument pairs may have distinct dis-
tinguishing features in geometric space, we could
consider the geometric structure of argument pairs
to help identify the discourse relation. We can ob-
tain the following observations:

• Seen from Figure3(a), without introducing
geometric structure information, the model
has a high correlation around the word “Now”
which might indicate the Temporal relation
directly. This demonstrates that only consid-
ering the semantic information of arguments
may suffer from issues such as polysemy, am-
biguity, as well as fuzziness.

• Figure3(b) shows the result of the interac-
tion information of argument representations,
which introduces the GSL. From the results,
we can see that the model has a high correla-
tion around the word “little” and “very” with
the comparative information. The possible
reason is that our model utilizing GSL shifts
the higher attention from the word “Now”
with Temporal information to the word pairs
(little, very), (euphoria, bad) and (euphoria,
mood) with Comparison relation. Our model
with GSL introduces the geometric structure
information and jointly utilizes these features
and semantic information to help identify the
discourse relation.

3.4.4 Impact of Encoder Layer Number
In order to illustrate the impact of the encoder layer
number, we select different sizes of encoder layer
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Figure 4: The effect of encoder layers’ number.

as comparison experiments on the 4-way classi-
fication. Figure 4 shows that the F1 scores are
increasing until three encoder layers. And when
the size of the encoder layer is four or five, the
performance of our model is decreasing obviously.

With the increasing of the number of encoder lay-
ers, the model could capture the richer semantic in-
formation. However, the results imply that with the
more encoder layers considered, the model could
incur the over-fitting problem due to adding more
parameters. Therefore, we adopt three encoder
layers to encode the arguments as our Baseline in
section 3.3.

4 Related Work

Neural network-based models have shown great
effectiveness in implicit discourse relation recog-
nition. We give the analysis of mainly relevant
work:

4.1 Discourse Argument Representation

Proper argument representation is a core factor
of our task. Most previous researches encode ar-
guments as dense and continuous representation
based on various neural networks, from basic neu-
ral networks (such as CNN, RNN) to complex neu-
ral networks (Zhang et al., 2015; Qin et al., 2016b;
Rutherford et al., 2016). Some studies adopt dif-
ferent attention or memory mechanisms to catch
the emphasis on discourse arguments (Mnih et al.,
2014; Liu and Li, 2016; Zhang et al., 2016). Li
et al. (2016) exploit the hierarchical attention to
capture the focus of different granularities. Zhang
et al. (2016) build upon a semantic memory to store
knowledge in the distributed fashion for the task.
However, these models have only considered the
two arguments independently without the interac-
tion information.

4.2 Argument Pair Interactions

Further studies tend to discover more semantic in-
teractions between two arguments by complex neu-
ral networks (Qin et al., 2016c; Cai and Zhao, 2017;
Lan et al., 2017; Guo et al., 2018). Chen et al.
(2016) develop a novel gated relevance network to
capture semantic interactions between arguments.
Lei et al. (2017) conduct word pair interaction score
to capture both linear and quadratic relation for ar-
gument representation. However, these methods
utilize the pre-trained embeddings for mining the
interaction features and ignore the geometric struc-
ture information entailed in discourse arguments
and their relation.

4.3 Joint Learning Perspective

Recently, some researches adopt joint learning
framework to capture more discourse clues for the
task. Bai and Zhao (2018) jointly predict connec-
tives and relations, assuming the shared parame-
ters of the deep learning models. Xu et al. (2019)
propose a topic tensor network (TTN) to model
the sentence-level interactions and topic-level rel-
evance among arguments for this task. However,
few studies model discourse relations by translat-
ing them in the low-dimensional embedding space
as we do in this work.

TransE effectively maps the relation to the em-
bedding space of entities by performing the alge-
braic operation. Bordes et al. (2013) model entity
relations by interpreting them as translating op-
eration in the low-dimensional embedding of the
entities. Inspired by TransE, we design a TransS
method to mine the latent geometric structure infor-
mation, which could enhance the argument repre-
sentations for promoting discourse relation recog-
nition. To our knowledge, this is the first attempt
to mine the latent geometric structure of argument-
relation. Meanwhile, the embeddings of argument
and relation by TransS could be used to the other
high-level NLP tasks.

5 Conclusion

In this paper, we propose a novel TransS-driven
joint learning neural network framework by op-
timizing the discourse argument representations
to improve implicit discourse relation recognition.
We interpret the discourse relations as translation in
low-dimensional embedding space, which reflects
the geometric structure of argument-relation, and
also can obtain the richer argument representations
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based on the multi-level encoder. Different from
the conventional approaches only considering the
semantic features, we jointly leverage the latent
geometric structure information and the semantic
features to optimize the argument representations,
which could improve the semantic understanding
of discourse. Experimental results on the PDTB
show the effectiveness of our model.
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