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Abstract

Hierarchical text classification is an essential
yet challenging subtask of multi-label text clas-
sification with a taxonomic hierarchy. Existing
methods have difficulties in modeling the hier-
archical label structure in a global view. Fur-
thermore, they cannot make full use of the mu-
tual interactions between the text feature space
and the label space. In this paper, we for-
mulate the hierarchy as a directed graph and
introduce hierarchy-aware structure encoders
for modeling label dependencies. Based on
the hierarchy encoder, we propose a novel
end-to-end hierarchy-aware global model (Hi-
AGM) with two variants. A multi-label at-
tention variant (HiAGM-LA) learns hierarchy-
aware label embeddings through the hierarchy
encoder and conducts inductive fusion of label-
aware text features. A text feature propaga-
tion model (HiAGM-TP) is proposed as the de-
ductive variant that directly feeds text features
into hierarchy encoders. Compared with pre-
vious works, both HiAGM-LA and HiAGM-
TP achieve significant and consistent improve-
ments on three benchmark datasets.

1 Introduction

Text classification is widely used in Natural Lan-
guage Processing (NLP) applications, such as sen-
timental analysis (Pang and Lee, 2007), informa-
tion retrieval (Liu et al., 2015), and document cat-
egorization (Yang et al., 2016). Hierarchical text
classification (HTC) is a particular multi-label text
classification (MLC) problem, where the classifica-
tion result corresponds to one or more nodes of a
taxonomic hierarchy. The taxonomic hierarchy is
commonly modeled as a tree or a directed acyclic
graph, as depicted in Figure 1.

Existing approaches for HTC could be catego-
rized into two groups: local approach and global

∗This work was done during intern at Alibaba Group.
†Corresponding author.

Figure 1: This short sample is tagged with news, sports,
football, features and books. Note that HTC could be
either a single-path or a multi-path problem.

approach. The first group tends to constructs mul-
tiple classification models and then traverse the
hierarchy in a top-down manner. Previous local
studies (Wehrmann et al., 2018; Shimura et al.,
2018; Banerjee et al., 2019) propose to overcome
the data imbalance on child nodes by learning from
parent one. However, these models contain a large
number of parameters and easily lead to exposure
bias for the lack of holistic structural information.
The global approach treats HTC problem as a flat
MLC problem, and uses one single classifier for
all classes. Recent global methods introduce var-
ious strategies to utilize structural information of
top-down paths, such as recursive regularization
(Gopal and Yang, 2013), reinforcement learning
(Mao et al., 2019) and meta-learning (Wu et al.,
2019). There is so far no global method that en-
codes the holistic label structure for label correla-
tion features. Moreover, these methods still exploit
the hierarchy in a shallow manner, thus ignoring
the fine-grained label correlation information that
has proved to be more fruitful in our work.

In this paper, we formulate the hierarchy as a
directed graph and utilize prior probabilities of la-
bel dependencies to aggregate node information.
A hierarchy-aware global model (HiAGM) is pro-
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posed to enhance textual information with the label
structural features. It comprises a traditional text
encoder for extracting textual information and a
hierarchy-aware structure encoder for modeling
hierarchical label relations. The hierarchy-aware
structure encoder could be either a TreeLSTM or
a hierarchy-GCN where hierarchical prior knowl-
edge is integrated. Moreover, these two structure
encoders are bidirectionally calculated, allowing
them to capture label correlation information in
both top-down and bottom-up manners. As a result,
HiAGM is more robust than previous top-down
models and is able to alleviate the problems caused
by exposure bias and imbalanced data.

To aggregate text features and label structural
features, we present two variants of HiAGM, a
multi-label attention model HiAGM-LA and a text
feature propagation model HiAGM-TP. Both vari-
ants extract hierarchy-aware text features based on
the structure encoders. HiAGM-LA extracts the in-
ductive label-wise text features while HiAGM-TP
generates hybrid information in a deductive manner.
Specifically, HiAGM-LA updates the label embed-
ding across the holistic hierarchy and then employs
node outputs as the hierarchy-aware label represen-
tations. Finally, it conducts multi-label attention
for label-aware text features. On the other hand,
HiAGM-TP directly utilizes text features as the
input of the structure encoder in a serial dataflow.
Hence it propagates textual information throughout
the overall hierarchy. The hidden state of each node
in the entire hierarchy represents the class-specific
textual information.

The major contributions of this paper are:

• With the prior hierarchy knowledge, we adopt
typical structure encoders for modeling label
dependencies in both top-down and bottom-
up manners, which has not been investigated
for hierarchical text classification.
• We propose a novel end-to-end hierarchy-

aware global model (HiAGM). We further
present two variants for label-wise text fea-
tures, a hierarchy-aware multi-label attention
model (HiAGM-LA) and a hierarchy-aware
text feature propagation model (HiAGM-TP).
• We empirically demonstrate that both variants

of HiAGM achieve consistent improvements
on various datasets when using different struc-
ture encoders. Our best model outperforms
the state-of-the-art model by 3.25% of Macro-
F1 and 0.66% of Micro-F1 on RCV1-V2.

• We release our code and experimental splits
of Web-of-Science and NYTimes for repro-
ducibility. 1

2 Related Work

Existing works for HTC could be categorized into
local and global approaches. Local approaches
could be subdivided into local classifier per node
(LCN) (Banerjee et al., 2019), local classifier per
parent node (LCPN) (Dumais and Chen, 2000),
and local classifier per level (LCL)(Shimura et al.,
2018; Wehrmann et al., 2018; Kowsari et al., 2017).
Banerjee et al. (2019) transfers parameters of the
parent model for child models as LCN. Wehrmann
et al. (2018) alleviates exposure bias problem by
the hybrid of LCL and global optimizations. Peng
et al. (2018) decomposes the hierarchy into sub-
graphs and conducts Text-GCN on n-gram tokens.

The global approach improves flat MLC mod-
els with the hierarchy information. Cai and Hof-
mann (2004) modifies SVM to Hierarchical-SVM
by decomposition. Gopal and Yang (2013) pro-
poses a simple recursive regularization of parame-
ters among adjacent classes. Deep learning archi-
tectures are also employed in global models, such
as sequence-to-sequence (Yang et al., 2018), meta-
learning (Wu et al., 2019), reinforcement learn-
ing (Mao et al., 2019), and capsule network (Peng
et al., 2019). Those models mainly focus on im-
proving decoders based on the constraint of hier-
archical paths. In contrast, we propose an effec-
tive hierarchy-aware global model, HiAGM, that
extracts label-wise text features with hierarchy en-
coders based on prior hierarchy information.

Moreover, the attention mechanism is introduced
in MLC by Mullenbach et al. (2018) for ICD cod-
ing. Rios and Kavuluru (2018) trains label repre-
sentation through basic GraphCNN and conducts
mutli-label attention with residual shortcuts. At-
tentionXML (You et al., 2019) converts MLC to a
multi-label attention LCL model by label clusters.
Huang et al. (2019) improves HMCN (Wehrmann
et al., 2018) with label attention per level. Our
HiAGM-LA, however, employs multi-label atten-
tion in a single model with a simplified structure
encoder, reducing the computational complexity.

Recent works, in semantic analysis (Chen et al.,
2017b), semantic role labeling (He et al., 2018) and
machine translation (Chen et al., 2017a), shows the
improvement on sentence representation of syntax

1https://github.com/Alibaba-NLP/HiAGM

https://github.com/Alibaba-NLP/HiAGM
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Figure 2: Example of the taxonomic hierarchy. The
number indicates the prior probability of label depen-
dencies according to the training corpus.

encoder, such as Tree-Based RNN (Tai et al., 2015;
Chen et al., 2017a) and GraphCNN (Marcheggiani
and Titov, 2017). We modify those structure en-
coders for HTC with fine-grained prior knowledge
in both top-down and bottom-up manners.

3 Problem Definition

Hierarchical text classification (HTC), a subtask of
text classification, organizes the label space with a
predefined taxonomic hierarchy. The hierarchy is
predefined based on holistic corpus. The hierarchy
groups label subsets according to class relations.
The taxonomic hierarchy mainly contains the tree-
like structure and the directed acyclic graph (DAG)
structure. Note that DAG can be converted into
a tree-like structure by distinguishing each label
node as a single-path node. Thus, the taxonomic
hierarchy can be simplified as a tree-like structure.

As illustrated in Figure 2, we formulate a
taxonomic hierarchy as a directed graph G =

(V,
−→
E ,
←−
E ) where V refers to the set of label nodes

V = {v1, v2, . . . , vC} and C denotes the num-
ber of label nodes.

−→
E = {(vi, vj)|i ∈ V, j ∈

child(i)} is the top-down hierarchy path and
←−
E =

{(vj , vi)|i ∈ V, j ∈ child(i)} is the bottom-
up hierarchy path. Formally, we define HTC as
H = (X,L) with a sequence of text objects
X = (x1, x2, . . . , xN ) and an aligned sequence
of supervised label sets L = (l1, l2, . . . , lN ).

As depicted in Figure 1, each sample xi cor-
responds to a label set li that includes multiple
classes. Those corresponding classes belong to
either one or more sub-paths in the hierarchy.
Note that the sample belongs to the parent node
vi in the condition pertaining to the child node
vj ∈ child(i).

4 Hierarchy-Aware Global Model

As depicted in Figure 3, we propose a Hierarchy-
Aware Global Model (HiAGM) that leverages the
fine-grained hierarchy information and then aggre-
gates label-wise text features. HiAGM consists
of a traditional text encoder for textual informa-
tion and a hierarchy-aware structure encoder for
hierarchical label correlation features.

We present two variants of HiAGM for hybrid
information aggregation, a multi-label attention
model (HiAGM-LA) and a text feature propaga-
tion model (HiAGM-TP). HiAGM-LA updates la-
bel representations with the structure encoder and
generates label-aware text features with multi-label
attention mechanism. HiAGM-TP propagates text
representations throughout the holistic hierarchy,
thus obtaining label-wise text features with the fu-
sion of label correlations.

4.1 Prior Hierarchy Information

The taxonomic hierarchy describes the hierarchical
relations among labels. The major bottleneck of
HTC is how to make full use of this established
structure. Previous studies directly utilize this hier-
archy path in a static method based on a pipeline
framework, hierarchical model or label assignment
model. In contrast, based on Bayesian statistical in-
ference, HiAGM leverages the prior knowledge of
label correlations regarding the predefined hierar-
chy and corpus. We exploit the prior probability of
label dependencies as prior hierarchy knowledge.

Suppose that there is a hierarchy path ei,j be-
tween the parent node vi and child node vj . This
edge feature f(ei,j) is represented by the prior
probability P (Uj |Ui) and P (Ui|Uj) as:

P (Uj |Ui) =
P (Uj ∩ Ui)

P (Ui)
=
P (Uj)

P (Ui)
=
Nj

Ni
,

P (Ui|Uj) =
P (Ui ∩ Uj)

P (Uj)
=
P (Uj)

P (Uj)
= 1.0,

(1)

where Uk means the occurrence of vk and
P (Uj |Ui) is the conditional probability of vj given
that vi occurs. P (Uj ∩ Ui) is the probability of
{vj , vi} occurring simultaneously. Nk refers to the
number of Uk in the training subset. Note that the
hierarchy ensures Uk given that vchild(k) occurs.
We rescale and normalize the prior probabilities of
child nodes vchild(k) to sum total to 1.
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Figure 3: The overall structure of our hierarchy-aware global model. HiAGM consists of a text encoder and a
hierarchy-aware encoder. The dataflows of structure encoders are illustrated in the grey dashed box. Two variants,
as HiAGM-LA and HiAGM-TP, are presented in black dashed boxes, respectively.

4.2 Hierarchy-Aware Structure Encoder

Tree-LSTM and graph convolutional neural net-
works (GCN) are widely used as structure encoders
for aggregating node information in NLP (Tai et al.,
2015; Chen et al., 2017a; He et al., 2018; Rios and
Kavuluru, 2018). As depicted in Figure 3, HiAGM
models fine-grained hierarchy information based
on the hierarchy-aware structure encoder. Based on
the prior hierarchy information, we improve typical
structure encoders for the directed hierarchy graph.
Specifically, the top-down dataflow employs the
prior hierarchy information as fc(ei,j) =

Nj

Ni
while

the bottom-up one adopts fp(ei,j) = 1.0.

Bidirectional Tree-LSTM Tree-LSTM could be
utilized as our structure encoder. The imple-
mentation of Tree-LSTM is similar to syntax en-
coders(Tai et al., 2015; Zhang et al., 2016; Li et al.,
2018). The predefined hierarchy is identical to
all samples, which allows the mini-batch training
method for this recursive computational module.
The node transformation is as follows:

ik = σ(W(i) vk +U(i) h̃k + b(i)),

fk,j = σ(W(f) vk +U(f) hj + b(f)),

ok = σ(W(o) vk +U(o) h̃k + b(o)),

uk = tanh(W (u) vk +U (u) h̃k + b(u)),

ck = ik � uk +
∑

j
fk,j � cj ,

hk = ok � tanh(ck),

(2)

where hk and ck represent the hidden state and
memory cell state of node k respectively.

To induce label correlations, HiAGM employs a
bidirectional Tree-LSTM by the fusion of a child-
sum and a top-down module:

h̃↑k =
∑

j∈child(k)
fp(ek,j)h

↑
j ,

h̃↓k = fc(ek,p)h
↓
p,

hbi
k = h↑k ⊕ h↓k,

(3)

where h↑k and h↓k are separately calculated in
the bottom-up and top-down manner as hk =
TreeLSTM(h̃k). ⊕ indicates the concatenation of
hidden states. The final hidden state of node k is
the hierarchical node representation hbi

k .

Hierarchy-GCN GCN (Kipf and Welling, 2017)
is proposed to enhance node representations based
on the local graph structural information. Some
NLP studies have improved Text-GCNs for rich
word representations upon the syntactic struc-
ture and word correlation(Marcheggiani and Titov,
2017; Vashishth et al., 2019; Yao et al., 2019; Peng
et al., 2018). We introduce a simple hierarchy-GCN
for the hierarchy structure, thus gaining our afore-
mentioned fine-grained hierarchy information.

Hierarchy-GCN aggregates dataflows within the
top-down, bottom-up, and self-loop edges. In
the hierarchy graph, each directed edge repre-
sents a pair-wise label correlation feature. Thus,
those dataflows should conduct node transforma-
tions with edge-wise linear transformations. How-
ever, edge-wise transformations shall lead to over-
parameterized edge-wise weight matrixes. Our
Hierarchy-GCN simplifies this transformation with
a weighted adjacent matrix. This weighted adjacent
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matrix represents the hierarchical prior probability.
Formally, Hierarchy-GCN encodes the hidden state
of node k based on its associated neighbourhood
N(k) = {nk, child(k), parent(k)} as:

uk,j = ak,jvj + bkl ,

gk,j = σ(W d(j,k)
g vk + bkg),

hk = ReLU(
∑

j∈N(k)
gk,j � uk,j),

(4)

where W
d(k,j)
g ∈ Rdim, bl ∈ RN×dim, and bg ∈

RN . d(j, k) indicates the hierarchical direction
from node j to node k, including top-down, bottom-
up, and self-loop edges. Note that ak,j ∈ R de-
notes the hierarchy probability fd(k,j)(ekj), where
the self-loop edge employs ak,k = 1, top-down
edges use fc(ej,k) = Nk

Nj
, and bottom-up edges

use fp(ej,k) = 1. The holistic edge feature ma-
trix F = {a0,0, a0,1, . . . , aC−1,C−1} indicates the
weighted adjacent matrix of the directed hierarchy
graph. Finally, the output hidden state hk of node
k denotes its label representation corresponding to
the hierarchy structural information.

4.3 Hybrid Information Aggregation
Previous global models classify labels upon the
original textual information and improve the de-
coder with predefined hierarchy paths. In contrast,
we construct a novel end-to-end hierarchy-aware
global model (HiAGM) for the mutual interaction
of text features and label correlations. It combines
a traditional text classification model with a hier-
archy encoder, thus obtaining label-wise text fea-
tures. HiAGM is extended to two variants, a paral-
lel model for an inductive fusion (HiAGM-LA) and
a serial model for a deductive fusion (HiAGM-TP).

Given a document x = (w1,w2, . . . ,ws), the
sequence of token embedding is firstly fed into
a bidirectional GRU layer to extract text contex-
tual feature. Then, multiple CNNs are used for
generating n-gram features. The concatenation of
n-gram features is filtered by a top-k max-pooling
layer to extract key information. Finally, by reshap-
ing, we can obtain the continuous text represen-
tation S = (s1, . . . , sn) where si ∈ Rdc and dc
indicates the output dimension of the CNN layer.
n = nk × nc refers to the multiplication of top-k
number and the number of CNNs.

Hierarchy-Aware Multi-Label Attention The
first variant of HiAGM is proposed based on multi-
label attention, called as HiAGM-LA. Attention

mechanism is usually utilized as the memory unit
in text classification (Yang et al., 2016; Du et al.,
2019). Recent LCL studies (Huang et al., 2019;
You et al., 2019) construct one multi-label attention-
based model per level so as to avoid optimizing
label embedding among different levels.

Our HiAGM-LA is similar to those baselines
but simplifies multi-label attention LCL models
to a global model. Based on our hierarchy en-
coders, HiAGM-LA could overcome the problem
of convergence for label embedding across var-
ious levels. Label representations are enhanced
with bidirectional hierarchical information. This
local structural information makes it feasible to
learn label features across different levels in a sin-
gle model. Formally, suppose that the trainable
label embedding of node k is randomly initial-
ized as Lk ∈ Rdl . The initial label embedding
Lk is directly fed into structure encoders as the
input vector of aligned label node xk. Then, the
output hidden state h ∈ RC×dc represents as the
hierarchy-aware label features. Given text repre-
sentation S ∈ Rn×dc , HiAGM-LA calculates the
label-wise attention value αki as:

αkj =
esj h

T
k∑n

j=1 e
sj hT

k

,vk =
n∑

i=1

αki si, (5)

Note that αki indicates how informative the i-
th text feature vector is for the k-th label. We
can get the inductive label-aligned text features
V ∈ RC×dc based on multi-label attention. Then
it would be fed into the classifier for prediction.
Furthermore, we could directly use the hidden state
of hierarchy encoders as the pretrained label repre-
sentations so that HiAGM-LA could be even lighter
in the inference process.

Hierarchical text feature propagation Graph
neural networks are capable of message passing
(Gilmer et al., 2017; Duvenaud et al., 2015), learn-
ing both local node correlations and overall graph
structure. To avoid the noise from heterogeneous
fusion, the second variant obtains label-wise text
features based on a deductive method. It directly
takes text features S as the node inputs and updates
textual information through the hierarchy-aware
structure encoder. This variant mainly conducts the
propagation of text features, called as HiAGM-TP.
Formally, node inputs V are reshaped from text
features by a single linear transformation:

V = M S, (6)
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where the trainable weight matrix M ∈
R(n×dc)×(C×dv) transforms text features S ∈
Rn×dc to node inputs V ∈ RC×dv .

Given the predefined structure, each sample
would update its textual information throughout the
same holistic taxonomic hierarchy. In a mini-batch
learning manner, the initial node representation V
is fed into the hierarchy encoder. The output hidden
state h denotes deductive hierarchy-aware text fea-
tures as the input of the final classifier. Compared
with HiAGM-LA, the transformation of HiAGM-
TP is conducted on textual information without
the fusion of label embedding. Thus, the structure
encoder would be activated in both training and
inference procedures for passing textual messages
across the hierarchy. It could converge much easier
but has slightly higher computational complexity
than HiAGM-LA.

4.4 Classification

We flatten the hierarchy by taking all nodes as
leaf nodes for multi-label classification, no mat-
ter it is a leaf node or an internal node. The final
hierarchy-aware features are fed into a fully con-
nected layer for prediction. HiAGM is comple-
mentary with recursive regularization(Gopal and
Yang, 2013) as Lr =

∑
i∈C

∑
j∈child(i)

1
2 ||wi −

wj ||2 for the parameters of the final fully con-
nected layer. For multi-label classification, HiAGM
uses a binary cross-entropy loss function:Lc =
−
∑N

i=1

∑C
j=1[yijlog(y

′
ij)+(1−yij)log(1−y′ij)]

where yij and y′ij are the ground truth and sigmoid
score for the j-th label of the i-th sample. Thus, the
final loss function is Lm = Lc + λ · Lr.

5 Experiment

In this section, we introduce our experiments with
datasets, evaluation metrics, implementation de-
tails, comparison, ablation study, and analysis of
experimental results.

5.1 Experiment Setup

We experiment our proposed architecture on RCV1-
V2, Web-of-Science (WOS) and NYTimes (NYT)
datasets for comparison and ablation study.

Datasets RCV1-V2 (Lewis et al., 2004) and
NYT (Sandhaus, 2008) are both news categoriza-
tion corpora while WOS (Kowsari et al., 2017)
includes abstracts of published papers from Web of
Science. Those typical text classification datasets

Dataset |L| Depth Avg(|Li|) Train Val Test
RCV1 103 4 3.24 20,833 2,316 781,265
WOS 141 2 2.0 30,070 7,518 9,397
NYT 166 8 7.6 23,345 5,834 7,292

Table 1: Data Statistics: |L| is the number of classes.
Avg(|Li|) is the average number of classes per sample.
Depth indicates the maximum level of hierarchy.

are all annotated with the ground truth of hierarchi-
cal taxonomic labels. We use the benchmark split
of RCV1-V2 and select a small partial training sub-
set for validation. WOS dataset is randomly splitted
into training, validation and test subsets. In NYT,
we randomly select and split subsets from original
raw data. We also remove samples with no label
or only a single one-level label. Note that WOS
is for single-path HTC while NYT and RCV1-V2
include multi-path taxonomic tags. The statistics
of datasets is shown in Table 1.

Evaluation Metrics We measure the experimen-
tal results with standard evaluation metrics (Gopal
and Yang, 2013), including Micro-F1 and Macro-
F1. Micro-F1 takes the overall precision and recall
of all the instances into account while Macro-F1
equals to the average F1-score of labels. So Micro-
F1 gives more weight to frequent labels, while
Macro-F1 equally weights all labels.

Implementation Details We use a one-layer bi-
GRU with 64 hidden units and 3 parallel CNN lay-
ers with filter region size of {2, 3, 4}. The vocabu-
lary is created by the most frequent words with the
maximum size of 60,000. We use 300-dimensional
pretrained word embedding from GloVe2 (Penning-
ton et al., 2014) and randomly initialize the out-of-
vocabulary words above the minimum count of 2.
The key information pertaining to text classification
could be extracted from the beginning statements.
Thus, we set the maximum length of token inputs
as 256. The fixed threshold for tagging is chosen as
0.5. Dropout is employed in the embedding layer
and MLP layer with the rate of 0.5 while in the
bi-GRU layer and node transformation with the
rate of 0.1 and 0.05 respectively. Additionally, for
HiAGM-LA, the label embedding is initialized by
Kaiming uniform (He et al., 2015) while the other
model parameters are initialized by Xavier uniform
(Glorot and Bengio, 2010). We use the Adam opti-
mizer in a mini-batch size of 64 with learning rate

2https://nlp.stanford.edu/projects/
glove

https://nlp.stanford.edu/projects/glove
https://nlp.stanford.edu/projects/glove
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Model Micro Macro
Local Models

HR-DGCNN-3 (Peng et al., 2018) 76.18 43.34
HMCN (Mao et al., 2019) 80.80 54.60

HFT(M) (Shimura et al., 2018) 80.29 51.40
Htrans (Banerjee et al., 2019) 80.51 58.49

Global Models
SGM 4 (Yang et al., 2018) 77.30 47.49

HE-AGCRCNN (Peng et al., 2019) 77.80 51.30
HiLAP-RL (Mao et al., 2019) 83.30 60.10

Baselines
TextRCNN 81.57 59.25

TextRCNN+LabelAttention 81.88 59.85
HiAGM-LA

TreeLSTM 82.54†‡ 61.90†‡

GCN 82.21†‡ 61.65†‡

GCN w/o Rec 82.26†‡ 61.85†‡

HiAGM-TP
TreeLSTM 83.20† 62.32†

GCN 83.96† 63.35†
GCN w/o Rec 83.95† 63.23†

Table 2: Comparison to previous models on RCV1-V2.
Note that the prior probability matrix in HiAGM-TP
is fine-tuned during training while the one in HiAGM-
LA is fixed. w/o Rec denotes training without recursive
regularization. ”†” and ”‡” indicate statistically signif-
icant difference (p<0.01) from TextRCNN and TextR-
CNN+LabelAttention respectively.

α = 1 × 10−4, momentum parameters β1 = 0.9,
β2 = 0.999 and ε = 1× 10−6. The penalty coeffi-
cient of recursive regularization is set as 1× 10−6.
Our model evaluates the test subset with the best
model on the validation subset.

5.2 Comparison

In Table 2, we compare the performance of Hi-
AGM to traditional MLC models and the state-of-
the-art HTC studies on RCV1-V2. With the recur-
sive regularization for the last MLP layer, those
conventional text classification models also obtain
competitive performance. As for our proposed ar-
chitecture, both HiAGM-LA and HiAGM-TP out-
perform most state-of-the-art results of global and
local studies, esspecially in Macro-F1. It shows
the strong advancement of our hierarchy encoders
on HTC. HiAGM-LA achieves the performance
of 61.90% Macro-F1 score and 82.54% Micro-
F1 score while HiAGM-TP obtains the best per-
formance of 63.35% Macro-F1 score and 83.96%
Micro-F1 score.

To clarify the improvement of our proposed

4The result is reproduced with benchmark split upon the
released project of SGM.

Model
HiAGM-LA HiAGM-TP

Micro Macro Time Micro Macro Time
TreeLSTM 82.54 61.90 1.0 × 83.24 62.60 3.2×

GCN 82.21 61.65 0.9× 83.92 63.01 1.1×

Table 3: Comparison of the HiAGM variants on RCV1-
V2 with fixed prior probability. Note that Time denotes
the time cost of one epoch during inference compared
to TreeLSTM-based HiAGM-LA. Statistically signifi-
cant difference (p<0.01) compared to the best one.

HiAGM, we also experiment without recursive
regularization. Compared with the state-of-the-
art recent work (HiLAP) (Mao et al., 2019), our
HiAGM-LA and HiAGM-TP without recursive reg-
ularization also achieve competitive improvement
by 1.75% and 3.13% in terms of Macro-F1. It
demonstrates that the recursive regularization is
complementary but not necessary with our pro-
posed architecture.

According to Table 4, HiAGM achieves con-
sistent improvement on the performance of HTC
among RCV1-V2, WOS and NYT datasets. It indi-
cates the strong improvement of the label-wise text
feature on HTC task. The results present that our
proposed global model HiAGM has the advanced
capability of enhancing text features for HTC.

All in all, HiAGM strongly improves the perfor-
mance on the benchmark dataset RCV1-V2 and
the other two classical text classification datasets.
Especially, it obtains better results on Macro-F1
score. It indicates that HiAGM has a strong ability
to tackle data-sparse classes deep in the hierarchy.

5.3 Analysis

Hybrid Information Aggregation According
to Table 2, both variants outperform the baseline
models and previous studies. It denotes that the
enhanced text feature is beneficial for HTC. We
clarify the ablation study of two variants and struc-
ture encoders in Table 3. Both HiAGM-LA and
HiAGM-TP are trained with fixed prior probabil-
ity. With the help of the recursive computation
process, bidirectional Tree-LSTM achieves bet-
ter performance on learning hierarchy-aware la-
bel embedding. However, it additionally leads to
lower computational efficiency when compared to
Hierarchy-GCN. Regarding HiAGM-TP, hierarchy-
GCN shows its better performance and efficiency
than bidirectional Tree-LSTM.

These two variants have various advantages,
respectively. To be specific, HiAGM-TP has
better performance than HiAGM-LA in both Bi-
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Model
RCV1-V2 RCV1-V2-R WOS NYT

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
Global Text Classification Baseline

TextRNN 81.10 51.09 87.78 70.42 77.94 69.65 70.29 53.06
TextCNN 79.37 55.45 84.97 68.06 82.00 76.18 70.11 56.84

TextRCNN 81.57 59.25 88.32 72.23 83.55 76.99 70.83 56.18
HiAGM-LA

GCN 82.21 61.65 88.49 73.14 84.61 79.37 72.35 58.67
TreeLSTM 82.54 61.90 88.47 72.81 84.82 79.51 72.50 58.86

HiAGM-TP
GCN 83.96 63.35 88.64 74.00 85.82 80.28 74.97 60.83

TreeLSTM 83.20 62.32 88.86 74.16 85.18 79.95 74.43 60.76

Table 4: Experimental results of our proposed HiAGM-LA and HiAGM-TP on various datasets. Note that RCV1-
V2-R refers to the version that transpose original subset of the train and test set. All models are trained with
the constraint of recursive regularization. HiAGM-LA is trained with fixed prior probability while HiAGM-TP is
trained with trainable one.

TreeLSTM and Hierarchy-GCN encoders. The
multi-label attention variant, HiAGM-LA, would
somehow induce noises from the randomly initial-
ized label embedding. Otherwise, HiAGM-TP ag-
gregates the fusion of local structural information
and text feature maps, without the negative impact
of label embedding.

As for efficiency, HiAGM-LA is more computa-
tionally efficient than HiAGM-TP, especially in the
inference process. The label representation from
hierarchy encoders could be utilized as pretrained
label embedding for multi-label attention during
inference. Thus, HiAGM-LA omits the hierarchy-
aware structure encoder module after training.

We recommend HiAGM-TP for high perfor-
mance while we also suggest HiAGM-LA for em-
pirically good performance and faster inference.

GCN Layers The impact of GCN layers is also
an important issue for HiAGM. As illustrated in
Figure 4, the one-layer structure encoder con-
sistently performs best in both HiAGM-LA and
HiAGM-TP. It indicates that the correlation be-
tween non-adjacent nodes is not essential for HTC
but somehow noisy for hierarchical information ag-
gregation. This empirical conclusion is consistent
with the implementation of recursive regularization
(Peng et al., 2018; Gopal and Yang, 2013)and trans-
fer learning (Banerjee et al., 2019; Shimura et al.,
2018) between adjacent labels or levels.

Prior Probability According to the aforemen-
tioned comparisons, our simplified structure en-
coders with prior probabilities is undoubtedly bene-
ficial for HTC. We also investigate different choices
of prior probabilities with hierarchy-GCN encoder

on the HiAGM-TP variant, clarified as Table 5.
Note that the weighted adjacent matrix is initial-
ized by prior probabilities.

The simple weighted adjacent matrix performs
better than the complex edge-wise weight matrix
for node transformation. The fixed weighted ad-
jacent matrix also achieves better results than the
original unweighted adjacent matrix and the train-
able randomly initialized one. It demonstrates that
the prior probability of the hierarchy is capable of
representing hierarchical label dependencies. Fur-
thermore, the best result is obtained by the setting
that obeys the calculating direction of prior prob-
ability. When comparing the results of the fixed
adjacent matrix and trainable one, we can find that
the weighted adjacent matrix could be finetuned
for higher flexibility and better performance.

In Table 5, the settings that allows all interac-

Figure 4: Ablation study on the depth of GCN.
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Top-Down Bottom-Up
Fixed Trainable

Micro Macro Micro Macro
Edge-Wise Matrix - - 82.75 60.81

Randomly Initialized - - 83.86 62.12
Randomly Initialized∗ - - 82.80 62.51

1 1 83.77 62.31 83.86 62.96
P P 83.61 63.65 83.83 63.14
1 P 83.65 62.46 83.95 63.23
P 1 83.92 63.01 83.96 63.35
P∗ 1∗ - - 83.33 62.86

Table 5: Ablation study of the fine-grained hierarchy in-
formation on RCV1-V2 based on GCN-based HiAGM-
TP. Edge-Wise Matrix denotes that each directional
edge has a distinct trainable weight matrix for trans-
formation while the others use the weighted adjacent
matrix. P is fc(ei,j) =

Nj

Ni
and 1 is fp(ei,j) = 1.0. “*”

allows the information propagation between all nodes
while the others obey the constraint of hierarchy.

tions perform worse than the others that allow
propagation throughout the hierarchy paths. As
analyzed on GCN layers, the interaction between
non-adjacent nodes would lead to negative impact
on the HTC. We also validate this conclusion based
on the ablation study of prior probability.

Performance Study We analyze the improve-
ment on performance by dividing labels based
on their levels. We compute level-based Micro-
F1 scores of NYT on baseline, HiAGM-LA, and
HiAGM-TP. Figure 5 shows that our models retain
a better performance than the baseline on all levels,
especially among deep levels.

Figure 5: Evaluation of labels among different levels.
Note that we observe similar results for other datasets
and omit them for a cleaner view.

6 Conclusion

In this paper, we propose a novel end-to-end
hierarchy-aware global model that extracts the label
structural information for aggregating label-wise
text features. We present a bidirectional TreeL-
STM and a hierarchy-GCN as the hierarchy-aware
structure encoder. Furthermore, our framework
is extended into a parallel variant based on multi-
label attention and a serial variant of text feature
propagation. Our approaches empirically achieve
significant and consistent improvement on three
distinct datasets, especially on the low-frequency
labels. Specifically, both variants outperform the
state-of-the-art model on the RCV1-V2 benchmark
dataset. And our best model obtains a Macro-F1
score of 63.35% and a Micro-F1 score of 83.96%.
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