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Abstract

Curriculum learning, a training strategy where
training data are ordered based on their dif-
ficulty, has been shown to improve perfor-
mance and reduce training time on various
NLP tasks. While much work over the years
has developed novel approaches for generating
curricula, these strategies are typically only
suited for the task they were designed for.
This work explores developing a task-agnostic
model for problem difficulty and applying it
to the Stanford Natural Language Inference
(SNLI) dataset. Using the human responses
that come with the dev set of SNLI, we train
both regression and classification models to
predict how many annotators will answer a
question correctly and then project the diffi-
culty estimates onto the full SNLI train set to
create the curriculum. We argue that our cur-
riculum is effectively capturing difficulty for
this task through various analyses of both the
model and the predicted difficulty scores.

1 Introduction

Recent advances on natural language processing
(NLP) benchmarks have been driven by increas-
ingly sophisticated language models, which are pre-
trained on enormous amounts of data before use.
Refinements of this process has led to increasingly
powerful language models, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and more
recently T5 (Raffel et al., 2019). Such models
are quickly saturating even new tasks that have
undergone a rigorous adversarial filtering process
(Zellers et al., 2018). However, these downstream
performance improvements also require more com-
putational resources and data to train the models,
which is not always feasible. Curriculum learn-
ing (Elman, 1993), a strategy where the model is
trained on easier examples before harder ones, has
recently been shown to improve performance and

reduce training time on a variety of NLP tasks, es-
pecially machine translation (Liu et al., 2020; Wang
et al., 2020; Zhou et al., 2020; Xu et al., 2020).

The success of this research shows that the order
in which training data is presented to a model is
important, but how to best apply curriculum learn-
ing broadly to NLP and how to design effective
measures of difficulty to create curricula remain
relatively unexplored. Prior approaches either use
a hand-crafted measure of difficulty that works well
for a particular task or design an architecture that
automatically creates the curriculum during train-
ing. In either case, the curriculum is formed using
some information-theoretic measure of difficulty
(semantic distance, feedback from a separate net-
work, etc.), and it is difficult to interpret why they
work well for some tasks and not others. In a prac-
tical sense, it is seldom clear how to apply a pre-
viously investigated curricula directly to another
task.

In this paper, we explore how to address these
shortcomings by creating what we call a task-
agnostic model of difficulty, which we argue can,
in principle, be applied to any supervised learning
task. We use this model to investigate what makes
a good difficulty measure for curricula beyond how
it affects downstream performance to better explain
why one curriculum should be preferred over an-
other. We use the well-known SNLI dataset for our
experiments (Bowman et al., 2015), which provides
a high-quality data source for the natural language
inference (NLI) task. Given a premise sentence,
the goal is to predict whether a hypothesis sentence
is entailed by the premise, contradicted by it, or
is neither entailed nor contradicted by it (neutral).
Unlike many NLI datasets, SNLI includes in its dev
set the responses from each crowd-sourced worker
who attempted to answer the question, giving us a
set of 10,000 annotated questions to create a dif-
ficulty model. We release all code related to our
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experiments on GitHub.1

2 Related Work

The idea of applying concepts from developmental
psychology to artificial intelligence traces as far
back as Turing (1950). Although much work over
the years has explored variants of this idea, mostly
under the subject title “Developmental AI” (Elman,
1993; Shultz, 2003; Shultz and Sirois, 2008; Asada
et al., 2009; Bruce, 2010; Guerin, 2011; Licato
and Bringsjord, 2016; Vernon et al., 2016), only
recently has the target task been defined as that
of determining how to organize training data of
machine learning models so that they can benefit
from the kind of scaffolded learning that a human
tutor might provide to a child.

Bengio et al. (2009) demonstrated that following
a curriculum can provide a more optimal solution
during gradient descent. Other early work includes
Krueger and Dayan (2009), which experimented
with shaping tasks (Skinner, 1938) learned by a
LSTM model. These early results suggest that,
for many learning tasks, estimating the difficulty
of problems in a training set may indeed be sim-
pler than training on random permutations of the
dataset, but determining an effective measure of dif-
ficulty remains far from trivial. Previous work has
addressed this problem in two fundamentally differ-
ent ways: by using a separate model from that used
on the main task itself to predict difficulty (Kumar
et al., 2010; Graves et al., 2017; Jiang et al., 2018;
Matiisen et al., 2019; Shen and Feng, 2020); or us-
ing a manually designed measure of difficulty not
obtained through learning (Platanios et al., 2019;
Liu et al., 2020; Xu et al., 2020).

A crucial question which recent AI work has not
sufficiently addressed is how humans design curric-
ula, which was stressed as essential to understand
by early research in this area (Bengio et al., 2009;
Taylor, 2009). For example, much has been said
about the use of scaffolding in child education, in
which a student is provided examples by a more ex-
perienced (typically older) tutor, such that those ex-
amples are neither “too easy” nor “too hard” given
their current skill level (a space called the zone of
proximal development) (Vygotsky, 1978). In rein-
forcement learning, there has been fruitful research
that applies these ideas by using human feedback
to manually create curricula (Stanley et al., 2005;
Thomaz and Breazeal, 2006; Suay and Chernova,

1https://github.com/AMHRLab/supervised-CL

2011; Loftin et al., 2016). We seek to apply these
ideas in the context of supervised learning.

3 Difficulty Model Experiments

Using the SNLI dev set’s annotation data, our goal
is to train a model that can estimate the difficulty
of the questions in the train set, hence creating a
measure of difficulty. Given the prior success of
human-in-the-loop training, we believe this pro-
vides a natural way to estimate difficulty for any
task where human annotation data can be collected.
Each question in the dev set contains 5 different
labels assigned by each annotator, along with the
gold label deemed correct for the question. The
model’s specific objective is to predict how many
of 5 possible respondents predicted the gold label
correctly, and this percentage is the approximate
difficulty.

The most intuitive solution to this problem is to
treat it as a regression task, and we experiment with
several regression models (Section 3.1). However,
because the notion of difficulty among humans is
a somewhat fuzzy concept, it’s unclear to us if a
floating-point difficulty score will be meaningful
up to arbitrary precision. Therefore, we also exper-
iment with framing the objective as a classification
task by mapping the 5 possible percentages into la-
bels and then training various classification models
(Section 3.2).

Using features from prior work, we create 5 dif-
ferent feature sets as inputs to both sets of mod-
els. The first is sentence length, which has demon-
strated to be useful to measure difficulty in ma-
chine translation tasks (Platanios et al., 2019). We
adapt this to work for SNLI by taking the sentence
length of the premise and hypothesis. Second is
the RoBERTa sentence embeddings of the premise
and the hypothesis. We feed the raw embeddings
in by concatenating the entire hypothesis vector to
the premise vector, and also by stacking them pair-
wise such that dimension i of the premise vector is
paired with dimension i of the hypothesis vector in
the final representation. We refer to this as the flat-
tened embedding. Finally, we use cosine similarity
to measure the semantic distance between the input
sequences. Table 1 summarizes the various feature
sets we have used.

3.1 Regression

Table 2 shows the Spearman’s correlation (Spear-
man, 1904) measured for all regression models.

https://github.com/AMHRLab/supervised-CL
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Feature set
1: cosine similarity + sentence length
2: flattened embeddings
3: concatenated embeddings
4: concatenated embeddings + sentence length
5: concatenated embeddings + cosine similarity

Table 1: Feature sets used for experiments

We experiment with various linear, non-linear, and
neural models and perform a grid search over
each model’s hyperparameters to ensure we have
achieved an optimal correlation in each case. For
each trial, we shuffle the dataset before training.
We use the scikit-learn2 implementation of all the
non-neural models, and scipy3 to measure corre-
lation. A decision tree using feature set 1 with a
maximum depth of 40 achieves the best correlation
of all models, with an average observed correlation
of 84%. Support vector regression using feature set
2 with C=1 also achieves a strong mean correlation
of about 74%. To verify that results for these top-
performing models achieve statistically significant
results, we also perform 10-fold cross-validation
experiments for each of them. The decision tree
model achieves a mean correlation of 0.895 across
all folds of cross-validation, and the SVR model
0.749.

We conduct two types of neural regression exper-
iments: finetuning a pretrained RoBERTa model
and training a multi-layer deep neural network
(DNN) from scratch. For the DNN model, we
experiment with a simple feed-forward neural net-
work with {2,3,4,5} hidden layers and dimension
size of {512, 1024, 2048}. As common with many
large language models used for relatively small
datasets, RoBERTa quickly overfits to the data and
was unable to generalize to the test set. DNN mod-
els, on the other hand, failed to capture any signifi-
cant relationship between the feature sets and the
difficulty estimation, as they performed the worst
out of all models. We ran an extensive hyperpa-
rameter search over the learning rates, batch sizes,
the number of layers, and the number of epochs for
both RoBERTa and DNN experiments. We use the
simpletransformers4 implementation of RoBERTa
and PyTorch5 for the DNN experiments.

2https://scikit-learn.org/stable/index.html
3https://www.scipy.org
4https://github.com/ThilinaRajapakse/simpletransformers
5https://pytorch.org/

Model Mean Min Max
SVR 0.737 0.714 0.755
Decision Tree 0.84 0.801 0.891
Linear 0.299 0.277 0.334
KNN 0.361 0.333 0.383
DNN 0.151 0.09 0.166
RoBERTa-large 0.264 0.215 0.35

Table 2: Spearman’s correlation for all regression mod-
els.

Figure 1: Histogram of difficulty scores for SNLI using
decision tree regression, which was the best performing
regression model.

3.2 Classification
To perform classification, we map the five possible
regression scores onto discrete labels. However,
after mapping, we found that the resulting classes
were imbalanced. For instance, the number of ex-
amples where all annotators correctly predicted
the gold label was 10 times more than the exam-
ples where no one predicted the label correctly. To
address this issue, we oversampled the minority
classes using imblearn6 before training our mod-
els. Table 3 shows performance statistics for each
model. We again perform a grid search to opti-
mize the feature set choice and hyperparameters
for each model. Similar to regression, a decision
tree classifier with feature set 1 and a depth of 40
achieves the best performance by a large margin.
We found that using either Gini impurity (Breiman
et al., 1984) or entropy to measure the quality of the
splits achieved about the same performance. We
additionally evaluate the same decision tree model
using 10 fold cross-validation and achieve the same
mean accuracy.

3.3 Analysis of Models
The previous results demonstrate that we can create
a model that significantly correlates with the actual

6https://github.com/scikit-learn-contrib/imbalanced-learn

https://scikit-learn.org/stable/index.html
https://www.scipy.org
https://github.com/ThilinaRajapakse/simpletransformers
https://pytorch.org/
https://github.com/scikit-learn-contrib/imbalanced-learn
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Figure 2: Histogram of difficulty scores for SNLI using
the linear regression model.

Model Mean Min Max
SVC 0.304 0.291 0.312
Decision Tree 0.834 0.821 0.854

Table 3: Accuracy for all classification models.

human responses to the SNLI dev set. We now per-
form additional quantitative and qualitative analy-
ses to gain a better understanding of how well these
models actually predict difficulty, and by extension
how good any curriculum resulting from it will be.
Previous work has tended to evaluate the quality of
the curriculum primarily in terms of downstream
performance; a curriculum is considered good if
using it improves performance or reduces training
time. However, many factors will ultimately affect
model performance beyond the use of any curric-
ula (hyperparameters, training strategy, etc). In
the context of human education, it has long been
appreciated that curricula are complex and cannot
be evaluated using any single metric (Macdonald,
1971; Kliebard, 1989; Kelly, 2009; Pinar, 2012).
Therefore, we believe it is important to attempt to
evaluate the quality of our model separate from its
application to any task.

Using the best regression and classification mod-
els, we predict the difficulty of each problem in the
SNLI train set. We additionally do the same using
the linear regression model, which achieves only
weak correlation, as a point of comparison. Figures
1 and 2 show the distributions of difficulty assign-
ments for the best performing regression model
(the decision tree) and the linear regression model,
respectively. Higher scores represent easier prob-
lems in both figures. Table 4 shows examples rated
with both maximum and minimum difficulty from
both models. Interestingly, both models predict the
same general trend in the difficulty distributions.

However, as Table 4 shows there are cases where
the models make substantially different difficulty
predictions about the same question. The question
in the first row of the easy column is rated with
minimum difficulty by the best performing model,
whereas the same question is rated with maximum
difficulty by the linear model. To better understand
the differences between each model’s predictions,
we computed the difference between the predicted
difficulty scores for each question in the train set
and normalized them by taking the absolute value.
About 27% of the questions have the same pre-
diction from both models (difference of estimated
score is 0), and about 15.8% have polar opposite
predictions (the difference is 1). Furthermore, the
mean difference between the scores from both mod-
els is 0.41, suggesting that they make substantially
different predictions even though they report the
same overall distribution.

Figure 3 shows the distributions of difficulty
scores from the classification models. We similarly
observed wide variation in the assigned difficulty,
however in this case most problems are assigned
as being very easy. This is probably the most accu-
rate model, given that in the majority of cases the
annotators were able to correctly predict the gold
label (Figure 4).

These results give us some confidence that our
curriculum may lead to a performance gain on
SNLI, given a suitable model to train it with. De-
signing a curriculum for both humans and machine
learning models requires that there be some dif-
ference in difficulty among the questions in the
task, otherwise any random permutation would be
essentially the same curriculum. That all models
are reporting variance in the difficulty distribution
indicates that there may be enough difference in
difficulty for curriculum learning to help in this
case. We hypothesize that the linear model, despite
having only very weak correlation with the human
responses, is still able to capture the high level
structure of the difficulty distribution, which would
explain why the two histograms are identical. How-
ever, when we examine the predictions at a finer
level it becomes obvious the models are making
fundamentally different regression decisions.

4 Conclusion and Future Work

In humans, teaching, especially according to a cur-
riculum, reduces the difficulty of learning complex
skills by providing a simpler path for learners to
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Easy Hard
Decision Tree Model:
Premise: A white dog runs through a field.
Hypothesis: A white dog is running back
to his master. neutral

Premise: A man is surfing in a bodysuit
in beautiful blue water. Hypothesis: On
the beautiful blue water there is a man in a
bodysuit surfing. entailment

Premise: A group of workers are posing
for a picture. Hypothesis: A group of
workers are playing baseball. contradic-
tion

Premise: A man is kneeling in the top
step while many people are behind him sit-
ting in chairs. Hypothesis: A man sleeps
comfortably at home. contradiction

Linear Regression Model:
Premise: A small child is running on the
shore of the beach surrounded by birds.
Hypothesis: Birds surround a child look-
ing for food. neutral

Premise: A white dog is running through
a field. Hypothesis: A white dog is run-
ning back to its master. neutral

Premise: A group of people are hiking in
the forest. Hypothesis: People are hiking
in the forest. entailment

Premise: An old man is standing before
a crowd to perform a feat. Hypothesis:
An oldtimer about to perform a group of
people. entailment

Table 4: SNLI questions predicted as being very easy and as very challenging by both the decision tree model and
the linear regression model. The first two rows are predictions from decision tree model and the last two rows are
from the linear regression model. The left column are questions rated as Easy by the respective model, while the
right column are questions rated as Hard. Gold labels are shown in blue

Figure 3: Histogram of difficulty scores for SNLI using
the best classification model.

follow. While much work has explored various
applications of curriculum learning over the years,
the larger problem of what makes a good difficulty
measure remains an important research question.
In this work, we have presented initial studies on
designing a task-agnostic measure of difficulty for
curricula. While for practical reasons, we chose
to focus specifically on an NLP task, in principle
our approach can be extended to any supervised
learning task where it is possible to gather human
annotations. Our analysis suggests that the result-

Figure 4: Histogram of difficulty scores for SNLI using
the human annotations.

ing curriculum is suitable for use in a curriculum
learning algorithm, firstly because it correlates well
with human difficulty estimates, and secondly be-
cause it displays wide differences in the estimated
difficulties across all the problems in the train set.

An important question to answer next is how to
actually apply the curriculum to the training of a
model. While this may appear trivial, the wide ar-
ray of factors that affect downstream performance
means that it cannot be taken lightly. The model
choice is an especially important factor; using a re-
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cent model which already does very well on SNLI
(Zhang et al., 2020) is unlikely to have any effect
because performance on the task has saturated at
this point. However, if we apply a model which
is too simplistic, for instance, the classic n-gram
language model, then it’s unlikely that even the
best curriculum will help such a model to learn a
task which is probably far too challenging for it. A
study examining how our curriculum affects down-
stream performance for models ranging from the
state-of-the-art to the baseline would help answer
this question.

Another important factor is the sampling proto-
col. Feeding examples to the model in order of diffi-
culty, with easier ones preceding harder ones, is the
most straightforward solution. However, there is no
guarantee that this is the optimal way to feed exam-
ples into the model. In fact, there have been cases
where feeding examples in reverse order, with hard
examples preceding easier ones, has lead to op-
timal performance improvement (McCann et al.,
2018). Future work will also investigate the effect
of various sampling strategies.

Finally, something which should be considered
is the quality of the gold labels which our models
are trying to predict. Since NLI is an inherently
ambiguous task, determining the ground truth of
a given NLI question is challenging. Recent work
by Nie et al. (2020b) has shown that many of the
gold labels for both SNLI and the MNLI dataset
(Williams et al., 2018), which also includes the re-
sponses of individual annotators, will change when
more annotators are used with stricter quality con-
trol protocols, though they only found this to be
true when agreement on the correct label was low to
begin with. Our choice for using SNLI specifically
is that, unlike more recent datasets (Bhagavatula
et al., 2020; Nie et al., 2020a), it also includes the
label predicted by each individual annotator and
not just the final gold label. We might be able to
account for the fuzziness of the ground truth in
the final difficulty prediction of our model. For
instance, if the agreement of the gold label for a
question is low, we could take this into considera-
tion and predict the question as being even more
difficult. This avenue will be explored as a way to
improve the quality of the difficulty model, using
both SNLI and similar datasets, such as MNLI, as
part of a more comprehensive study.
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