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Abstract

Named Entity Recognition (NER) perfor-
mance often degrades rapidly when applied to
target domains that differ from the texts ob-
served during training. When in-domain la-
belled data is available, transfer learning tech-
niques can be used to adapt existing NER mod-
els to the target domain. But what should one
do when there is no hand-labelled data for the
target domain? This paper presents a simple
but powerful approach to learn NER models in
the absence of labelled data through weak su-
pervision. The approach relies on a broad spec-
trum of labelling functions to automatically an-
notate texts from the target domain. These an-
notations are then merged together using a hid-
den Markov model which captures the vary-
ing accuracies and confusions of the labelling
functions. A sequence labelling model can fi-
nally be trained on the basis of this unified
annotation. We evaluate the approach on two
English datasets (CoNLL 2003 and news arti-
cles from Reuters and Bloomberg) and demon-
strate an improvement of about 7 percentage
points in entity-level F1 scores compared to an
out-of-domain neural NER model.

1 Introduction

Named Entity Recognition (NER) constitutes a
core component in many NLP pipelines and is
employed in a broad range of applications such
as information extraction (Raiman and Raiman,
2018), question answering (Mollá et al., 2006),
document de-identification (Stubbs et al., 2015),
machine translation (Ugawa et al., 2018) and even
conversational models (Ghazvininejad et al., 2018).
Given a document, the goal of NER is to identify
and classify spans referring to an entity belonging
to pre-specified categories such as persons, organi-
sations or geographical locations.

NER models often rely on convolutional or re-
current neural architectures, sometimes completed

by a CRF layer (Chiu and Nichols, 2016; Lample
et al., 2016; Yadav and Bethard, 2018). More re-
cently, deep contextualised representations relying
on bidirectional LSTMS (Peters et al., 2018), trans-
formers (Devlin et al., 2019; Yan et al., 2019) or
contextual string embeddings (Akbik et al., 2019)
have also been shown to achieve state-of-the-art
performance on NER tasks.

These neural architectures require large corpora
annotated with named entities, such as Ontonotes
(Weischedel et al., 2011) or ConLL 2003 (Tjong
Kim Sang and De Meulder, 2003). When only mod-
est amounts of training data are available, transfer
learning approaches can transfer the knowledge ac-
quired from related tasks into the target domain, us-
ing techniques such as simple transfer (Rodriguez
et al., 2018), discriminative fine-tuning (Howard
and Ruder, 2018), adversarial transfer (Zhou et al.,
2019) or layer-wise domain adaptation approaches
(Yang et al., 2017; Lin and Lu, 2018).

However, in many practical settings, we wish
to apply NER to domains where we have no la-
belled data, making such transfer learning methods
difficult to apply. This paper presents an alterna-
tive approach using weak supervision to bootstrap
named entity recognition models without requir-
ing any labelled data from the target domain. The
approach relies on labelling functions that automati-
cally annotate documents with named-entity labels.
A hidden Markov model (HMM) is then trained
to unify the noisy labelling functions into a single
(probabilistic) annotation, taking into account the
accuracy and confusions of each labelling function.
Finally, a sequence labelling model is trained using
a cross-entropy loss on this unified annotation.

As in other weak supervision frameworks, the
labelling functions allow us to inject expert knowl-
edge into the sequence labelling model, which is
often critical when data is scarce or non-existent
(Hu et al., 2016; Wang and Poon, 2018). New la-
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belling functions can be easily inserted to leverage
the knowledge sources at our disposal for a given
textual domain. Furthermore, labelling functions
can often be ported across domains, which is not
the case for manual annotations that must be reiter-
ated for every target domain.

The contributions of this paper are as follows:

1. A broad collection of labelling functions for
NER, including neural models trained on vari-
ous textual domains, gazetteers, heuristic func-
tions, and document-level constraints.

2. A novel weak supervision model suited for
sequence labelling tasks and able to include
probabilistic labelling predictions.

3. An open-source implementation of these la-
belling functions and aggregation model that
can scale to large datasets 1.

2 Related Work

Unsupervised domain adaptation: Unsuper-
vised domain adaptation attempts to adapt knowl-
edge from a source domain to predict new instances
in a target domain which often has substantially dif-
ferent characteristics. Earlier approaches often try
to adapt the feature space using pivots (Blitzer et al.,
2006, 2007; Ziser and Reichart, 2017) to create
domain-invariant representations of predictive fea-
tures. Others learn low-dimensional transformation
features of the data (Guo et al., 2009; Glorot et al.,
2011; Chen et al., 2012; Yu and Jiang, 2016; Barnes
et al., 2018). Finally, some approaches divide the
feature space into general and domain-dependent
features (Daumé III, 2007). Multi-task learning
can also improve cross-domain performance (Peng
and Dredze, 2017).

Recently, Han and Eisenstein (2019) proposed
domain-adaptive fine-tuning, where contextualised
embeddings are first fine-tuned to both the source
and target domains with a language modelling loss
and subsequently fine-tuned to source domain la-
belled data. This approach outperforms several
strong baselines trained on the target domain of the
WNUT 2016 NER task (Strauss et al., 2016).

Aggregation of annotations: Approaches that
aggregate annotations from multiples sources have
largely concentrated on noisy data from crowd
sourced annotations, with some annotators possibly

1https://github.com/NorskRegnesentral/
weak-supervision-for-NER.

being adversarial. The Bayesian Classifier Combi-
nation approach of Kim and Ghahramani (2012)
combines multiple independent classifiers using
a linear combination of predictions. Hovy et al.
(2013) learn a generative model able to aggregate
crowd-sourced annotations and estimate the trust-
worthiness of annotators. Rodrigues et al. (2014)
present an approach based on Conditional Random
Fields (CRFs) whose model parameters are learned
jointly using EM. Nguyen et al. (2017b) propose a
Hidden Markov Model to aggregate crowd-sourced
sequence annotations and find that explicitly mod-
elling the annotator leads to improvements for POS-
tagging and NER. Finally, Simpson and Gurevych
(2019) proposed a fully Bayesian approach to the
problem of aggregating multiple sequential anno-
tations, using variational EM to compute posterior
distributions over the model parameters.

Weak supervision: The aim of weakly super-
vised modelling is to reduce the need for hand-
annotated data in supervised training. A particular
instance of weak supervision is distant supervision,
which relies on external resources such as knowl-
edge bases to automatically label documents with
entities that are known to belong to a particular
category (Mintz et al., 2009; Ritter et al., 2013;
Shang et al., 2018). Ratner et al. (2017, 2019) gen-
eralised this approach with the Snorkel framework
which combines various supervision sources using
a generative model to estimate the accuracy (and
possible correlations) of each source. These ag-
gregated supervision sources are then employed to
train a discriminative model. Current frameworks
are, however, not easily adaptable to sequence la-
belling tasks, as they typically require data points to
be independent. One exception is the work of Wang
and Poon (2018), which relies on deep probabilistic
logic to perform joint inference on the full dataset.
Finally, Fries et al. (2017) presented a weak super-
vision approach to NER in the biomedical domain.
However, unlike the model proposed in this paper,
their approach relies on an ad-hoc mechanism for
generating candidate spans to classify.

The approach most closely related to this paper
is Safranchik et al. (2020), which describe a similar
weak supervision framework for sequence labelling
based on an extension of HMMs called linked hid-
den Markov models. The authors introduce a new
type of noisy rules, called linking rules, to deter-
mine how sequence elements should be grouped
into spans of same tag. The main differences be-

https://github.com/NorskRegnesentral/weak-supervision-for-NER
https://github.com/NorskRegnesentral/weak-supervision-for-NER
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Figure 1: Illustration of the weak supervision approach.

tween their approach and this paper are the linking
rules, which are not employed here, and the choice
of labelling functions, in particular the document-
level relations detailed in Section 3.1.

Ensemble learning: The proposed approach is
also loosely related to ensemble methods such
bagging, boosting and random forests (Sagi and
Rokach, 2018). These methods rely on multiple
classifiers run simultaneously and whose outputs
are combined at prediction time. In contrast, our ap-
proach (as in other weak supervision frameworks)
only requires labelling functions to be aggregated
once, as an intermediary step to create training data
for the final model. This is a non-trivial differ-
ence as running all labelling functions at prediction
time is computationally costly due to the need to
run multiple neural models along with gazetteers
extracted from large knowledge bases.

3 Approach

The proposed model collects weak supervision
from multiple labelling functions. Each labelling
function takes a text document as input and out-
puts a series of spans associated with NER labels.
These outputs are then aggregated using a hidden
Markov model (HMM) with multiple emissions
(one per labelling function) whose parameters are
estimated in an unsupervised manner. Finally, the
aggregated labels are employed to learn a sequence
labelling model. Figure 1 illustrates this process.
The process is performed on documents from the
target domain, e.g. a corpus of financial news.

Labelling functions are typically specialised to
detect only a subset of possible labels. For instance,
a gazetteer based on Wikipedia will only detect
mentions of persons, organisations and geograph-
ical locations and ignore entities such as dates or
percents. This marks a departure from existing ag-
gregation methods, which are originally designed
for crowd-sourced data and where annotators are
supposed to make use of the full label set. In addi-
tion, unlike previous weak supervision approaches,

we allow labelling functions to produce probabilis-
tic predictions instead of deterministic values. The
aggregation model described in Section 3.2 directly
captures these properties in the emission model as-
sociated with each labelling function.

We first briefly describe the labelling functions
integrated into the current system. We review in
Section 3.2 the aggregation model employed to
combine the labelling predictions. The final la-
belling model is presented in Section 3.3. The
complete list of 52 labelling functions employed in
the experiments is available in Appendix A.

3.1 Labelling functions
Out-of-domain NER models The first set of la-
belling functions are sequence labelling models
trained in domains from which labelled data is
available. In the experiments detailed in Section
4, we use four such models, respectively trained
on Ontonotes (Weischedel et al., 2011), CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003)2,
the Broad Twitter Corpus (Derczynski et al., 2016)
and a NER-annotated corpus of SEC filings (Sali-
nas Alvarado et al., 2015).

For the experiments in this paper, all afore-
mentioned models rely on a transition-based NER
model (Lample et al., 2016) which extracts features
with a stack of four convolutional layers with filter
size of three and residual connections. The model
uses attention features and a multi-layer percep-
tron to select the next transition. It is initialised
with GloVe embeddings (Pennington et al., 2014)
and implemented in Spacy (Honnibal and Montani,
2017). However, the proposed approach does not
impose any constraints on the model architecture
and alternative approaches based on e.g. contextu-
alised embeddings can also be employed.

Gazetteers As in distant supervision approaches,
we include a number of gazetteers from large
knowledge bases to identify named entities. Con-
cretely, we use resources from Wikipedia (Geiß
et al., 2018), Geonames (Wick, 2015), the Crunch-
base Open Data Map, DBPedia (Lehmann et al.,
2015) along with lists of countries, languages, na-
tionalities and religious or political groups.

To efficiently search for occurrences of these en-
tities in large text collections, we first convert each
knowledge base into a trie data structure. Prefix
search is then applied to extract matches (using

2The ConLL 2003 NER model is of course deactivated for
the experimental evaluation on ConLL 2003.
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both case-sensitive and case-insensitive mode, as
they have distinct precision-recall trade-offs).

Heuristic functions We also include various
heuristic functions, each specialised in the recog-
nition of specific types of named entities. Several
functions are dedicated to the recognition of proper
names based on casing, part-of-speech tags or de-
pendency relations. In addition, we integrate a
variety of handcrafted functions relying on regular
expressions to detect occurrences of various enti-
ties (see Appendix A for details). A probabilistic
parser specialised in the recognition of dates, times,
money amounts, percents, and cardinal/ordinal val-
ues (Braun et al., 2017) is also incorporated.

Document-level relations All labelling func-
tions described above rely on local decisions on
tokens or phrases. However, texts are not loose
collections of words, but exhibit a high degree of
internal coherence (Grosz and Sidner, 1986; Grosz
et al., 1995) which can be exploited to further im-
prove the annotations.

We introduce one labelling function to capture
label consistency constraints in a document. As
noted in (Krishnan and Manning, 2006; Wang et al.,
2018), named entities occurring multiple times
through a document have a high probability of be-
longing to the same category. For instance, while
Komatsu may both refer to a Japanese town or a
multinational corporation, a text including this men-
tion will either be about the town or the company,
but rarely both at the same time. To capture these
non-local dependencies, we define the following
label consistency model: given a text span e occur-
ring in a given document, we look for all spans Ze
in the document that contain the same string as e.
The (probabilistic) output of the labelling function
then corresponds to the relative frequency of each
label l for that string in the document:

Pdoc majority(e)(l) =

∑
z∈Ze

Plabel(z)(l)

|Ze|
(1)

The above formula depends on a distribution
Plabel(z), which can be defined on the basis of
other labelling functions. Alternatively, a two-stage
model similar to (Krishnan and Manning, 2006)
could be employed to first aggregate local labelling
functions and subsequently apply document-level
functions on aggregated predictions.

Another insight from Grosz and Sidner (1986) is
the importance of the attentional structure. When

introduced for the first time, named entities are
often referred to in an explicit and univocal manner,
while subsequent mentions (once the entity is a part
of the focus structure) frequently rely on shorter
references. The first mention of a person in a given
text is for instance likely to include the person’s full
name, and is often shortened to the person’s last
name in subsequent mentions. As in Ratinov and
Roth (2009), we determine whether a proper name
is a substring of another entity mentioned earlier in
the text. If so, the labelling function replicates the
label distribution of the first entity.

3.2 Aggregation model
The outputs of these labelling functions are then
aggregated into a single layer of annotation through
an aggregation model. As we do not have access
to labelled data for the target domain, this model is
estimated in a fully unsupervised manner.

Model We assume a list of J labelling functions
{λ1, ...λJ} and a list of S mutually exclusive NER
labels {l1, ...lS}. The aggregation model is repre-
sented as an HMM, in which the states correspond
to the true underlying labels. This model has multi-
ple emissions (one per labelling function) assumed
to be mutually independent conditional on the la-
tent underlying label.

Formally, for each token i ∈ {1, ..., n} and la-
belling function j, we assume a Dirichlet distribu-
tion for the probability labels Pij . The parameters
of this Dirichlet are separate vectors αsi

j ∈ RS[0,1],
for each of the latent states si ∈ {1, ..., S}. The
latent states are assumed to have a Markovian de-
pendence structure between the tokens {1, ..., n}.
This results in the HMM represented by a depen-
dent mixtures of Dirichlet model:

Pij |αsi
j

ind∼ Dirichlet
(
αsi

j

)
, (2)

p(si|si−1) = logit−1
(
ω(si,si−1)

)
, (3)

logit−1
(
ω(si,si−1)

)
= eω

(si,si−1)

1+eω
(si,si−1)

. (4)

Here, ω(si,si−1) ∈ R are the parameters of the
transition probability matrix controlling for a given
state si−1 the probability of transition to state si.
Figure 2 illustrates the model structure.

Parameter estimation The learnable parameters
of this HMM are (a) the transition matrix between
states and (b) the α vectors of the Dirichlet distri-
bution associated with each labelling function. The
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Figure 2: Aggregation model using a hidden Markov
model with multiple probabilistic emissions.

transition matrix is of size |S|× |S|, while we have
|S| × |J | α vectors, each of size |S|. The parame-
ters are estimated with the Baum-Welch algorithm,
which is a variant of EM algorithm that relies on
the forward-backward algorithm to compute the
statistics for the expectation step.

To ensure faster convergence, we introduce a
new constraint to the likelihood function: for each
token position i, the corresponding latent label si
must have a non-zero probability in at least one
labelling function (the likelihood of this label is
otherwise set to zero for that position). In other
words, the aggregation model will only predict a
particular label if this label is produced by least
one labelling function. This simple constraint facil-
itates EM convergence as it restricts the state space
to a few possible labels at every time-step.

Prior distributions The HMM described above
can be provided with informative priors. In particu-
lar, the initial distribution for the latent states can
be defined as a Dirichlet based on counts δ for the
most reliable labelling function3:

p(si)
d
= Dirichlet(δ). (5)

The prior for each row k of the transition probabili-
ties matrix is also a Dirichlet based on the frequen-
cies of transitions between the observed classes for
the most reliable labelling function κk:

p(si|si−1 = k)
d
= Dirichlet(κk). (6)

Finally, to facilitate convergence of the EM algo-
rithm, informative starting values can be specified
for the emission model of each labelling function.

3The most reliable labelling function was found in our
experiments to be the NER model trained on Ontonotes 5.0.

Assuming we can provide rough estimates of the re-
call rjk and precision ρjk for the labelling function
j on label k, the initial values for the parameters of
the emission model are expressed as:

αsijk ∝

{
rjk, if si = k,

(1− rsik) (1− ρjk) δk, if si 6= k.

The probability of observing a given label k emit-
ted by the labelling function j is thus proportional
to its recall if the true label is indeed k. Otherwise
(i.e. if the labelling function made an error), the
probability of emitting k is inversely proportional
to the precision of the labelling function j.

Decoding Once the parameters of the HMM
model are estimated, the forward-backward algo-
rithm can be employed to associate each token
marginally with a posterior probability distribution
over possible NER labels (Rabiner, 1990).

3.3 Sequence labelling model
Once the labelling functions are aggregated on doc-
uments from the target domain, we can train a se-
quence labelling model on the unified annotations,
without imposing any constraints on the type of
model to use. To take advantage of the posterior
marginal distribution p̃s over the latent labels, the
optimisation should seek to minimise the expected
loss with respect to p̃s:

θ̂ = argmin
θ

n∑
i

Ey∼p̃s [loss(hθ(xi), y)] (7)

where hθ(·) is the output of the sequence labelling
model. This is equivalent to minimising the cross-
entropy error between the outputs of the neural
model and the probabilistic labels produced by the
aggregation model.

4 Evaluation

We evaluate the proposed approach on two English-
language datasets, namely the CoNLL 2003 dataset
and a collection of sentences from Reuters and
Bloomberg news articles annotated with named
entities by crowd-sourcing. We include a second
dataset in order to evaluate the approach with a
more fine-grained set of NER labels than the ones
in CoNLL 2003. As the objective of this paper
is to compare approaches to unsupervised domain
adaptation, we do not rely on any labelled data
from these two target domains.
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4.1 Data
CoNLL 2003 The CoNLL 2003 dataset (Tjong
Kim Sang and De Meulder, 2003) consists of 1163
documents, including a total of 35089 entities
spread over 4 labels: ORG, PER, LOC and MISC.

Reuters & Bloomberg We additionally crowd
annotate 1054 sentences from Reuters and
Bloomberg news articles from Ding et al. (2014).
We instructed the annotators to tag sentences with
the following 9 Ontonotes-inspired labels: PER-
SON, NORP, ORG, LOC, PRODUCT, DATETIME, PER-
CENT, MONEY, QUANTITY. Each sentence was an-
notated by at least two annotators, and a qualifying
test with gold-annotated questions was conducted
for quality control. Cohen’s κ for sentences with
two annotators is 0.39, while Krippendorff’s α for
three annotators is 0.44. We had to remove QUAN-
TITY labels from the annotations as the crowd re-
sults for this label were highly inconsistent.

4.2 Baselines
Ontonotes-trained NER The first baseline cor-
responds to a neural sequence labelling model
trained on the Ontonotes 5.0 corpus. We use here
the same model from Section 3.1, which is the
single best-performing labelling function (that is,
without aggregating multiple predictions).

We also experimented with other neural architec-
tures but these performed similar or worse than the
transition-based model, presumably because they
are more prone to overfitting on the source domain.

Majority voting (MV) The simplest method for
aggregating outputs is majority voting, i.e. out-
putting the most frequent label among the ones
predicted by each labelling function. However, spe-
cialised labelling functions will output O for most
tokens, which means that the majority label is typ-
ically O. To mitigate this problem, we first look
at tokens that are marked with a non-O label by
at least T labelling functions (where T is a hyper-
parameter tuned experimentally), and then apply
majority voting on this set of non-O labels.

Snorkel model The Snorkel framework (Ratner
et al., 2017) does not directly support sequence
labelling tasks as data points are required to be
independent. However, heuristics can be used to
extract named-entity candidates and then apply la-
belling functions to infer their most likely labels
(Fries et al., 2017). For this baseline, we use the

three functions nnp detector, proper detector and com-
pound detector (see Appendix A) to generate candi-
date spans. We then create a matrix expressing the
output of each labelling function for each span (in-
cluding a specific ”abstain” value to denote the ab-
sence of prediction) and run the matrix-completion-
style approach of Ratner et al. (2019) to aggregate
the predictions from all functions.

mSDA is a strong domain adaptation baseline
(Chen et al., 2012) which augments the feature
space of a model with intermediate representations
learned using stacked denoising autoencoders. In
our case, we learn the mSDA representations on
the unlabeled source and target domain data. These
800 dimensional vectors are concatenated to 300
dimensional word embeddings and fed as input to
a two-layer LSTM with a skip connection. Finally,
we train the LSTM on the labeled source data and
test on the target domain.

AdaptaBERT This baseline corresponds to a
state-of-the-art unsupervised domain adaptation ap-
proach (AdaptaBERT) (Han and Eisenstein, 2019).
The approach first uses unlabeled data from both
the source and target domains to domain-tune a
pretrained BERT model. The model is finally task-
tuned in a supervised fashion on the source domain
labelled data (Ontonotes). At inference time, the
model makes use of the pretraining and domain
tuning to predict entities in the target domain. In
our experiments, we use the cased-version of the
base BERT model and perform three fine-tuning
epochs for both domain-tuning and task-tuning. We
additionally include an ensemble model, which av-
erages the predictions of five BERT models fine-
tuned with different random seeds.

Mixtures of multinomials
Following the notation from Section 3.2, we de-
fine Yi,j,k = I(Pi,j,k = maxk′∈{1,...,S} Pi,j,k′) to
be the most probable label for word i by source j.
One can model Yij with a Multinomial probabil-
ity distribution. The first four baselines (the fifth
one assumes Markovian dependence between the
latent states) listed below use the following inde-
pendent, i.e. p(si, si−1) = p(si)p(si−1), mixtures
of Multinomials model for Yij :

Yij |psij
ind∼ Multinomial(psij ),

si
ind∼ Multinomial(σ).
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Accuracy model (ACC) (Rodrigues et al., 2014)
assumes the following constraints on psij :

psijk =

{
πj , if si = k,
1−πj
J−1 si 6= k.

Here, for each labelling function it is assumed to
have the same accuracy πj for all of the tokens.

Confusion vector (CV) (Nguyen et al., 2017a)
extends ACC by relying on separate success prob-
abilities for each token label:

psijk =

{
πjk, if si = k,
1−πjk
J−1 si 6= k.

Confusion matrix (CM) (Dawid and Skene,
1979) allows for distinct accuracies conditional on
the latent states, which results in:

psijk = πsijk. (8)

Sequential Confusion Matrix (SEQ) extends
the CM model of Simpson and Gurevych (2019),
where an ”auto-regressive” component is included
in the observed part of the model. We assume de-
pendence on a covariate indicating that the label
has not changed for a given source, i.e.:

psijk = logit−1(µsijk + I(Y T
i−1,j,k = Y T

i,j,k)β
si
jk).

Dependent confusion matrix (DCM) combines
the CM-distinct accuracies conditional on the latent
states of (8) and the Markovian dependence of (3).

4.3 Results
The evaluation results are shown in Tables 1 and
2, respectively for the CoNLL 2003 data and the
crowd-annotated sentences. The metrics are the
(micro-averaged) precision, recall and F1 scores
at both the token-level and entity-level. In addi-
tion, we indicate the token-level cross-entropy er-
ror (in log-scale). As the labelling functions are
defined on a richer annotation scheme than the four
labels of ConLL 2003, we map GPE to LOC and
EVENT, FAC, LANGUAGE, LAW, NORP, PRODUCT
and WORK OF ART to MISC. The results for the
ACC and CV baselines are not included as the pa-
rameter estimation did not converge and hence did
not provide reliable posteriors over parameters.

Table 1 further details the results for subsets of
labelling functions. Of particular interest is the con-
tribution of document-level functions, boosting the

entity-level F1 from 0.702 to 0.716. This highlights
the importance of these relations in NER.

The last line of the two tables reports the per-
formance of the sequence labelling model (Section
3.3) trained on the aggregated labels. We observe
that its performance remains close to the HMM-
aggregated labels. This shows that the knowledge
from the labelling functions can be injected into a
standard neural model without substantial loss.

4.4 Discussion
Although not shown in the results due to space
constraints, we also analysed whether the informa-
tive priors described in Section 3.2 influenced the
performance of the aggregation model. We found
informative and non-informative priors to yield sim-
ilar performance for CoNLL 2003. However, the
performance of non-informative priors was very
poor on the Reuters and Bloomberg sentences (F1

at 0.12), thereby demonstrating the usefulness of
informative priors for small datasets.

We provide in Figure 3 an example with a few
selected labelling functions. In particular, we can
observe that the Ontonotes-trained NER model mis-
takenly labels ”Heidrun” as a product. This erro-
neous label, however, is counter-balanced by other
labelling functions, notably a document-level func-
tion looking at the global label frequency of this
string through the document. We do, however, no-
tice a few remaining errors, e.g. the labelling of
”Status Weekly” as an organisation.

Figure 4 illustrates the pairwise agreement and
disagreement between labelling functions on the
CoNLL 2003 dataset. If both labelling functions
make the same prediction on a given token, we
count this as an agreement, whereas conflicting pre-
dictions (ignoring O labels), are seen as disagree-
ment. Large differences may exist between these
functions for specific labels, especially MISC. The
functions with the highest overlap are those making
predictions on all labels, while labelling functions
specialised to few labels (such as legal detector) of-
ten have less overlap. We also observe that the
two gazetteers from Crunchbase and Geonames
disagree in about 15% of cases, presumably due
to company names that are also geographical loca-
tions, as in the earlier Komatsu example.

In terms of computational efficiency, the estima-
tion of HMM parameters is relatively fast, requir-
ing less than 30 mins on the entire CoNLL 2003
data. Once the aggregation model is estimated, it
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Token-level Entity-level
Model: P R F1 CEE P R F1

Ontonotes-trained NER 0.719 0.706 0.712 2.671 0.694 0.620 0.654

Majority voting (MV) 0.815 0.675 0.738 2.047 0.751 0.619 0.678
Confusion Matrix (CM) 0.786 0.746 0.766 1.964 0.713 0.700 0.706
Sequential Confusion Matrix (SEQ) 0.736 0.716 0.726 2.254 0.642 0.668 0.654
Dependent Confusion Matrix (DCM) 0.785 0.744 0.764 1.983 0.710 0.698 0.704
Snorkel-aggregated labels 0.710 0.661 0.684 2.264 0.714 0.621 0.664

mSDA (OntoNotes) 0.640 0.569 0.603 2.813 0.560 0.562 0.561
AdaptaBERT (OntoNotes) 0.693 0.733 0.712 2.280 0.652 0.736 0.691
AdaptaBERT (Ensemble) 0.704 0.754 0.729 2.103 0.684 0.743 0.712

HMM-agg. labels (only NER models) 0.658 0.720 0.688 2.653 0.642 0.599 0.620
HMM-agg. labels (only gazetteers) 0.759 0.394 0.518 3.678 0.687 0.367 0.478
HMM-agg. labels (only heuristics) 0.722 0.771 0.746 1.989 0.718 0.683 0.700
HMM-agg. labels (all but doc-level) 0.714 0.778 0.744 1.878 0.713 0.693 0.702
HMM-agg. labels (all functions) 0.719 0.794 0.754 1.812 0.721 0.713 0.716

Neural net trained on HMM-agg. labels 0.712 0.790 0.748 2.282 0.715 0.707 0.710

Table 1: Evaluation results on CoNLL 2003. MV=Majority Voting, P=Precision, R=Recall, CEE=Cross-entropy
Error (lower is better). The results are micro-averaged on all labels (PER, ORG, LOC and MISC).

Token-level Entity-level
Model: P R F1 CEE P R F1

OntoNotes-trained NER 0.793 0.791 0.792 2.648 0.694 0.635 0.664

Majority voting (MV) 0.832 0.713 0.768 2.454 0.699 0.644 0.670
Confusion Matrix (CM) 0.816 0.702 0.754 2.708 0.667 0.636 0.652
Sequential Confusion Matrix (SEQ) 0.741 0.630 0.682 3.261 0.535 0.547 0.540
Dependent Confusion Matrix (DCM) 0.819 0.706 0.758 2.702 0.673 0.641 0.656

mSDA (OntoNotes) 0.749 0.751 0.750 2.501 0.618 0.684 0.649
AdaptaBERT (OntoNotes) 0.799 0.801 0.800 2.351 0.668 0.734 0.699
AdaptaBERT (Ensemble) 0.813 0.815 0.814 2.265 0.682 0.748 0.713

HMM-aggregated labels (all functions) 0.804 0.823 0.814 2.219 0.749 0.697 0.722

Neural net trained on HMM-agg. labels 0.805 0.827 0.816 2.448 0.749 0.701 0.724

Table 2: Evaluation results on 1094 crowd-annotated sentences from Reuters and Bloomberg news articles. The
results are micro-averaged on 8 labels (PERSON, NORP, ORG, LOC, PRODUCT, DATE, PERCENT, and MONEY).

can be directly applied to new texts with a single
forward-backward pass, and can therefore scale to
datasets with hundreds of thousands of documents.
This runtime performance is an important advan-
tage compared to approaches such as AdaptaBERT
(Han and Eisenstein, 2019) which are relatively
slow at inference time. The proposed approach can
also be ported to other languages than English, al-
though heuristic functions and gazetteers will need
to be adapted to the target language.

5 Conclusion

This paper presented a weak supervision model
for sequence labelling tasks such as Named Entity
Recognition. To leverage all possible knowledge
sources available for the task, the approach uses
a broad spectrum of labelling functions, includ-
ing data-driven NER models, gazetteers, heuristic
functions, and document-level relations between
entities. Labelling functions may be specialised
to recognise specific labels while ignoring oth-
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Well repairs to lift Heidrun
PRODUCT

LOC

oil output - Statoil
COMPANY

. OSLO
GPE

1996-08-22
DATE

CARDINAL

Three
CARDINAL

plugged water injection wells on the Heidrun
PRODUCT

LOC

COMPANY

oilfield off mid-Norway will be reopened over the next month
DATE

, operator Den Norske Stats
COMPANY

Oljeselskap

PERSON

AS

ORG

( Statoil
COMPANY

) said on Thursday

DATE

.

The plugged wells have accounted for a dip of 30,000
CARDINAL

barrels

QUANTITY

per day ( bpd ) in Heidrun
LOC

output to roughly 220,000
CARDINAL

bpd

QUANTITY

, according

to the company ’s Status Weekly
ORG

newsletter . The wells will be reperforated and gravel will be pumped into the reservoir through one
CARDINAL

TIME

of the wells to avoid plugging problems in the future , it said . – Oslo
GPE

newsroom

Neural models: Ontonotes-trained NER ;Gazetteers: company uncased ; Heuristic functions: date detector, snips, and number detector ;
Document level functions: doc majority uncased ; Aggregated predictions: HMM-aggregated model

Figure 3: Extended example showing the outputs of 6 labelling functions, along with the HMM-aggregated model.
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Figure 4: Pairwise agreement (left) and disagreement (right) between the labelling functions on the CoNLL 2003
data with labels PER, ORG, LOC, MISC, normalized by total number of labelled examples.

ers. Furthermore, unlike previous weak supervi-
sion approaches, labelling functions may produce
probabilistic predictions. The outputs of these la-
belling functions are then merged together using a
hidden Markov model whose parameters are esti-
mated with the Baum-Welch algorithm. A neural
sequence labelling model can finally be learned on
the basis of these unified predictions.

Evaluation results on two datasets (CoNLL 2003
and news articles from Reuters and Bloomberg)
show that the method can boost NER performance
by about 7 percentage points on entity-level F1.
In particular, the proposed model outperforms the
unsupervised domain adaptation approach through
contextualised embeddings of Han and Eisenstein
(2019). Of specific linguistic interest is the con-
tribution of document-level labelling functions,
which take advantage of the internal coherence and
narrative structure of the texts.

Future work will investigate how to take into
account potential correlations between labelling

functions in the aggregation model, as done in
e.g. (Bach et al., 2017). Furthermore, some of the
labelling functions can be rather noisy and model
selection of the optimal subset of the labelling func-
tions might well improve the performance of our
model. Model selection approaches that can be
adapted are discussed in Adams and Beling (2019);
Hubin (2019). We also wish to evaluate the ap-
proach on other types of sequence labelling tasks
beyond Named Entity Recognition.
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A Labelling functions

Group Function name Description

Neural
NER
models

BTC Model trained on the Broad Twitter Corpus
BTC+c Model trained on the Broad Twitter Corpus + postprocessing
SEC Model trained on SEC-filings
SEC+c Model trained on SEC-filings + postprocessing
conll2003 Model trained on CoNLL 2003
conll2003+c Model trained on CoNLL 2003 + postprocessing
core web md Model trained on Ontonotes 5.0
core web md+c Model trained on Ontonotes 5.0 + postprocessing

Gazetteers

wiki cased Gazetteer (case-sensitive) using Wikipedia entries
multitoken wiki cased Same as above, but restricted to multitoken entities
wiki uncased Gazetteer (case-insensitive) using Wikipedia entries
multitoken wiki uncased Same as above, but restricted to multitoken entities
wiki small cased Gazetteer (case-sensitive) using Wikipedia entries with non-empty description
multitoken wiki small cased Same as above, but restricted to multitoken entities
wiki small uncased Gazetteer (case-insensitive) using Wikipedia entries with non-empty description
multitoken wiki small uncased Same as above, but restricted to multitoken entities
company cased Gazetteer (case-sensitive) using a large list of company names
multitoken company cased Same as above, but restricted to multitoken entities
company uncased Gazetteer from a large list of company names (case-insensitive)
multitoken company uncased Same as above, but restricted to multitoken entities
crunchbase cased Gazetteer (case-sensitive) using the Crunchbase Open Data Map
multitoken crunchbase cased Same as above, but restricted to multitoken entities
crunchbase uncased Gazetteer (case-insensitive) using the Crunchbase Open Data Map
multitoken crunchbase uncased Same as above, but restricted to multitoken entities
geo cased Gazetteer (case-sensitive) using the Geonames database
multitoken geo cased Same as above, but restricted to multitoken entities
geo uncased Gazetteer (case-insensitive) using the Geonames database
multitoken geo uncased Same as above, but restricted to multitoken entities
product cased Gazetteer (case-sensitive) using products extracted from DBPedia
multitoken product cased Same as above, but restricted to multitoken entities
product uncased Gazetteer (case-insensitive) using products extracted from DBPedia
multitoken product uncased Same as above, but restricted to multitoken entities

Heuristic
functions

date detector Detection of entities of type DATE
time detector Detection of entities of type TIME
money detector Detection of entities of type MONEY
number detector Detection of entities CARDINAL, ORDINAL, PERCENT and QUANTITY
legal detector Detection of entities of type LAW
misc detector Detection of entities of type NORP, LANGUAGE, FAC or EVENT
full name detector Heuristic function to detect full person names
company type detector Detection of companies with a legal type suffix
nnp detector Detection of sequences of tokens with NNP as POS-tag
infrequent nnp detector Detection of sequences of tokens with NNP as POS-tag

+ including at least one infrequent token (rank > 15000 in vocabulary)
proper detector Detection of proper names based on casing
infrequent proper detector Detection of proper names based on casing + at least one infrequent token
proper2 detector Detection of proper names based on casing
infrequent proper2 detector Detection of proper names based on casing + at least one infrequent token
compound detector Detection of proper noun phrases with compound dependency relations
infrequent compound detector Detection of proper noun phrases with compound dependency relations

+ including at least one infrequent token
snips Probabilistic parser specialised in the recognition of dates, times, money

amounts, percents, and cardinal/ordinal values

Doc-level
functions

doc history Entity classification based on already introduced entities in the document
doc majority cased Entity classification based on majority labels in document (case-sensitive)
doc majority uncased Entity classification based on majority labels in document (case-insensitive)

Table 3: Full list of labelling functions employed in the experiments. The neural NER models are provided in two
versions: one that directly outputs the raw model predictions, and one that runs a shallow postprocessing step on
the model predictions to correct known recognition errors (for instance, ensuring that a numeric amount that is
either preceded or followed by a currency symbol is always classified as an entity of type MONEY).
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B Label matching problem

The baseline models relying on mixtures of multinomials have to address the so-called label matching
problem, which needs some extra care.

The following approach was employed in the experiments from Section 4:

• First, we put strong initial values to the probabilities σ of individual classes based on the frequency
of appearance of these classes in the most reliable labelling function. This is expected to increase the
probability of EM exploring the mode around the initialised values.

• Second, we perform post-processing and set the labels to the states corresponding to the labels with
the highest pairwise correlations to the latent labels from one of the three options:

1. the most reliable labelling function (Ontonotes-trained NER);
2. the majority voting labelling function;
3. the suggested Dirichlet dependent mixture model.

Additionally, if this highest correlation is below the threshold of 0.1 the O label is assigned to the
corresponding state. We empirically observed that the label matching technique that performed best was
to map the states to the labels produced by the majority voter (based on the pairwise correlations).
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C Detailed results

In Table 4, we provide the detailed results distributed by NER label for the CoNLL data 2003 which were
presented in micro-averaged form in Table 1 of the main paper.

Label Frequency Model Token-level Entity-level
P R F1 P R F1

LOC 30.3 % Ontonotes-trained NER 0.767 0.812 0.788 0.764 0.800 0.782
Majority voting (MV) 0.740 0.839 0.786 0.739 0.828 0.780
Confusion Matrix 0.721 0.895 0.798 0.714 0.890 0.792
Sequential Confusion Matrix 0.681 0.856 0.758 0.664 0.848 0.744
Dependent Confusion Matrix 0.718 0.890 0.794 0.710 0.886 0.788
Snorkel-aggregated labels 0.634 0.855 0.728 0.676 0.747 0.710
HMM (only NER models) 0.601 0.825 0.696 0.650 0.733 0.690
HMM (only gazetteers) 0.707 0.632 0.668 0.694 0.630 0.660
HMM (heuristics) 0.715 0.870 0.784 0.745 0.832 0.786
HMM (all but doc-level) 0.701 0.862 0.774 0.724 0.838 0.776
HMM (all functions) 0.726 0.859 0.786 0.738 0.839 0.786
NN trained on HMM 0.736 0.851 0.790 0.734 0.850 0.788

PER 28.7 % Ontonotes-trained NER 0.850 0.833 0.842 0.787 0.741 0.764
Majority voting (MV) 0.915 0.871 0.892 0.831 0.775 0.802
Confusion Matrix 0.891 0.921 0.906 0.806 0.834 0.820
Sequential Confusion Matrix 0.849 0.879 0.864 0.730 0.789 0.758
Dependent Confusion Matrix 0.892 0.920 0.906 0.806 0.834 0.820
Snorkel-aggregated labels 0.816 0.903 0.858 0.769 0.717 0.742
HMM (only NER models) 0.837 0.860 0.848 0.770 0.744 0.756
HMM (only gazetteers) 0.917 0.452 0.606 0.835 0.391 0.532
HMM (heuristics) 0.836 0.933 0.882 0.791 0.799 0.794
HMM (all but doc-level) 0.859 0.917 0.888 0.814 0.782 0.798
HMM (all functions) 0.857 0.947 0.900 0.820 0.826 0.822
NN trained on HMM 0.856 0.946 0.898 0.814 0.824 0.818

ORG 26.6 % Ontonotes-trained NER 0.536 0.517 0.526 0.437 0.306 0.360
Majority voting (MV) 0.725 0.512 0.600 0.610 0.434 0.508
Confusion Matrix 0.698 0.613 0.652 0.571 0.537 0.554
Sequential Confusion Matrix 0.632 0.590 0.610 0.485 0.515 0.500
Dependent Confusion Matrix 0.696 0.613 0.652 0.567 0.536 0.552
Snorkel-aggregated labels 0.512 0.639 0.568 0.519 0.496 0.508
HMM (only NER models) 0.516 0.549 0.532 0.425 0.333 0.374
HMM (only gazetteers) 0.648 0.304 0.414 0.512 0.235 0.322
HMM (heuristics) 0.566 0.625 0.594 0.549 0.501 0.524
HMM (all but doc-level) 0.565 0.631 0.596 0.551 0.494 0.520
HMM (all functions) 0.542 0.665 0.598 0.545 0.527 0.536
NN trained on HMM 0.539 0.665 0.596 0.537 0.519 0.528

MISC 14.4 % Ontonotes-trained NER 0.676 0.599 0.636 0.702 0.583 0.636
Majority voting (MV) 0.861 0.187 0.308 0.809 0.193 0.312
Confusion Matrix 0.895 0.319 0.470 0.850 0.332 0.478
Sequential Confusion Matrix 0.850 0.320 0.464 0.791 0.333 0.468
Dependent Confusion Matrix 0.893 0.318 0.468 0.844 0.330 0.474
Snorkel-aggregated labels 0.852 0.398 0.542 0.863 0.400 0.546
HMM (only NER models) 0.667 0.544 0.600 0.708 0.518 0.598
HMM (only gazetteers) 0.745 0.011 0.022 0.594 0.008 0.016
HMM (heuristics) 0.842 0.499 0.626 0.850 0.478 0.612
HMM (all but doc-level) 0.714 0.596 0.650 0.781 0.575 0.662
HMM (all functions) 0.814 0.571 0.672 0.830 0.565 0.672
NN trained on HMM 0.852 0.577 0.688 0.866 0.583 0.696

Table 4: Detailed evaluation results on the CoNLL2003 dataset.


