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Abstract
We present easy-to-use retrieval focused mul-
tilingual sentence embedding models, made
available on TensorFlow Hub. The models em-
bed text from 16 languages into a shared se-
mantic space using a multi-task trained dual-
encoder that learns tied cross-lingual repre-
sentations via translation bridge tasks (Chi-
dambaram et al., 2018). The models achieve
a new state-of-the-art in performance on
monolingual and cross-lingual semantic re-
trieval (SR). Competitive performance is ob-
tained on the related tasks of translation pair
bitext retrieval (BR) and retrieval question an-
swering (ReQA). On transfer learning tasks,
our multilingual embeddings approach, and in
some cases exceed, the performance of En-
glish only sentence embeddings.

1 Introduction

We introduce three new multilingual members in
the universal sentence encoder (USE) (Cer et al.,
2018) family of sentence embedding models. The
models target performance on tasks that involve
multilingual semantic similarity and achieve a new
state-of-the-art in performance on monolingual and
cross-lingual semantic retrieval (SR). One model
targets efficient resource usage with a CNN model
architecture (Kim, 2014). Another targets accuracy
using the Transformer architecture (Vaswani et al.,
2017). The third model provides an alternative
interface to our multilingual Transformer model
for use in retrieval question answering (ReQA).
The 16 languages supported by our multilingual
models are given in Table 1.1

† Corresponding authors:
{yinfeiy, cer}@google.com

1Language coverage was selected based, in part, on the
ease of obtaining data for the tasks used to train our models.
Due to character set differences, we treat Simplified Chinese,
zh, and Traditional Chinese, zh-tw, prominently used in Tai-
wan, as two languages within our model.

Languages Family
Arabic (ar) Semitic
Chinese (PRC) (zh) Sino-Tibetan
Chinese (Taiwan) (zh-tw)
Dutch(nl) English(en) Germanic
German (de)
French (fr) Italian (it) Latin
Portuguese (pt) Spanish (es)
Japanese (ja) Japonic
Korean (ko) Koreanic
Russian (ru) Polish (pl) Slavic
Thai (th) Kra–Dai
Turkish (tr) Turkic

Table 1: Multilingual universal sentence encoder’s
supported languages (ISO 639-1). Multilingual
sentences are mapped to a shared semantic space.

2 Model Toolkit

Our multilingual models are implemented in Ten-
sorFlow (Abadi et al., 2016) and made publicly
available on TensorFlow Hub.2 Listing 1 illustrates
the easy-to-use generation of multilingual sentence
embeddings. The models conveniently only rely on
TensorFlow without requiring additional libraries
or packages. Listing 2 demonstrates using the ques-
tion answering interface. Responses are encoded
with additional context information such that the
resulting context aware embeddings have a high
dot product similarity score with the questions they
answer. This allows for retrieval of indexed candi-
dates using efficient nearest neighbor search.3

3 Encoder Architecture

3.1 Multi-task Dual Encoder Training
Similar to Cer et al. (2018) and Chidambaram
et al. (2018), we target broad coverage using a

2https://www.tensorflow.org/hub/, Apache
2.0 license, with models available as saved TF graphs.

3Popular efficient search tools include FAISS https:
//github.com/facebookresearch/faiss, Annoy
https://github.com/spotify/annoy, or FLANN
https://www.cs.ubc.ca/research/flann.

https://www.tensorflow.org/hub/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://www.cs.ubc.ca/research/flann
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Figure 1: Multilingual universal sentence encoder model training architecture using multi-task training
over: (i) retrieval question-answering (ReQA), natural language inference (NLI) and translation ranking.
Transformer or CNN based sentence embedding models provide a shared encoder across all tasks.

import tensorflow_hub as hub

module = hub.Module("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual/1")

multilingual_embeddings = module([
"Hola Mundo!", "Bonjour le monde!", "Ciao mondo!"
"Hello World!", "Hallo Welt!", "Hallo Wereld!",
"你好世界!", "Привет, мир!", "!��A`�A� Ab�r�"])

Listing 1: Python code mapping multilingual
sentences into a shared semantic embedding space.

module = hub.Module("https://tfhub.dev/google/"
"universal-sentence-encoder-multilingual-qa/1")

query_embeddings = module(
dict(text=["What is your age?"]),
signature="question_encoder", as_dict=True)

candidate_embeddings = module(
dict(text=["I am 20 years old."],

context=["I will be 21 next year."]),
signature="response_encoder", as_dict=True)

Listing 2: Python code embedding a question and
answer for retrieval Question-Answering (ReQA).

multi-task dual-encoder training framework, with
a single shared encoder supporting multiple down-
stream tasks. The training tasks include: a multi-
feature question-answer prediction task,4 a transla-
tion ranking task, and a natural language inference
(NLI) task. Additional task specific hidden layers
for the question-answering and NLI tasks are added
after the shared encoder to provide representational
specialization for each type of task. The model
training architecture is illustrated at figure 1.

4Question-answer prediction is similar to conversational-
response prediction (Yang et al., 2018). We treat the question
as the conversational input and the answer as the response. For
improved answer selection, we provide a bag-of-words (BoW)
context feature as an additional input to the answer encoder.
For our models, we use the entire paragraph containing the
answer as context. The context feature is encoded using a
separate DAN encoder.

3.2 SentencePiece
SentencePiece tokenization (Kudo and Richardson,
2018) is used for all of the 16 languages supported
by our models.5 A single 128k SentencePiece vo-
cabulary is trained from 8 million sentences sam-
pled from our training corpus and balanced across
the 16 languages. For validation, the vocab is used
to process a development set, separately sampled
from the sentence encoding model training corpus.
We find the development set character coverage is
higher than 99% for all languages, with less than
1% out-of-vocabulary tokens. Each token in the vo-
cab is mapped to a fixed length embedding vector.6

3.3 Shared Encoder
Two distinct architectures for the sentence encod-
ing models are provided: (i) transformer (Vaswani
et al., 2017), targeted at higher accuracy at the cost
of resource consumption; (ii) convolutional neural
network (CNN) (Kim, 2014), designed for efficient
inference but obtaining reduced accuracy.

Transformer The transformer encoding model
embeds sentences using the encoder component of
the transformer architecture (Vaswani et al., 2017).
Bi-directional self-attention is used to compute
context-aware representations of tokens in a sen-
tence, taking into account both the ordering and
the identity of the tokens. The context-aware token
representations are then averaged together to obtain
a sentence-level embedding.

CNN The CNN sentence encoding model feeds
the input token sequence embeddings into a con-

5https://github.com/google/
sentencepiece

6Out-of-vocabulary characters map to an <UNK> token.

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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Task Name Task Type Data Source Native or Not
Retrieval Question-Answering (ReQA) Ranking Web Crawled Native + MT
Translation Ranking Ranking Web Crawled Native
Natural Language Inference (NLI) 3 way classification Human Written Native (en) + MT

Table 2: Training tasks for the multilingual sentence encoder. For better coverage across languages, we
combine native text with machine translated (MT) data. For NLI, native data is only used for English (en).

Lang
QA Translation NLI

Native +
Translated Native Translated

ar 60M 158M 570K
de 75M 517M 570K
en 2.7B – 570K
es 340M 416M 570K
fr 92M 586M 570K
it 103M 261M 570K
ja 384M 69M 570K
ko 60M 57M 570K
nl 60M 574M 570K
pt 180M 536M 570K
pl 60M 292M 570K
ru 112M 148M 570K
th 60M 70M 570K
tr 69M 415M 570K
zh 1B 112M 570K
zh-t 147M 112M 570K

Table 3: Training examples by task for each of the
16 languages understood by our models.

volutional neural network (Kim, 2014). Similar to
the transformer encoder, average pooling is used
to turn the token-level embeddings into a fixed-
length representation. Sentence embeddings are
then obtained by passing the averaged representa-
tion through additional feedforward layers.

4 Training and Configuration

4.1 Training Corpus

Training data consists of mined question-answer
pairs,7 mined translation pairs,8 and the Stanford
Natural Language Inference (SNLI) corpus (Bow-
man et al., 2015).9 SNLI only contains English
data. The number of mined questions-answer pairs
also varies across languages with a bias toward a
handful of top tier languages. To balance train-
ing across languages, we use Google’s translation
system to translate SNLI to the other 15 languages.

7QA pairs are mined from online forums and QA websites,
including Reddit, StackOverflow, and YahooAnswers.

8The translation pairs are mined using a system similar to
the approach described in Uszkoreit et al. (2010).

9MultiNLI (Williams et al., 2018), a more extensive corpus,
contains examples from multiple sources but with different
licences. Employing SNLI avoids navigating the licensing
complexity of using MultiNLI to training public models.

Model Quora AskUbuntu Average
USETrans 89.1 42.3 65.7
USECNN 89.2 39.9 64.6
Gillick et al. (2018) 87.5 37.3 62.4

Table 4: MAP@100 on SR (English). Models are
compared with the best models from Gillick et al.
(2018) that exclude in-domain training data.

We also translate a portion of question-answer pairs
to ensure each language has a minimum of 60M
training pairs. For each of our datasets, we use 90%
of the data for training, and the remaining 10% for
development/validation. Table 2 and 3 lists the
details of data used for each task / langauge.

4.2 Model Configuration

Input sentences are truncated to 256 tokens for
the CNN model and 100 tokens for transformer.
The CNN encoder uses 2 CNN layers with filter
width of [1, 2, 3, 5] and 256 filters per width. The
Transformer encoder employs 6 transformer lay-
ers, with 8 attentions heads, hidden size 512, and
filter size 2048. Similar to our prior work (Cer
et al., 2018), we configure our models with the
intention of making them small and fast enough
to be used directly within many downstream ap-
plications without the need for model distillation.
Model hyperparameters are tuned on development
data sampled from the same sources as the training
data. We export sentence encoding modules for our
two encoder architectures: USETrans and USECNN.
We also export a larger graph for QA tasks from our
Transformer based model that includes QA specific
layers and support providing context information
from the larger document as USEQA Trans+Cxt.10

5 Experiments on Retrieval Tasks

In this section we evaluate our multilingual en-
coding models on semantic retrieval, bitext and

10While USEQA Trans+Cxt uses the same underlying shared
encoder as USETrans but with additional task specific layers,
we anticipate that the models could diverge in the future.
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Model en-es en-fr en-ru en-zh
USETrans 86.1 83.3 88.9 78.8
USECNN 85.8 82.7 87.4 79.5
Yang et al. (2019) 89.0 86.1 89.2 87.9

Table 5: P@1 on UN translation pair bitext retrieval
(BR). Yang et al. (2019) is a specialized translation
retrieval model and the current state-of-the-art.

retrieval question answer tasks.

5.1 Semantic Retrieval (SR)

Following Gillick et al. (2018), we construct seman-
tic retrieval (SR) tasks from the Quora question-
pairs (Hoogeveen et al., 2015) and AskUbuntu (Lei
et al., 2016) datasets. The SR task is to identify all
sentences in the retrieval corpus that are semanti-
cally similar to a query sentence.11

For each dataset, we first build a graph connect-
ing each of the positive pairs, and then compute
its transitive closure. Each sentence then serves
as a test query that should retrieve all of the other
sentences it is connected to within the transitive
closure. Mean average precision (MAP) is em-
ployed to evaluate the models. More details on the
constructed datasets can be found in Gillick et al.
(2018). Both datasets are English only.

Table 4 shows the MAP@100 on the Quora and
AskUbuntu retrieval tasks. We use Gillick et al.
(2018) as the baseline model, which is trained
using a similar dual encoder architecture. The
numbers provided here are for models without fo-
cused in-domain training data. 12 Both USECNN
and USETrans outperform the prior state-of-the-
art. USETrans and USECNN perform comparably
on Quora. However, USETrans performs notably
better than USECNN on AskUbuntu, suggesting the
AskUbuntu data could be more challenging.

5.2 Bitext Retrieval (BR)

Bitext retrieval performance is evaluated on the
United Nation (UN) Parallel Corpus (Ziemski et al.,
2016), containing 86,000 bilingual document pairs
matching English (en) documents with with their
translations in five other languages: French (fr),

11The task is related to paraphrase identification (Dolan
et al., 2004) and Semantic Textual Similarity (STS) (Cer et al.,
2017), but with the identification of meaning similarity being
assessed in the context of a retrieval task.

12The model for Quora is trained on Paralex (http:
//knowitall.cs.washington.edu/paralex) and
AskUbuntu data. The model for AskUbuntu is trained on
Paralex and Quora.

Spanish (es), Russian (ru), Arabic (ar) and Chinese
(zh). Document pairs are aligned at the sentence-
level, which results in 11.3 million aligned sentence
pairs for each language pair.

Table 5 shows sentence-level retrieval preci-
sion@1 (P@1) for the proposed models as well
as the current state-of-the-art results from Yang
et al. (2019), which uses a specialized translation
pair retrieval model. USETrans is generally better
than USECNN, performing lower than the SOTA
but not by too much with the exception of en-zh.13

Model SQuAD Dev SQuAD Train
Paragraph Retrieval

USEQA Trans+Cxt 63.5 53.3
BM25 (baseline) 61.6 52.4

Sentence Retrieval

USEQA Trans+Cxt 53.2 43.3
USETrans 47.1 37.2

Table 6: P@1 for SQuAD ReQA. Models are not
trained on SQuAD. Dev and Train only refer to the
respective sections of the SQuAD dataset.

5.3 Retrieval Question Answering (ReQA)
Similar to the data set construction used for the SR
tasks, the SQuAD v1.0 dataset (Rajpurkar et al.,
2016) is transformed into a retrieval question an-
swering (ReQA) task.14 We first break all docu-
ments in the dataset into sentences using the sen-
tence splitter distributed with the ReQA evaluation
suite.15 Each question of the (question, answer
spans) tuples in the dataset is treated as a query.
The task is to retrieve the sentence designated
by the tuple answer span. Search is performed
on a retrieval corpus consisting of all of the sen-
tences within the corpus. We contrast sentence and
paragraph-level retrieval using our models, with
the later allowing for comparison against a BM25
baseline (Jones et al., 2000).16

13Performance is degraded from Yang et al. (2019) due to
using a single sentencepiece vocabulary to cover 16 languages.
Languages like Chinese, Korean, Japanese have much more
characters. To ensure the vocab coverage, sentencepiece tends
to split the text of these languages into single characters, which
increases the difficulty of the task.

14The retrieval question answering task was suggested by
Chen et al. (2017) and then recently explored further by
Cakaloglu et al. (2018). However, Cakaloglu et al. (2018)’s
use of sampling makes it difficult to directly compare with
their results and we provide our own baseline based on BM25.

15https://github.com/google/
retrieval-qa-eval

16BM25 is a strong baseline for text retrieval tasks.
Paragraph-level experiments use the BM25 implementa-

http://knowitall.cs.washington.edu/paralex
http://knowitall.cs.washington.edu/paralex
https://github.com/google/retrieval-qa-eval
https://github.com/google/retrieval-qa-eval
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Model en ar de es fr it ja ko nl pt pl ru th tr zh / zh-t
Cross-lingual Semantic Retrieval (cl-SR)

Quora
USETrans 89.1 83.1 85.5 86.3 86.7 86.8 85.1 82.5 83.8 86.5 82.1 85.7 85.8 82.5 84.8
USECNN 89.2 79.9 83.7 85.0 85.0 85.5 82.4 77.6 81.3 85.2 78.3 83.8 83.5 79.9 81.9
LASER 79.7 82.2 83.5 83.1 83.7 - 73.4 82.8 83.6 82.3 82.6 78.6 79.9 -

AskUbuntu
USETrans 42.3 38.2 40.0 39.9 39.3 40.2 40.6 40.3 39.5 39.8 38.4 39.6 40.3 37.7 40.1
USECNN 39.9 33.0 35.0 35.6 35.2 36.1 35.5 35.1 34.5 35.6 32.9 35.2 35.2 32.8 34.6
LASER 24.5 26.1 26.4 26.5 27.0 - 22.0 26.2 26.2 25.7 25.6 23.8 25.0 -

Average
USETrans 65.7 60.7 62.8 63.1 63.0 63.5 63.8 62.4 61.7 63.2 60.7 62.7 63.1 60.1 62.5
USECNN 64.6 56.5 59.4 60.3 60.1 60.8 59.0 56.4 57.9 60.4 55.6 59.5 59.4 56.4 58.3
LASER 52.1 54.2 55.0 54.8 55.4 - 47.7 54.5 54.9 54.0 54.6 51.2 52.5 -

Cross-lingual Retrieval Question Answering (cl-ReQA)

SQuAD train
USEQA Trans+Cxt 43.3 33.2 35.2 37.2 37.0 37.0 32.9 31.1 36.6 37.7 34.5 33.2 36.9 32.3 32.7

Table 7: Cross-lingual performance on Quora/AskUbuntu cl-SR (MAP) and SQuAD cl-ReQA (P@1).
Queries/questions are machine translated, while retrieval candidates remain in English.

We evaluated ReQA using the SQuAD dev and
train sets and without training on the SQuAD
data.17 The sentence and paragraph retrieval P@1
are shown in table 6. For sentence retrieval,
we compare encodings produced using context
from the text surrounding the retrieval candidate,
USEQA Trans+Cxt, to sentence encodings produced
without contextual cues, USETrans. Paragraph re-
trieval contrasts USEQA Trans+Cxt with BM25.

5.4 Cross-lingual Retrieval

Our English retrieval experiments are extended
to explore cross-lingual semantic retrieval (cl-SR)
and cross-lingual retrieval question answering (cl-
ReQA). SR queries and ReQA questions are ma-
chine translated into other languages, while keep-
ing the retrieval candidates in English.18 Table
7 provides our cross-lingual retrieval results for
our transformer and CNN multilingual sentence
encoding models. We compare against the state-of-
the-art LASER multilingual sentence embedding

tion: https://github.com/nhirakawa/BM25, with
default parameters. We exclude sentence-level BM25, as
BM25 generally performs poorly at this granularity.

17For sentences, the resulting retrieval task for development
set consists of 11,425 questions and 10,248 candidates, and
the retrieval task for train set is consists of 87,599 questions
and 91,703 candidates. For paragraph retrieval, there are 2,067
retrieval candidates in the development set and 18,896 in the
training set. To retrieve paragraphs with our model, we first
run sentence retrieval and use the retrieved nearest sentence to
select the enclosing paragraph.

18Poor translations are detected and rejected when the orig-
inal English text and English back translation have a cosine
similarity < 0.5 according our previously released English
USETrans model (Cer et al., 2018).

library (Artetxe and Schwenk, 2019).19

On both the Quora and AskUbuntu cl-SR tasks,
USETrans outperforms USECNN and LASER on all
datasets, except the Polish (pl) Quora data where
LASER achieves slightly better performance.20

USECNN tends to outperform LASER on Quora
and always outperforms LASER by a sizable mar-
gin on AskUbuntu. We note that our CNN based
model not only outperforms LASER, but also re-
lies on simpler model architecture than LASER’s
LSTM based archtitecture. Given the similar level
of performance on Quora between USECNN and
LASER, we suspect the notably better performance
on AskUbuntu over LASER is due to differences
in the training data provided to encoding models.

6 Experiments on Transfer Tasks

For comparison with prior USE models, English
task transfer performance is evaluated on SentE-
val (Conneau and Kiela, 2018). For sentence clas-
sification transfer tasks, the output of the sentence
encoders are provided to a task specific DNN. For
the pairwise semantic similarity task, the similarity
of sentence embeddings 𝑢 and 𝑣 is assessed using
− arccos

(︁
𝑢𝑣

||𝑢|| ||𝑣||

)︁
, following Yang et al. (2018).

In table 8, our multilingual models show competi-
tive transfer performance when compared to state-
of-the-art sentence embedding models. USETrans
performs better than USECNN on all tasks. Our new

19https://github.com/facebookresearch/
LASER

20Results are not presented for LASER on ja and zh due
unicode errors.

https://github.com/nhirakawa/BM25
https://github.com/facebookresearch/LASER
https://github.com/facebookresearch/LASER
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Model MR CR SUBJ MPQA TREC SST STS Bench
(dev / test)

USE mutlilingual models
USECNN 73.8 83.2 90.1 87.7 96.4 78.1 0.829 / 0.809
USETransformer 78.1 87.0 92.1 89.9 96.6 80.9 0.837 / 0.825

The state-of-the-art English embedding models
InferSent (Conneau et al., 2017) 81.1 86.3 92.4 90.2 88.2 84.6 0.801 / 0.758
Skip-Thought LN (Ba et al., 2016) 79.4 83.1 93.7 89.3 – – –
Quick-Thought (Logeswaran and Lee, 2018) 82.4 86.0 94.8 90.2 92.4 87.6 –
USEDAN for English (Cer et al., 2018) 72.2 78.5 92.1 86.9 88.1 77.5 0.760 / 0.717
USETransformer for English (Cer et al., 2018) 82.2 84.2 95.5 88.1 93.2 83.7 0.802 / 0.766

Table 8: Performance on English transfer tasks from SentEval (Conneau and Kiela, 2018).

(a) CPU Inference Time (b) GPU Inference Time (c) Memory Footprint

Figure 2: Resource usage for the multilingual Transformer and CNN encoding models.

multilingual USETrans model outperforms our best
previously released English only model, USETrans
for English (Cer et al., 2018), on some tasks.

7 Resource Usage

Figure 2 provides compute and memory usage
benchmarks for our models.21 Inference times on
GPU are 2 to 3 times faster than CPU. Our CNN
models have the smallest memory footprint and are
the fastest on both CPU and GPU. The memory
requirements increase with sentence length, with
the Transformer model increasing more than twice
as fast as the CNN model.22 While this makes
CNNs an attractive choice for efficiently encoding
longer texts, this comes with a corresponding drop
in accuracy on many retrieval and transfer tasks.

8 Conclusion

Easy-to-use retrieval focused multilingual models
for embedding sentence-length text are made avail-

21CPU benchmarks are run on Intel(R) Xeon(R) Platinum
8173M CPU @ 2.00GHz. GPU benchmarks were run on an
NVidia v100. Memory footprint was measured on CPU.

22Transformer models are ultimately governed by a time
and space complexity of 𝑂(𝑛2). The benchmarks show for
shorter sequence lengths the time and space requirements are
dominated by computations that scale linearly with length and
have a larger constant factor than the quadratic terms.

able on TensorFlow Hub. Our models embed text
from 16 languages into a shared semantic embed-
ding space and achieve a new state-of-the-art in
performance on monolingual and cross-lingual se-
mantic retrieval (SR). The models achieve good per-
formance on the related tasks of translation pair bi-
text retrieval (BR) and retrieval question answering
(ReQA). Monolingual transfer task performance
approaches, and in some cases exceeds, English
only sentence embedding models. Our models are
freely available under an Apache license with ad-
ditional documentation and tutorial colaboratory
notebooks at:

https://tfhub.dev/s?q=universal-
sentence-encoder-multilingual
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