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Abstract

Open Domain dialog system evaluation is
one of the most important challenges in dia-
log research. Existing automatic evaluation
metrics, such as BLEU are mostly reference-
based. They calculate the difference between
the generated response and a limited number
of available references. Likert-score based
self-reported user rating is widely adopted by
social conversational systems, such as Ama-
zon Alexa Prize chatbots. However, self-
reported user rating suffers from bias and vari-
ance among different users. To alleviate this
problem, we formulate dialog evaluation as
a comparison task. We also propose an au-
tomatic evaluation model CMADE (Compar-
ison Model for Automatic Dialog Evaluation)
that automatically cleans self-reported user rat-
ings as it trains on them. Specifically, we
first use a self-supervised method to learn bet-
ter dialog feature representation, and then use
KNN and Shapley to remove confusing sam-
ples. Our experiments show that CMADE
achieves 89.2% accuracy in the dialog com-
parison task. Our implementation is available
at https://github.com/Weixin-Liang/

dialog_evaluation_CMADE.

1 Introduction

Open-domain dialog system evaluation is one of
the most difficult challenges in the dialog commu-
nity. Open-domain chatbots have a user-centric
goal: to provide human with enjoyable user ex-
perience. However, user experience is difficult to
quantify due to bias and variance among different
users. Previous research has optimized on auto-
matic dialog evaluation metrics such as BLUE (Pa-
pineni et al., 2002), which measures the difference
between the generated responses and the reference
responses. Due to the contrast between the one-to-
many nature of open-domain conversations and the
limited number of available references, such met-

rics correlate poorly with human judgments (Liu
et al., 2016; Lowe et al., 2017; Novikova et al.,
2017). Designing a fully automatic dialog evalua-
tion metric is still an open research problem.

Currently, both academia and industry (Ram
et al., 2018a; Li et al., 2019b; Liang et al., 2019)
rely on human ratings to evaluate open-domain
dialogs. Following the ubiquitous application of
Likert scores in survey research like online re-
views (Godes and Silva, 2012) and consumer sat-
isfaction (Peterson and Wilson, 1992), a common
practice of human evaluation on dialogs is to ask ei-
ther a third-person rater or the chatbot user to report
a Likert score. However, concerns have been raised
about the validity of Likert score-based ratings. Ku-
likov et al. (Kulikov et al., 2018) observe high bias
and variance of Likert scores. Such issue is more se-
vere in real-world commercial dialog systems like
Alexa social chatbot (Ram et al., 2018a; Venkatesh
et al., 2018), because the real-world users have nei-
ther monetary incentive nor necessary annotation
training to calibrate their ratings.

To explore the validity of Likert score based
dialog evaluation, we first perform a large-scale
data analysis of 3,608 collected real-world human-
machine dialogs along with their self-reported Lik-
ert scale ratings from Amazon Alexa Prize Chal-
lenge (Ram et al., 2018a; Yu et al., 2019; Chen
et al., 2018). One noticeable property of the rat-
ings is its J-shape skew distribution: nearly half
of the dialogs are rated with the highest Likert
score. The prevalence of such extreme distribu-
tion of ratings has long been observed by the busi-
ness research community in variable aspects of real-
life (Schoenmüller et al., 2018; Godes and Silva,
2012; Hu et al., 2017; Zervas et al., 2015).

Although we could tell which dialog system is
better by running statistical test on a large number
of noisy ratings, it is difficult to locate dialogs with
bad performance reliably to improve dialog system
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quality. In this paper, we take on the challenge of
calibrating a large number of noisy self-reported
user ratings to build better dialog evaluation mod-
els. We formulate the task as to first denoise the
self-reported user ratings and then train a model on
the cleaned ratings. We design CMADE (Compar-
ison Model for Automatic Dialog Evaluation), a
progressive three-stage denoising pipeline. We first
perform a self-supervised learning to obtain good
dialog representations. We then fine-tune CMADE
on smoothed self-reported user ratings to improve
the dialog representation while preventing the net-
work from overfitting on noisy ratings. Finally, we
apply data Shapley to remove noisy training data,
and fine-tune the model on the cleaned training set.
Our experiments show that CMADE is able to suc-
cessfully identify noisy training data and achieves
89.2% in accuracy and 0.787 in Kappa on a test set
with unseen expert-rated dialog pairs.

2 Related Work

Open-domain dialog system evaluation is a long-
lasting challenge. It has been shown that previ-
ous automatic dialog evaluation metrics correlate
poorly with human judgments (Liu et al., 2016;
Lowe et al., 2017; Novikova et al., 2017). A well-
known reason is that these automatic dialog evalua-
tion metrics rely on modeling the distance between
the generated response and a limited number of ref-
erences available. The fundamental gap between
the open-ended nature of the conversations and the
limited references (Gupta et al., 2019) is not ad-
dressed in methods that are lexical-level based (Pa-
pineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005), embedding based (Rus and Lintean, 2012;
Forgues et al., 2014), or learning based (Tao et al.,
2018; Lowe et al., 2017).

Given the aforementioned limitations, Likert-
score based rating is the de-facto standard for cur-
rent dialog research and social conversational sys-
tems such as in Amazon Alexa Prize Challenge (Yu
et al., 2019; Chen et al., 2018). Various forms of
evaluation settings have been explored to better
measure human judgments. Single-turn pairwise
comparison (Vinyals and Le, 2015; Li et al., 2016)
is primarily used for comparing two dialog systems.
Each system predicts a single utterance given the
static “gold” context utterance from human-human
logs. Although such A/B test setting is robust to
annotator score bias, it cannot capture the multi-
turn nature of dialogs. A more complete multi-

turn evaluation is typically measured with a Lik-
ert scale for the full dialog history, where either a
third-person rater or the chatbot user (Pérez-Rosas
et al., 2019) reports a Likert score on user experi-
ence (Venkatesh et al., 2018), engagement (Bohus
and Horvitz, 2009) or appropriateness (Lowe et al.,
2017). However, as observed in (Kulikov et al.,
2018; Ram et al., 2018a; Venkatesh et al., 2018)
Likert scores suffer from bias and variance among
different users. Different from previous empirical
observations, we conduct a large-scale quantita-
tive and qualitative data analysis of Likert score
based ratings. To address the issue of Likert scores,
the Alexa team proposed a rule-based ensemble
of turn-granularity expert ratings (Yi et al., 2019),
and automatic metrics like topical diversity (Guo
et al., 2018) and conversational breadth. ACUTE-
EVAL (Li et al., 2019a) makes a small-scale at-
tempt to use multi-turn pair-wise comparison to
rank different chatbots. Given the ubiquity and
simplicity of Likert scores based evaluation, in-
stead of proposing an alternative measure, we take
on the challenge of denoising Likert scores with
minimal expert annotations introduced (one order
of magnitude smaller). Different from (Li et al.,
2019a), our proposed expert annotation scheme is
for comparing the dialogs within the same chatbot.

3 Dialog Rating Study

3.1 Dataset

The data used in this study was collected during the
2018 Amazon Alexa Prize Competition (Ram et al.,
2018b). Our data contain long and engaging spo-
ken conversations between thousands of real-world
Amazon Alexa customers and Gunrock, the 2018
Alexa Prize winning social bot (Yu et al., 2019).
The chatbot has 11 topic dialog modules including
movies, books, and animals. One notable charac-
teristic of the chatbot is its versatile and complex
dialog flows which interleaves facts, opinions and
questions to make the conversation flexible and in-
teresting (Chen et al., 2018). At the end of each
dialog, a self-reported Likert scale rating is elicited
by the question “on a scale of one to five, how
likely would you talk to this social bot again?”

We first filter out dialogs that have inappropriate
content using keyword matching. We then select
3,608 ten-turn dialogs on movies, because movie
dialogs are more coherent and diverse compared
to other topics according to both real users and
Amazon selected experts. We observe that dialogs
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Figure 1: Schematic of the CMADE workflow. CMADE contains a three-stage training pipeline to denoise self-
reported ratings to train an automatic dialog comparison model: learning representation viaself-supervised dialog
flow anomaly detection, fine-tuning with smoothed self-reported user ratings, denoising with data Shapley & fur-
ther fine-tuning. The gray and blue rectangles in stage 1 represents system and user utterances. The red rectangle
in stage 1 represents the randomly replaced system utterance for dialog flow perturbation. In stage 2 & 3, each ball
represents a dialog in the training data. The number on each ball represents the dialog rating.

with more than eight turns are more meaningful
and semantically versatile, while dialogs more than
10 turns exceed the max length limit of the BERT
model (512 tokens). So we select dialogs that have
ten turns. Our approach could support longer con-
versations by adopting a memory footprint efficient
algorithm for self-attention to support sequences
with thousands of tokens (Huang et al., 2019). We
leave this to future work.

We aim to evaluate user experience for each dia-
log from the same chatbot of the same length. This
is significantly more challenging than identifying
which chatbot provides a better user experience
on average since our problem setup requires us to
capture more subtle difference in user experience.

3.2 Likert Score Based Evaluation

Rating 1 2 3 4 5

Count 386 404 566 664 1588

Fraction 10.7% 11.2% 15.7% 18.4% 44.0%

Table 1: The statistics of self-reported Likert scale rat-
ings. The distribution is heavily skewed and noisy:
nearly half of the dialogs are rated with score = 5.

J-Shape Skewness We perform a detailed analysis
of the self-reported Likert scale ratings. As shown
in Table 1, abnormally, nearly half of the dialogs
are rated as five, which is the highest score. A simi-
lar skewed distribution is also observed in previous
years’ Alexa competition (Fang et al., 2018). In
fact, the business research community has long ob-
served the prevalence of the extreme distribution
of reviews in which the reviews are heavily skewed
to the positive end of the rating scale (known as

”J-shape”) in online reviews (e.g., Amazon, Airbnb,
Yelp) (Godes and Silva, 2012; Hu et al., 2017; Zer-
vas et al., 2015), word of mouth (East et al., 2007)
and consumer satisfaction (Peterson and Wilson,
1992; Danaher and Haddrell, 1996).

Comparison to expert ratings We randomly se-
lected 50 dialogs rated score-5 and showed these
to an expert, and our expert rated 27 of them with
score-4 or less. The Alexa team (Venkatesh et al.,
2018) has also reported that the inter-user agree-
ment is quite low for their internal rating analysis.
Such phenomena indicate that the self-reported Lik-
ert scale ratings are extremely noisy. Using such
ratings cannot localize individual bad interactions.
In addition, Likert score based evaluation also suf-
fers from insensitivity issues. As observed by the
Alexa team (Venkatesh et al., 2018) in multiple
internal user studies, even though users evaluated
multiple dialogs with the same score, they had a
clear rank order among the dialogs.

The skewness, noisiness and insensitivity of the
self-reported Likert scale rating make it a sub-
optimal dialog evaluation metric. In practice, we
find that directly training a classifier (even for
pre-trained BERT-based model) on the noisy self-
reported Likert scale ratings suffers from under-
fitting. One of the Alexa Price Challenge team,
Alana (Papaioannou et al., 2017) train a binary-
classifier between successful dialogs (human rating
4 or 5) and unsuccessful dialogs (rating 1 or 2)
with heavy hand-engineered features. They reach
69.40% accuracy on this binary classification prob-
lem, which is far from usable in real-world settings.



1366

3.3 Pairwise Comparison Based Evaluation
Selecting the better dialog from two options is eas-
ier for a human evaluator than giving an absolute
number like the Likert score, which requires the
evaluator to maintain a consistent standard. Peo-
ple’s perception is inherently relative, and pair-wise
comparison is local and does not require the user
to have global consistency. There are many other
examples where humans find it easier to perform
pairwise comparisons rather than providing direct
labels (Simpson and Gurevych, 2018; Mailthody
et al., 2019; Liang et al., 2018), including content
search (Fürnkranz and Hüllermeier, 2010), image
retrieval (Wah et al., 2014; Feng et al., 2019), and
age estimation (Zhang et al., 2017).

We randomly sample 400 dialog pairs for experts
to annotate. We ask the question, “If you were the
user, in which scenario would you be more likely
to come back and talk to the system again? ” We
guide the experts to focus on the user experience
rather than calibrating the performance of any spe-
cific module of the dialog system. Two researchers
with conversational training experience annotated
the data. The leading expert has been working in
an Alexa competition team for more than one year
with an emphasis on the user ratings. For each dia-
log pair (A,B), they label ‘A is better than B’ or
‘B is better than A’ or ‘cannot tell’. They reached a
high inter-annotator agreement score (Cohen, 1968)
with kappa κ = 0.83. To make sure that the dev
& test is accurate, we throw away all “cannot tell”
dialog pairs. We then study the correlation between
Likert score based evaluation and pairwise compar-
ison based evaluation.

3.4 Correlation Between User Ratings and
Expert Ratings

Delta of Self-Reported
Ratings (e.g., 5-1=4) ∆=1 ∆=2 ∆=3 ∆=4

Disagreement Rate 0.45 0.383 0.220 0.157

Table 2: The correlation between the self-reported Lik-
ert scale ratings and our pair-wise comparison annota-
tion. For a pair of dialogs, if the delta of self-reported
Likert scale ratings is large, then they are more likely
to align with the comparison results from experts.

To further analyze the self-reported Likert scale
ratings, we also compare the annotated labels of the
403 dialog pairs with the self-reported Likert scale
ratings of these dialogs. For each pair of dialogs,

we compare the pairwise comparison label and the
delta between the self-reported Likert scale ratings
of the two dialogs. Ideally, the dialog with a higher
self-reported Likert scale rating should be the one
that is annotated as having a better user experience
in the pairwise comparison. We count the number
and fraction of “disagreement” between the two
types of ratings. Overall, roughly 1/3 of the dialog
pairs disagree. As shown in Table 2, as the gap
between the self-reported Likert scale ratings be-
comes larger, the disagreement between expert and
self-reported ratings goes down. This suggests that
if the difference between the two dialogs’ Likert
score is huge, they are more likely to be consistent
with the comparison ratings.

4 Problem Formulation

Suppose the training set Dtrain consists of data
points Dtrain = {(xi, yi)}Ntrain

1 where xi is a
dialog and yi is the noisy self-reported user rat-
ings. We define a strict partial order relationship
. where xi . xj means that dialog xi provides a
better user experience than dialog xj . Note that
yi > yj does not always imply xi . xj since
self-reported user ratings are noisy (§ 3.3, § 3.4).
The test set Dtest consists of Ntest dialog pairs
along with their binary pair-wise comparison la-
bels Dtest = {(xtesti , xtestj , ztesti,j )}i,j∈Itest , where
ztesti,j is annotated by experts and indicates whether
dialog A provides a better user experience than di-
alog B, i.e., ztesti,j = 1(xi . xj). The development
set Ddev has a similar structure.

Following the structure of the expert annotated
pairs, we formulate our model M(φ, f) as a pair-
wise dialog predictor with a similar architecture
as RankNet (Burges et al., 2005). For a dialog
pair (xi, xj), the model predicts an un-normalized
score oi, oj ∈ R for each dialog: oi = f(φ(xi))
and oi = f(φ(xj)) where φ is a dialog encoder
that maps each dialog to a feature space and f is
a linear transformation that converts each dialog
feature into a real number o. We define a binary
relationship .̂ where xi.̂xj means that the model
predicts that dialog xi provides a better user experi-
ence than dialog xj . We denote model’s prediction
of zi,j as ˆzi,j where ˆzi,j = 1(xi.̂xj). We model
the predicted posterior P ( ˆzi,j = 1) = P (xi.̂xj)
as:

P ( ˆzi,j = 1) = P (xi.̂xj) =
1

1 + e−(oi−oj)
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5 Method

Our goal is to reduce the noise of the self-reported
user ratings (§ 3). Directly training a classification
model using the noisy ratings leads to severe un-
derfitting. To this end, we propose a three-stage
training pipeline to denoise self-reported ratings to
train an automatic dialog comparison model. Fig-
ure 1 describes the overall pipeline:

• In Stage 1, we learn dialog feature repre-
sentation with a self-supervised dialog flow
anomaly detection task.

• In Stage 2, we perform label smoothing to
adjust the noisy self-reported ratings in the
training set and fine-tune the dialog compari-
son model on the smoothed ratings.

• In Stage 3, we perform data Shapley (Ghor-
bani and Zou, 2019; Jia et al., 2019a) on the
self-reported user ratings to identify and re-
move noisy data points. We then fine-tune
the dialog comparison model on the cleaned
training set.

5.1 Stage 1: Learning Representation via
self-supervised dialog anomaly detection

Sys: What movie did you see?
User: Spider man into the spider verse

Sys: Ah, I know about Spider man into the spider verse!
I’m wondering. What would you rate this movie on a
scale from 1 to 10?

Replaced Sys: Isn’t it crazy how famous actors can
get? Are you interested in talking more about Scarlett
Johansson?

Table 3: A fake dialog example created by dialog flow
perturbation in Stage 1. We perturb the dialog flow by
replacing a system utterance (here the second Sys utter-
ance in the table) with a random system utterance from
the corpus (here the replaces Sys utterance) to generate
a fake dialog. With high probability, the fake dialog is
less appropriate than the origin one.

Having a good dialog representation is the first
step towards denoising the data. Our primary goal
in this stage is to train a dialog encoder φ to learn
good dialog feature representations for the follow-
ing stages. Here φ could be any sequence encoder
that could encode a dialog and we use BERT (De-
vlin et al., 2019) in this paper.

For each dialog in the training set, we per-
turb the dialog flow to generate a fake dialog

and train the model to differentiate the fake di-
alog and the real one. Dialog flow is a user-
centric measure of whether a conversation is “going
smoothly” (Eskénazi et al., 2019). To perturb the
dialog flow for each dialog xi, we randomly re-
place a user utterance in xi with a random user
utterance from the training corpus Dtrain, yielding
a perturbed dialog xi,fake. With high probabil-
ity, the system utterance immediately following
the replaced user utterance becomes inappropriate.
Therefore, we incorporate {(xi, xi,fake, z = 1)}
into the training pairs. Similarly, we also randomly
replace a system utterance and yield another per-
turbed dialog. We generate two perturbed dialogs
for each dialog in the training set and thus 2Ntrain

real-fake dialog pairs in total. An example is shown
in Table 3. We note that appropriateness is one of
the most widely applied metrics of human evalua-
tion on dialogs (Lowe et al., 2017). By learning to
differentiate the perturbed dialog and the original
one, we expect CMADE to learn a good dialog
encoder φ which maps dialogs with similar dialog
flow close to each other in the feature space.

5.2 Stage 2: Fine-tuning with smoothed
self-reported user ratings

Stage 1 only performs unsupervised learning and
does not incorporate any supervision from human
ratings. To obtain better dialog feature represen-
tations for Stage 3, Stage 2 fine-tunes φ with su-
pervision from the noisy self-reported user ratings.
We adopt a simple yet effective label smoothing,
inspired by (Szegedy et al., 2016; Nie et al., 2019),
using the representation learned in Stage 1. A key
assumption in Stage 2 is that dialogs with similar
dialog flow provide a similar user experience. For
each dialog xi, we find its K nearest neighbors in
the feature space defined by φ. We use the average
self-reported ratings of the K nearest neighbors
as a smoothed rating ysi for xi. To construct train-
ing dialog pairs, we randomly sample dialog pairs
xi and xj and derive a pair-wise comparison label
zsi,j by comparing the smoothed rating ysi and ysj :
zsi,j = 1(ysi > ysj ). We discard the pairs with equal
ysi and ysj . To improve the dialog feature represen-
tation, we fine-tune the modelM(φ, f) on sampled
dialog pairs along with the derived labels from com-
paring the smoothed scores {xi, xj , zsi,j}. We note
that zsi,j depends solely on the noisy self-reported
ratings in the training set and does not depend on
the expert annotations. Theoretically, we could iter-
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ate between label smoothing and model fine-tuning
since the fine-tuned model provides better dialog
feature representation. In practice, we find that
one iteration is enough to reach good prediction
performance.

Label smoothing has led to state-of-the-art mod-
els in image classification (Szegedy et al., 2016),
language translation (Vaswani et al., 2017) and
speech recognition (Chorowski and Jaitly, 2017).
Prior attempts in label smoothing (Szegedy et al.,
2016; Vaswani et al., 2017; Chorowski and Jaitly,
2017; Müller et al., 2019) focus on categorical la-
bels to prevent the network from becoming over-
confident while we apply label smoothing on ordi-
nal labels (i.e., Likert scores) to prevent the network
from overfitting on noisy ordinal labels.

5.3 Stage 3: Denoising with data Shapley &
further fine-tuning

In Stage 2, noisy ratings still have effect in the
smoothed ratings for other data points. In Stage 3,
we aim to identify and remove dialogs with noisy
self-reported user ratings yi with data Shapley
value technique (Ghorbani and Zou, 2019; Jia et al.,
2019a,b). Shapley value comes originally from co-
operative game theory (Dubey, 1975). In a cooper-
ative game, there are n players D = {1, ..., n} and
a utility function v : 2[n] → R assigns a reward to
each of 2n subsets of players: v(S) is the reward
if the players in subset S ⊆ D cooperate. Shapley
value defines a unique scheme to distribute the total
gains generated by the coalition of all players v(D)
with a set of appealing mathematical properties.
Shapley value has been applied to problems in var-
ious domains, ranging from economics (Gul, 1989)
to machine learning (Cohen et al., 2005; Yona et al.,
2019).

In our setting, given Dtrain = {(xi, yi)}Ntrain
1 ,

we view them as Ntrain players. We could also
view the utility function v(S) as the performance
on the development set. The Shapley value for
player i is defined as the average marginal contri-
bution of {(xi, yi)} to all possible subsets that are
formed by other users (Jia et al., 2019a):

si =
1

N

∑
S⊆Dtrain\{xi}

1(
N−1
|S|
) [v(S∪{xi})−v(S)]

As suggested by the definition of data Shapley,
computing data Shapley value requires an expo-
nentially large number of computations to enu-
merate O(2Ntrain) possible subsets and train the

model M on each subset, which is intractable.
Inspired by (Jia et al., 2019a), CMADE tackles
this issue by reducing the deep model M to a k-
nearest neighbors (KNN) model and then apply
the closed-form solution of shapley value on KNN.
Using the feature extractor φ trained in Stage 1
and Stage 2, we fix φ and map all dialogs in the
training data {xi}Ntrain

1 to {φ(xi)}Ntrain
1 . We first

define the utility function v(S) in a special case
where the development set only contains one di-
alog pair (xdevp , xdevq , zdevp,q )p,q∈Idev={(1,2)}. In our
setting, the development set contains dialog pairs
annotated by experts. Given any nonempty subset
S ⊆ Dtrain, we use the KNN Regressor to rate
xdevp and xdevq . To do this, we compute φ(xdevp )

and sort {xp}Ntrain
1 based on their euclidean dis-

tance in the dialog feature space to xdevp , yielding
(x
α
(p)
1

, x
α
(p)
2

, ..., x
α
(p)
|S|
) with x

α
(p)
1

, ..., x
α
(p)
K

as the

top-K most similar dialogs to xdevp . Similarly, we
get (x

α
(q)
1

, x
α
(q)
2

, ..., x
α
(q)
|S|
) with x

α
(q)
1

, ..., x
α
(q)
K

as

the top-K most similar dialogs to xdevq . Based on
the self-reported user ratings in the training data,
we use the KNN Regressor to rate xdevp and xdevq as
follows:

ŷdevp =
1

K

min{K,|S|}∑
k=1

y
α
(p)
k

(1)

ŷdevq =
1

K

min{K,|S|}∑
k=1

y
α
(q)
k

(2)

The model predicts ẑdevp,q = 1 if ŷdevp > ŷdevq and
vice versa.

To obtain a closed-form solution to calculate
Shapley value, instead of defining the utility func-
tion as the accuracy of the pair-wise prediction, we
define the utility function as follows:

v(S) =

 ŷdevp − ŷdevq , if zdevp,q = 1,

ŷdevq − ŷdevq , if zdevp,q = 0
(3)

Theorem 1 Consider the utility function in Equa-
tion (3). Then the Shapley value of each training
point sm can be decomposed into two terms s(p)m
and s(q)m which depend on xdevp and xdevq respec-

tively. s(p)m and s(q)m can be calculated recursively
as follows:
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sm =

 s
(p)
m − s(q)m , if zdevp,q = 1,

s
(q)
m − s(p)m , if zdevp,q = 0

s
(p)

α
(p)
N

=
y
α
(p)
N

N
s
(q)

α
(q)
N

=
y
α
(q)
N

N

s(p)αm
= s

(p)

α
(p)
m+1

+
y
α
(p)
m
− y

α
(p)
m+1

K

min{K,m}
m

s
(q)

α
(q)
m

= s
(q)

α
(q)
m+1

+
y
α
(q)
m
− y

α
(q)
m+1

K

min{K,m}
m

With Theorem 1, the Shapley value calculation
could be finished in O(N logN) time. The above
result for a single point in the development set
could be readily extended to the multiple-testpoint
case. In our experiment, with such optimization,
the Shapley value calculation takes less than 5
seconds to finish. Theorem 1 comes primarily
from (Jia et al., 2019a,b) and we extends their re-
sults of vanilla KNN regressor (Jia et al., 2019a) to
our pairwise testing setting.

By applying the Shapley technique to the data,
we identify noisy training data points which con-
tribute negatively to the performance and remove
them from the training set. Similar to Stage 2, to
construct training dialog pairs, we randomly sam-
ple dialog pairs xi and xj from the cleaned training
set and derive zi,j by comparing the self-reported
rating yi and yj . We then further fine tune the
model from Stage 2. Theoretically, we could it-
erate between Stage 2 and Stage 3 multiple times
while in practice one iteration is enough.

5.4 Towards Scalable Pair-based Training
We use a similar factorization technique for pair-
wise ranking in LambdaRank (Burges et al., 2006)
to speed up training. For Stage 2 and 3, we
have O(N2) possible dialog pairs, which leads to
quadratically increasing training time. Similar to
LambdaRank (Burges et al., 2006), it is possible
to calculate the exact gradient of O(N2) possi-
ble dialog pairs with O(N) forwards and back-
propagations. More specifically, we denote the
possible input pairs during training at Stage 2 or
Stage 3 as: Dpair

train = {(xi, xj , zi,j)}i,j∈I . The to-
tal cost L for O(N2) possible dialog pairs is the
sum of O(N2) cross-entropy costs:

Li,j = CrossEntropy(ẑi,j , zi,j)

L =
∑

(i,j)∈I

Li,j

Theorem 2 We can compute ∂L
∂wk

in O(N) by fac-

tor it into a weighted sum of ∂oi
∂wk

where the weight
λi ∈ R only depends on {oj} and {zi,j}. W.l.o.g.,
we assume zi,j ≡ 1 .

∂L

∂wk
=
∑
i

λi
∂oi
∂wk

and

λi =
∑

j:(i,j)∈I

−1
1 + eoi−oj

+
∑

j:(j,i)∈I

1

1 + eoi−oj

Here oi = f(φ(xi)) ∈ R and oj = f(φ(xj)) ∈
R are the outputs of the two branches of the model.
Theorem 2 shows that instead of performing back-
propagation for all possible pairs, we could first
perform N forward passes to obtain {oj} and then
calculate {λi}. Calculating {λi} from {oj} in
Equation 5.4 takes negligible time since this stage
does not involve any neural network operation. Fi-
nally, we calculate a weighted sum of O(N) back-
propagation and update the model parameters.

6 Experiment

Model Setup We fine tune the pre-trained
BERT (Devlin et al., 2019) to learn the dialog fea-
ture extractor φ. We partition the 403 expert anno-
tated dialog pairs into a 200-pair development set
and a 203-pair test set. We set K = 50 for both
the KNN label smoothing in Stage 2 and the KNN
Shapley value calculation in Stage 3.

Model Details The details of extending BERT
to encode multi-turn dialogs are as follows. Each
dialog is represented as a sequence of tokens in
the following input format: Starting with a special
starting token [CLS], we concatenate tokenized
user and system utterances in chronological order
with [SEP ] as the separators for adjacent utter-
ance. In other words, we represent each dialog as
a sequence: [CLS], S1,1, S1,2, ..., [SEP ], U1,1,
U1,2, ..., [SEP ], S2,1, S2,2, ..., [SEP ] where Si,j
and Ui,j are the jth token of the system and user
utterance in the ith turn. Following BERT, we also
add a learned embedding to every token indicating
whether it comes from user utterances or system
utterances.

Model Comparisons and Ablations We com-
pare CMADE to its several ablations (Table 4) and
evaluate the performance on the testing set, which
is annotated by experts. We also report the kappa
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No. Model Test
Acc.

Kappa

κ SE

(1) BERT-Classification 0.581 0.161 0.049
(2) BERT-Regression 0.640 0.280 0.048
(3) BERT-Pairwise 0.730 0.459 0.044
(4) BERT-Pairwise+Dev 0.749 0.499 0.043

(5) Stage 2 0.755 0.509 0.043
(6) Stage 2 + 3 0.764 0.529 0.042

(7) Stage 3 0.714 0.429 0.045
(8) Stage 1 0.620 0.241 0.048
(9) Stage 1 + 3 0.788 0.628 0.039
(10) Stage 1 + 2 0.837 0.673 0.037
(11) CMADE 0.892 0.787 0.031

Table 4: Test accuracy and kappa agreement compari-
son among variants of CMADE.

agreement (Cohen, 1968) (kappa κ and Standard
Error SE) between the predicted output and the ex-
pert annotations. (1) BERT-Classification and (2)
BERT-Regression fine tune the pre-trained BERT
to perform a 5-class classification and regression
respectively directly using the noisy self-reported
ratings. To test BERT-Classification on dialog pairs,
we apply the DEX trick (Rothe et al., 2015) to get
a floating-point number of predicted rating and
thus get rid of the cases when the model predicts
the dialog pairs as tie. (3) BERT-Pairwise shares
the same model architecture with CMADE. It con-
structs dialog pairs for training by randomly sample
dialog pairs xi and xj and derive zi,j by comparing
the corresponding self-reported user rating yi and
yj . We discard the pairs with equal yi and yj . (4)
BERT-Pairwise+Dev augments (3) by adding the
200 expert annotated dialog pairs in the develop-
ment into the training data. We also compare the
variants of CMADE which skips one or two of the
three stages.

Results Our first takeaway is that vanilla classifi-
cation or regression formulation might not be the
best way to formulate the problem of learning a
dialog evaluation model. As shown in Table 4, pair-
wise architecture (BERT-Pairwise, 0.73) is better
than classification (BERT-Classification, 0.53) or
regression (BERT-Regression, 0.64) in this prob-
lem. Similar to our observation, the research com-
munity in computer vision has long observed that
both vanilla classification and regression formula-
tion has drawbacks in age estimation (Rothe et al.,
2015; Niu et al., 2016; Zhang et al., 2017).

Our second takeaway is that denoising algorithm
that is more aggressive usually makes stronger
assumptions on the quality of feature representa-

Figure 2: Removing training data with low Shapley
value improves the performance of the KNN regressor.

tions. Therefore, it helps to create a denoising
pipeline that starts with better feature representa-
tion learning and less aggressive denoising algo-
rithm to learn better feature representation before
applying the more aggressive denoising algorithms.
As shown in Table 4, our three-stage denoising
pipeline CMADE (Acc. 0.892) significantly out-
performs all baselines by a large margin. Although
(8) Stage 1 does not directly provide high accuracy
(Acc. 0.620), the feature representation it learned
is extremely important. Without Stage 1, both (5)
Stage 2 (Acc. 0.755) and (6) Stage 2 + Stage 3
(Acc. 0.763) perform worse.

Since the KNN label smoothing is performed
on the feature space, we expect the smoothing per-
forms worse without self-supervised dialog feature
representation learning in Stage 1. However, they
still work better than baseline (1) (2) (3) which are
models that do not account for the noise in data.
This is because we use the pre-trained BERT to
initialize our dialog encoder φ and thus φ is still
able to provide some useful features for Stage 2.
In addition, we observe that denoising with data
Shapley in Stage 3 requires better dialog feature
representation. (7) Stage 3 (Acc. 0.714) performs
even worse than BERT-Pairwise (0.730) without
good representations to perform the Shapley de-
noising algorithm. Skipping Stage 2 also hurts per-
formance (Acc. 0.788). However, it does not mean
that Shapley denoising in Stage 3 is not powerful.
We observe a large performance gain in applying
stage 3 after stage 1 and stage 2 (Acc. 0.837 v.s.
0.892). Finally, we note that adding the expert
annotated development set directly into the train-
ing data is much less efficient compared to using
the development set for data Shapley to denoise.
BERT-Pairwise+Dev only reaches an accuracy of
0.749.

6.1 Analysis
Additional analysis We also present an analysis
to show how Shapley denoising works as shown in
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Figure 2. We examine the Shapley value for each
training datum in Stage 3. We first show an exam-
ple dialog with a negative Shapley value in Table 5.
According to the Shapley value, we remove data
points one by one starting from the least valuable
to the most valuable. Each time, after the point
is removed, we create new KNN regressor mod-
els K = 1, 5, 25, 50, 100 on the remaining dialogs
and labels and evaluate them on the test set with
expert annotations. We extract the features of the
remaining dialogs using the dialog encoder φ tuned
by Stage 1 and Stage 2. As shown in Figure 2,
removing training data with low Shapley values
increases the performance to a certain point before
convergence for K of all choices. We observe a
similar trend when re-training a model on the re-
maining data. In contrast, removing data randomly
decreases the performance on the test set. In ad-
dition, larger K has a better performance, which
validates the denoising effect of KNN with large
K.

7 Conclusion

The ultimate chatbot evaluation metric should be
user-centric, as chatbots are there to provide human
with an enjoyable experiences. Previously Likert-
score based self-reported rating is the de-facto stan-
dard for current dialog evaluation . However, our
analysis indicates that self-reported dialog ratings
are skewed (J-shape), noisy and insensitive due to
bias and variance among different users. We pro-
pose a three-stage denoising pipeline CMADE to
reduce self-reported ratings and, at the same time,
build an automatic comparison-based automatic di-
alog quality predictor. CMADE’s results highly
correlate with expert judgments on pair-wise dia-
log comparison ratings (89.2% agreement, 0.787

User: the whole harry potter series
Sys: whoops i think i misheard you. can you repeat the
movie name please?
User: all the harry potter series
Sys: ah, i don’t know any movies by that name. sorry if
i sometimes confuse you saying something else with a
movie name ...

...
Sys: oh, okay. anyways, i really enjoyed watching black
panther and wonder woman recently. what’s your fa-
vorite superhero movie?
User: super man
Sys: what was that? can you please say the movie name
again?
User: stop i gotta go

Table 5: An example dialog with noisy self-reported
rating (Score-5) identified by data shapley.

Kappa).
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