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Abstract

Data-driven approaches using neural networks
have achieved promising performances in natu-
ral language generation (NLG). However, neu-
ral generators are prone to make mistakes, e.g.,
neglecting an input slot value and generating
a redundant slot value. Prior works refer this
to hallucination phenomenon. In this paper,
we study slot consistency for building reliable
NLG systems with all slot values of input di-
alogue act (DA) properly generated in output
sentences. We propose Iterative Rectification
Network (IRN) for improving general NLG
systems to produce both correct and fluent re-
sponses. It applies a bootstrapping algorithm
to sample training candidates and uses rein-
forcement learning to incorporate discrete re-
ward related to slot inconsistency into training.
Comprehensive studies have been conducted
on multiple benchmark datasets, showing that
the proposed methods have significantly re-
duced the slot error rate (ERR) for all strong
baselines. Human evaluations also have con-
firmed its effectiveness.

1 Introduction

Natural Language Generation (NLG), as a criti-
cal component of task-oriented dialogue systems,
converts a meaning representation, i.e., dialogue
act (DA), into natural language sentences. Tra-
ditional methods (Stent et al., 2004; Konstas and
Lapata, 2013; Wong and Mooney, 2007) are mostly
pipeline-based, dividing the generation process into
sentence planing and surface realization. Despite
their robustness, they heavily rely on handcrafted
rules and domain-specific knowledge. In addition,
the generated sentences of rule-based approaches
are rather rigid, without the variance of human lan-
guage. More recently, neural network based mod-
els (Wen et al., 2015a,b; Dušek and Jurčı́ček, 2016;
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Input DA
inform(NAME = pickwick hotel,

PRICERANGE = moderate)

Reference
the hotel named pickwick hotel

is in a moderate price range
Missing this is a moderate hotel [NAME]

Misplace
the pickwick hotel in fort mason

is a moderate price range [AREA]

Table 1: An exmaple (including mistaken generations)
extracted from SF Hotel (Wen et al., 2015b) dataset. Er-
rors are marked in colors (missing, misplaced).

Tran and Nguyen, 2017a) have attracted much at-
tention. They implicitly learn sentence planning
and surface realisation end-to-end with cross en-
tropy objectives. For example, Dušek and Jurčı́ček
(2016) employ an attentive encoder-decoder model,
which applies attention mechanism over input slot
value pairs.

Although neural generators can be trained
end-to-end, they suffer from hallucination phe-
nomenon (Balakrishnan et al., 2019). Examples
in Table 1 show a misplacement error of an un-
seen slot AREA and a missing error of slot NAME

by an end-to-end trained model, when compared
against its input DA. Motivated by this observa-
tion, in this paper, we define slot consistency of
NLG systems as all slot values of input DAs shall
appear in output sentences without misplacement.
We also observe that, for task-oriented dialogue
systems, input DAs are mostly with simple logic
forms, therefore enabling retrieval-based methods
e.g. K-Nearest Neighbour (KNN) to handle the
majority of test cases. Furthermore, there exists a
discrepancy between the training criterion of cross
entropy loss and evaluation metric of slot error rate
(ERR), similarly to that observed in neural machine
translation (Ranzato et al., 2015). Therefore, it is
beneficial to use training methods that integrate the
evaluation metrics in their objectives.
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In this paper, we propose Iterative Rectification
Network (IRN) to improve slot consistency for
general NLG systems. IRN consists of a pointer
rewriter and an experience replay buffer. Pointer
rewriter iteratively rectifies slot-inconsistent gen-
erations from KNN or data-driven NLG systems.
Experience replay buffer of a fixed size collects can-
didates, which consist of mistaken cases, for train-
ing IRN. Leveraging the above observations, we
further introduce a retrieval-based bootstrapping
to sample pseudo mistaken cases as candidates for
enriching the training data. To foster consistency
between training objective and evaluation metrics,
we use REINFORCE (Williams, 1992) to incorpo-
rate slot consistency and other discrete rewards into
training objectives.

Extensive experiments show that, the proposed
model, KNN + IRN, significantly outperforms all
previous strong approaches. When applying IRN
to improve slot consistency of prior NLG baselines,
we notice large reductions of their slot error rates.
Finally, the effectiveness of the proposed methods
are further confirmed using BLEU scores, case
analysis and human evaluations.

2 Preliminary

2.1 Delexicalization

Inputs to NLG are structured meaning representa-
tions, i.e., DA, which consists of an act type and a
list of slot value pairs. Each slot value pair repre-
sents the type of information and its content while
the act type control the style of sentence. To im-
prove generalization capability of DA, delexical-
ization technique (Wen et al., 2015a,b; Dušek and
Jurčı́ček, 2016; Tran and Nguyen, 2017a) is widely
used to replace all values in reference sentence by
their corresponding slot in DA, creating pairs of
delexicalized input DAs and output templates.

Hence the most important step in NLG is to gen-
erate templates correctly given an input DA. How-
ever, this step can introduce missing and misplaced
slots, because of modeling errors or unaligned train-
ing data (Balakrishnan et al., 2019; Nie et al., 2019;
Juraska et al., 2018). Lexicalization is followed
after a template is generated, replacing slots in tem-
plate with corresponding values in DA.

2.2 Problem Statement

Formally, we denote a delexicalized input DA as
a set x = {x1, x2, · · · , xN} that consists of an
act type and some slots. Universal set S con-

tains all possible slots. The output template y =
[y1, y2, · · · , yM ] from NLG systems f(x) is a se-
quence of tokens (words and slots).

We define a slot extraction function g as

g(z) = {t | t ∈ z; t ∈ S}. (1)

where z consists of the DA x and elements of the
template y.

A slot-consistent NLG system f(x) satisfies the
following constraint:

g(f(x)) = g(x). (2)

To avoid trivial solutions, we require that f(x) 6=
x.

However, due to the hallucination phenomenon,
it is possible to miss or misplace slot value in gen-
erated templates (Wen et al., 2015a), which is hard
to avoid in neural-based approaches.

2.3 KNN-based NLG System

A KNN-based NLG system fKNN is composed
of a distant function ρ and a template set Y =
{y1,y2, · · · ,yQ} which is collected fromQ delex-
icalized sentences in training corpus.

Given input DA x, the distance is defined as

ρ(x,yi) = #({s | s = t; t ∈ yi; s ∈ x}), (3)

where function # computes the size of a set. Dur-
ing evaluation, system fKNN first ranks the tem-
plates in set Y by distant function ρ and then se-
lects the top k (beam size) templates.

3 Architeture

Figure 1 shows the architecture of Iterative Recti-
fication Network. It consists of two components:
a pointer rewriter to produce templates with im-
proved performance metrics and an experience re-
play buffer to gather and sample training data.

The improvements on slot consistency are ob-
tained via an iterative rewriting process. Assume,
at iteration k, we have a template y(k) that is not
slot consistent with input DA, i.e., g(y(k)) 6= g(x).
Then, a pointer rewriter iteratively rewrites it as

y(k+1) = φPR(x,y(k)). (4)

Above recursion ends once g(y(k)) = g(x) or a
certain number of iterations is reached.
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Input DA

{inform, $NAME$, $PHONE$}

$NAME$ is a nice hotel

inform(name = queen anne hotel, phone = 4154412828)

𝑔

{$NAME$}

Consistency Measure

Template DB

Experience Replay Buffer

Inconsistency Case

Bootstrapping

ℎ!

Template Input DA

$NAME$ is a nice hotel {inform, $NAME$, $PHONE$}

the phone number for $NAME$ is $PHONE$

𝑔

{$NAME$, $PHONE$}

If Still not Inconsistent

the phone number for queen anne hotel is 4154412828
Lexicalize

ℎ"

Previous Word

Template Copy

Iterative Rectification Network

Pointer Rewriter

for

𝑤, 𝑐(𝑖)
Policy

Generation

$NAME$

Argmax

State
NLG System:
1) KNN
2) Neuron

Mistaken Samples

Figure 1: IRN consists of two modules: an experience replay buffer and a pointer rewriter. The experience replay
buffer collects mistaken cases from NLG baseline, template and IRN itself (the red dashed arrow) whereas the
pointer network outputs templates with improved performance metrics. In each epoch of rectification, IRN obtains
samples of cases for training from the buffer and trains a pointer rewriter with metrics such as slot consistency
using a policy-based reinforcement learning technique. We omit some trivial connections for brevity.

3.1 Pointer Rewriter

The pointer rewriter φPR is trained to iteratively
correct the candidate y(k) given a DA x. This
correction operation is conducted time-recurrently.
At each position j of rewriting a template, there is a
state hj to represent the past history of the pointer
rewriter and an action aj to take according to a
policy π.

State We use an autoregressive model, in partic-
ular LSTM to compute state hj , given its past state
hj−1, input x and its past output y(k)j−1

hj = φLSTM(hj−1, [x; y
(k)
j−1; cj ]), (5)

where DA x is represented by one-hot representa-
tion (Wen et al., 2015a,b). cj is a context represen-
tation over input template y(k), to be described in
Eq. (6). The operation [; ] means vector concatena-
tion.

Action For position j in the output template y(k),
its action aj is in a space consisting of two cate-
gories: template copy, c(i), to copy a token from
the template y(k) at i, and word and slot genera-
tion, w, to generate a word or a slot at the position.
For a length-M input template y(k), the action aj
is therefore in a set of {w, c(1), · · · , c(M)}. The
action sequence a for a length-N output template
is [a1, · · · , aN ].

Template Copy The model φPR for template
copy uses attentive pointer to decide, for position j,
what token to copy from the candidate y(k). Each
token y(k)i in candidate y(k) is represented using
an embedding y

(k)
i . For position j in the output

template, this model utilizes the above hidden state
hj and computes attentive weights to all of the
tokens in y(k), with weight to token embedding
y
(k)
i as follows:


φPR(hj ,y

(k)
i ) = vTa σ(Wh ∗ hj + Wy ∗ y(k)

i )

pPR
ij = Softmax(φPR(hj ,y

(k)
i ))

cj =
∑

1≤i≤M
pPR
ij yi

,

(6)
where va, Wh, Wy are learnable parameters.

Word and Slot Generation Another candi-
date for position j is a word or a slot key from
a predefined vocabulary. The action w computes a
distribution of words and slot keys below

pVocab
j = Softmax(Wv ∗ hj), (7)

where this distribution is dependent on the state hj
and matrix Wv is learnable.
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Algorithm 1: Interactive Data Aggregation
Input: template-DB, T ;

baseline NLG system, b;
pointer rewriter, φPR;
total epoch number, K;
candidate set size, U

Output: ideal pointer rewriter, φPR.
1 B,C ← {}, {}
2 epoch← 0
3 for x, z ∈ T do
4 y← b(x)
5 if g(z) 6= g(y) then
6 C ← C + (x,y, z)
7 end
8 end
9 while epoch < K do

10 Ω← Bootstrapping(T,U − |C|)
11 B ← C + Ω
12 Training(φPR, B)
13 C ← {}
14 for x,y, z ∈ B do
15 ŷ← φPR(x,y)
16 if g(y) 6= g(ŷ) then
17 C ← C + (x, ŷ, z)
18 end
19 end
20 epoch← epoch+ 1

21 end

Policy The probabilities for the above actions can
be computed as follows{

π(c(i)|hj) = λj ∗ pPR
j (i)

π(w|hj) = (1− λj) ∗ pVocab
j

, (8)

where π(c(i)|hj) is the probability of copying the
i-th token from input template y(k) to position
j. π(w|hj) is the probability to use words or
slot keys predicted from the distribution pVocab

j

in Eq. (7). The weight λj is a real value between
0 and 1. It is computed from a Sigmoid opera-
tion as λj = Sigmoid(vh ∗ hj). With the policy,
the pointer rewriter does greedy search to decide
whether copying or generating a token.

3.2 Experience Replay Buffer
The experience replay buffer aims at providing
training samples for IRN. It has three sources of
samples. The first is from off-the-shelf NLG sys-
tems. The second is from the pointer rewriter in
the last iteration. Both of them are real mistaken

Algorithm 2: Bootstrapping via Retrieval
Input: template-DB, T ;

total sample number, V ;
maximum tolerance (default 2), ε.

Output: pseudo sample set, Ω.
1 Ω← {}
2 while |Ω| < V do
3 x, z← RandomSelect(T)
4 Z ← {}
5 for x̂, ẑ ∈ T do
6 p← g(z)
7 q ← g(ẑ)
8 if p 6= q ∩ |p− q| < ε then
9 Z ← Z + (x, ẑ, z)

10 end
11 end
12 Ω← Ω + RandomSelect(Z)

13 end

samples. They are stored in a case set C in the
buffer. These samples are off-policy as the case set
C can contain samples from many iterations before.
The third source is sampled from a bootstrapping
algorithm. They are stored in a set Ω.

Iterative Data Aggregation The replay experi-
ences should be progressive, reflecting improve-
ments in the iterative training of IRN. Therefore,
we design an iterative data aggregation algorithm
in Algorithm 1. In the algorithm, the experience
replay buffer B is defined as a fixed size set of
B = C + Ω. For a total epoch number of E, it
randomly provides mistaken samples for training
pointer rewriter φPR at each epoch. Importantly,
both content of C and Ω are varying from each
epoch. For C, it initially consists of real mistaken
samples from the baseline system (line 3-th to line
8-th). Later on, it’s gradually filled by the samples
from the IRN (line 14-th to line 19-th). For Ω, its
samples reflect a general distribution of training
samples from a template database T (line 10-th).
Finally, the algorithm aggregates these two groups
of mistaken samples (line 11-th) and use them to
train the model φPR (line 12-th).

Bootstrapping via Retrieval Relying solely on
the real mistaken samples exposes the system to
data scarcity problem. It is easy to observe that real
samples are heavily biased towards certain slots,
and the number of real mistaken samples can be
small. To address this problem, we introduce a
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position 0 1 2 3 4 5 6

token the hotel -s phone number is $PHONE$

token the phone number of the $NAME$ is $PHONE$

𝒅𝒄 1 1 1 0 1 0 1 1

𝒅𝒍 0 3 4 -1 0 -1 5 6

𝒅𝝅 𝑐(0) 𝑐(3) 𝑐(4) g(of) 𝑐(0) g($NAME$) 𝑐(5) 𝑐(6)

Mistaken
Template

Reference
Template

extractive slotfunction wordfunction word noun phraseambiguity

Figure 2: Correcting a candidate given a reference template. dc, dl, and dπ are inferred by simple rules.

bootstrapping algorithm, described in Algorithm 2.
It uses a template database T , built from delexical-
ized NLG training corpus and organized by pairs
of DA and reference template (x, z).

At each turn of the algorithm, it first randomly
samples (line 3-th) a pair (x, z), from training tem-
plate data base of T . Then for every pair (x̂, ẑ) in
T , it measures if the pair (x̂, ẑ) is slot-inconsistent
with respect to (x, z), and adds the pair that is
within a certain distance ε (a hyper parameter) to
a set Z (line 5-th to 11-th). ε is usually set to a
small number so that the selected samples are close
enough to (x, z). In practice, we set it to 2. Fi-
nally, it does a random sampling (line 12-th) on
Z and insert its return into the output set Ω. Such
bootstrapping process stops when the number of
generated samples reaches a certain limit K.

These samples, which we refer them as pseudo
samples in the following, represent a wider cov-
erage of training samples than the real mistaken
samples. Because they are sampled from general
distribution of the templates, some of semantics
are not seen in the real mistaken cases. We will
demonstrate through experiments that it effectively
addresses data scarcity problem.

4 Training with Supervised Learning
and Distant Supervision

One key idea behind the proposed IRN model is to
conduct distant supervision on the actions of tem-
plate copy and generation. We diagram its motiva-
tion in Figure 2. During training, only candidate y
and its reference z are given. The exact actions that
convert template y to z have to be inferred from
the two templates. Here we use simple rules for the
inference. Firstly, the rules check if reference token
zj exists in the candidate y. The output is a label
dc consisting of 1s and 0s, representing whether
tokens in the reference template are existent/absent
in the candidate. Secondly, the rules locate the orig-

inal position dlj in the candidate for each token j
in the reference template if dc = 1 and use -1 for
dc = 0. Finally, the action label dπ for policy is
inferred, with w for dlj = −1 and c(i) for dlj = i.

We may use the extracted tags to do supervised
learning. The loss to be minimized is as follows

JSL = −
L∑
j=1

log π(dπj |hj), (9)

where L is the length of ground truth. π(dπj |hj)
computes the likelihood of action dπj at position j
given state hj .

However, there are following issues when at-
tempting to utilize the labels produced by distant
supervision for training. Firstly, the importance of
every token in candidate is different. For example,
noun phrase (colored in blue) is critical and should
be copied. Function words (colored in red) is of
little relevance and can be generated by IRN itself.
However, distant supervision treats them the same.
Secondly, rule-based matching may cause semantic
ambiguity (dashed line colored in black). Lastly,
the training criterion of cross entropy is not directly
relevant to the evaluation metric using slot error
rate. To address these issues, we use reinforcement
learning to obtain the optimal actions.

5 Training with Policy-based
Reinforcement Learning

In this section, we describe another method to train
IRN. We apply policy gradient (Williams, 1992) to
optimize models with discrete rewards.

5.1 Rewards
Slot Consistency This reward is related to the
correctness of output templates. Given the set of
slot-value pairs g(y) from the output template gen-
erated by IRN and the set of slot-value pairs g(x)
extracted from input DA, the reward is zero when
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Model
SF Restaurant SF Hotel Laptop Television
BLEU ERR BLEU ERR BLEU ERR BLEU ERR

HLSTM (Wen et al., 2015a) 0.747 0.74% 0.850 2.67% 0.513 1.10% 0.525 2.50%
SCLSTM (Wen et al., 2015b) 0.753 0.38% 0.848 3.07% 0.512 0.79% 0.527 2.31%

TGen (Dušek and Jurčı́ček, 2016) 0.751 0.84% 0.853 4.14% 0.515 0.87% 0.521 2.32%
ARoA (Tran and Nguyen, 2017b) 0.776 0.30% 0.892 1.13% 0.522 0.50% 0.539 0.60%

RALSTM (Tran and Nguyen, 2017a) 0.779 0.16% 0.898 0.43% 0.525 0.42% 0.541 0.63%

IRN (+ KNN) 0.807 0.11% 0.911 0.32% 0.537 0.29% 0.559 0.35%

Table 2: Experiment results on four datasets for all baselines and our model. Meanwhile, the improvements over
all prior methods are statistically significant with p < 0.01 under t-test.

they are equal; otherwise, it is negative with value
set to the cardinality of the difference between the
two sets as follows

rSC = −|g(y)− g(x)|. (10)

Language Fluency This reward is related to the
naturalness of the realized surface form from a re-
sponse generation method. Following (Wen et al.,
2015a,b), we first train a backward language model
on the reference texts from training data. Then,
the perplexity (PPL) of the surface form after lex-
icalization of the output template ŷ is measured
using the language model. This PPL is used for the
reward for language fluency as follows:

rLM = −PPL(y). (11)

Distant Supervision We also measure the re-
ward from using distant supervision in Section 4.
For a length-N reference template, the reward is
given as follows:

rDS = −
L∑
j=1

log π(dπj |hj), (12)

where dπj is the inferred action label.
The final reward for action a is a weighted sum

of the rewards discussed above:

r(a) = γSCrSC + γLMrLM + γDSrDS (13)

where γSC+γLM+γDS = 1. We set them to equal
value in this work. A reward is observed after the
last token of the utterance is generated.

5.2 Policy Gradient
We utilize supervised learning in Eq. (9) to ini-
tialize our model with the labels extracted from
distant supervision. After its convergence, we con-
tinuously tune the model using policy gradient de-
scribed in this section. The policy model in φPR

itself generates a sequence of actions a, that are
not necessarily the same as dπ, and this produces
an output template y to compute slot consistency
reward in Eq. (10) and language fluency reward in
Eq. (11). With these rewards, the final reward is
computed in (13). The gradient to back propagate
is estimated using REINFORCE as

∇JRL(θ) = (r(a)− b) ∗
N∑
j=1

∇ log π(aj |hj),

(14)
where θ denotes model parameters. r(a) − b
is the advantage function per REINFORCE. b is
a baseline. Through experiments, we find that
b = BLEU(y, z) performs better (Weaver and Tao,
2001) than tricks such as simple averaging of the
likelihood 1

N

∑N
j=1 log π(aj |hj).

6 Experiments

6.1 Experiment Setup

We assess the model performances on four NLG
datasets of different domains. The SF Hotel and
SF Restaurant benchmarks are collected in (Wen
et al., 2015a) while Laptop and TV benchmarks
are released by (Wen et al., 2016). Each dataset is
evaluated with five strong baseline methods, includ-
ing HLSTM (Wen et al., 2015a), SC-LSTM (Wen
et al., 2015b), TGen (Dušek and Jurčı́ček, 2016),
ARoA (Tran and Nguyen, 2017b) and RALSTM
(Tran and Nguyen, 2017a). Following these prior
works, the evaluation metrics consist of BLEU and
slot error rate (ERR), which is computed as

ERR =
p+ q

N
, (15)

where N is the total number of slots in the DA, and
p, q is the number of missing and redundant slots
in the generated template, respectively.
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Model
SF Restaurant Television

BLEU ERR BLEU ERR
HLSTM (Wen et al., 2015a) w/ IRN 0.060 ↑ 0.66% ↓ 0.040 ↑ 2.29% ↓

TGen (Dušek and Jurčı́ček, 2016) w/ IRN 0.002 ↑ 0.73% ↓ 0.005 ↑ 1.99% ↓
RALSTM (Tran and Nguyen, 2017a) w/ IRN 0.007 ↑ 0.11% ↓ 0.004 ↑ 0.36% ↓

Table 3: The up and down arrows emphasize the absolutely improved performances contributed by IRN.

Method
Laptop

BLEU SER
IRN (+KNN) 0.537 0.29%

w/o IRN 0.414 0.88%
w/o reward rSC 0.526 0.75%
w/o reward rDS 0.527 0.66%
w/o reward rLM 0.529 0.49%

w/o baseline BLEU 0.531 0.37%

w/o Aggregation 0.515 0.48%
w/o Bootstrapping 0.464 0.83%

Table 4: Ablation study of rewards (upper part) and
training data algorithms (lower part).

We follow all baseline performances reported
in (Tran and Nguyen, 2017b) and use open source
toolkits, RNNLG1 and Tgen2 to build NLG sys-
tems, HLSTM, SCLSTM and TGen. We re-
implement the baselines ARoA and RALSTM
since their source codes are not available.

6.2 Main Results

We first compare our model, i.e., IRN + KNN with
all those strong baselines metioned above. Figure
2 shows that the proposed model significantly out-
performs previous baselines on both BLEU score
and ERR. Compared with current state-of-the-art
model, RALSTM, it achieves reductions of 1.45,
1.38, 1.45 and 1.80 times for SF Restaurant, SF Ho-
tel, Laptop, and Television datasets, respectively.
Furthermore, it improves 3.59%, 1.45%, 2.29%
and 3.33% of BLEU scores on these datasets, re-
spectively. This improvements of BLEU score can
be contributed from language fluency reward rLM.

To verify whether IRN helps improve slot con-
sistency of general NLG models, we further equip
strong baselines, including HLSTM, TGen and
RALSTM, with IRN. We evaluate their perfor-
mances on SF Restaurant and Television datasets.
As shown in Table 3, the methods consistently re-
duce ERRs and also improve BLEU scores for all

1https://github.com/shawnwun/RNNLG.
2https://github.com/UFAL-DSG/tgen.

Model
Television

Informative Natural
TGen 4.49 3.41

TGen + IRN 4.72 3.52

RALSTM 4.63 4.01
RALSTM + IRN 4.86 4.07

Table 5: Real user trial for generation quality evalua-
tion on both informativeness and naturalness.

baselines on both datasets.
In conclusion, our model, IRN (+ KNN), not

only has achieved the state-of-the-art performances
but also can contribute to improvements of slot
consistency for general NLG systems.

6.3 Ablation Study

We perform a set of ablation experiments on the
SCLSTM+IRN models on Laptop dataset to under-
stand the relative contribution of data aggregation
algorithms in Sec. 3.2 and rewards in Sec. 5.1.

6.3.1 Effect of Reward Designs
The results in Table 4 show that removal of slot con-
sistency reward rSC or distant supervision reward
rDS from advantage function dramatically degrades
SER performance. Language fluency related infor-
mation from baseline BLEU and reward rLM also
have positive impact on BLEU and SER, though
they are smaller than using rSC or rDS.

6.3.2 Effect of Data Algorithms
Using only candidates from baselines degrades per-
formance to approximately that of the baseline
SCLSTM. This shows that incorporating candi-
dates from IRN is important. The model without
bootstrapping, even including candidates from IRN,
has worse performance than SCLSTM in Table 3.
This shows that bootstrapping to include generic
samples from templates database is critical.

6.4 Human Evaluation

We evaluate IRN and some strong baselines on TV
dataset. Given an input DAs, we ask human eval-

https://github.com/shawnwun/RNNLG
https://github.com/UFAL-DSG/tgen
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Input DA recommend(NAME = crios 93, FAMILY = l1, AUDIO= nicam stereo, SIZE = large)

Reference Text the large crios 93 television in the l1 family features nicam stereo
Mistaken Generation the $NAME$ is in $FAMILY$ with $SIZE$ screen and cost about $PRICE$ [AUDIO, PRICE]

1-st IRN Revision the $NAME$ is a nice television in $FAMILY$ with a $SIZE$ screen [AUDIO]

2-st IRN Revision the $NAME$ is very nice in $FAMILY$ with a $SIZE$ screen size [AUDIO]

3-st IRN Revision the $NAME$ is very nice in the $FAMILY$ family with a $SIZE$ screen size and $AUDIO$

Lexicalized Form the crios 93 is very nice in the l1 family with a large screen size and nicam stereo

Table 6: A DA from Television dataset and a candidate from HLSTM on the DA. The output template from each
iteration of IRN. Slot errors are marked in colors (missing, misplaced).

uator to score generated surface realizations from
our model and other baselines in terms of infor-
mativeness and naturalness. Here informativeness
measures whether output utterance contains all the
information specified in the DA without insertion
of extra slots or missing an input slot. The natu-
ralness is defined as whether it mimics a response
from a human (both ratings are out of 5).

Table 5 shows that RALSTM + IRN outperforms
RALSTM notably in informativeness relatively by
4.97%, from 4.63 to 4.86. In terms of naturalness,
the improvement is from 4.01 to 4.07, relative by
1.50%. Meanwhile, IRN helps to improve the per-
formances of TGen by 5.12% on informativeness
and 3.23% on naturalness.

These subjective assessments are consistent to
the observations in Table 3, which both have veri-
fied the effectiveness of proposed method.

6.5 Case Study

Table 6 presents a sample on TV dataset and shows
a progress made by IRN. Given an input DA, the
baseline HLSTM outputs in the third row a tem-
plate that misses slot $AUDIO$ but inserts slot
$PRICE$. The output template from the first itera-
tion of IRN has a removal of the inserted $PRICE$
slot. The second iteration has improved language
fluency but no progress in slot-inconsistency. The
third iteration achieves slot consistency, after which
a natural language, though slightly different from
the reference text, is generated via lexicalization.

7 Related Work

Conventional approaches for solving NLG task are
mostly pipeline-based, dividing it into sentence
planning and surface realisation (Dethlefs et al.,
2013; Stent et al., 2004; Walker et al., 2002). Oh
and Rudnicky (2000) introduce a class-based n-
gram language model and a rule-based reranker.
Ratnaparkhi (2002) address the limitations of n-

gram language models by using more sophisticated
syntactic dependency trees. Mairesse and Young
(2014) employ a phrase-based generator that learn
from a semantically aligned corpus. Despite their
robustness, these models are costly to create and
maintain as they heavily rely on handcrafted rules.

Recent works (Wen et al., 2015b; Dušek and
Jurčı́ček, 2016; Tran and Nguyen, 2017a) build
data-driven models based on end-to-end learning.
Wen et al. (2015a) combine two recurrent neural
network (RNN) based models with a CNN reranker
to generate required utterances. Wen et al. (2015b)
introduce a novel SC-LSTM with an additional
reading cell to jointly learn gating mechanism
and language model. Dušek and Jurčı́ček (2016)
present an attentive neural generator to apply atten-
tion mechanism over input DA. Tran and Nguyen
(2017b,a) employ a refiner component to select and
aggregate the semantic elements produced by the
encoder. More recently, domain adaptation (Wen
et al., 2016) and unsupervised learning (Bahuleyan
et al., 2018) for NLG also receive much attention.

We are also inspired by the post-edit paradigm
(Xia et al., 2017), which uses a second-pass de-
coder to improve the translation quality.

A recent method in (Wu et al., 2019) defines an
auxiliary loss that checks if the object words exist
in the expected system response of a task-oriented
dialogue system. It would be interesting to apply
this auxiliary loss in the proposed method. On
the other hand, the REINFORCE (Williams, 1992)
algorithm applied in this paper is more general than
(Wu et al., 2019) to incorporate other metrics, such
as BLEU.

Nevertheless, end-to-end neural-based genera-
tors suffer from hallucination problem and are hard
to avoid generating slot-inconsistent utterance (Bal-
akrishnan et al., 2019). Balakrishnan et al. (2019)
attempts to alleviate this issue by employing a tree-
structured meaning representation and constrained
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decoding technique. However, the tree-shaped
structure requires additional human annotation.

8 Conclusion

We have proposed Iterative Rectification Network
(IRN) to improve slot consistency of general NLG
systems. In this method, a retrieval-based boot-
strapping is introduced to sample pseudo mistaken
cases from training corpus to enrich the original
training data. We also employ policy-based rein-
forcement learning to enable training the models
with discrete rewards that are consistent to eval-
uation metrics. Extensive experiments show that
the proposed model significantly outperforms pre-
vious methods. These improvements include both
of correctness measured with slot error rates and
naturalness measured with BLEU scores. Human
evaluation and case study also confirm the effec-
tiveness of the proposed method.
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