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Abstract

Several recent state-of-the-art transfer learning
methods model classification tasks as text gen-
eration, where labels are represented as strings
for the model to generate. We investigate the
effect that the choice of strings used to repre-
sent labels has on how effectively the model
learns the task. For four standard text clas-
sification tasks, we design a diverse set of
possible string representations for labels, rang-
ing from canonical label definitions to random
strings. We experiment with T5 (Raffel et al.,
2019) on these tasks, varying the label repre-
sentations as well as the amount of training
data. We find that, in the low data setting,
label representation impacts task performance
on some tasks, with task-related labels being
most effective, but fails to have an impact on
others. In the full data setting, our results
are largely negative: Different label represen-
tations do not affect overall task performance.

1 Introduction

State-of-the-art transfer learning methods model
classification tasks as text generation, such as
GPT2 (Radford et al., 2019) and T5 (Raffel et al.,
2019), and have led to significant improvements
across a variety of NLP tasks. In this setting, labels
are represented as strings for the model to gener-
ate, and the pretrained language model is finetuned
to maximize the probability of generating the cho-
sen label representation. For example, for CoLA
(Warstadt et al., 2019) task, a classifier will be
trained to output 0 (representing unacceptable) or 1
(representing acceptable), while T5 models it as a
generation task, it is trained to generate the string
“unacceptable” or “acceptable”. The advantage of
this approach is that the language model can be
applied to the classification task as-is, without the

* These two authors contributed equally.

need for any additional task-specific parameters or
training.

However, in this setting, the impact of the par-
ticular strings used to represent labels remains un-
clear on the end task performance. One of the
few studies on this question find that the linguistic
properties (relatedness, polarity scale, etc.) of the
labels do affect task performance (Nogueira et al.,
2020), though their results are limited to document
retrieval. We therefore further investigate the im-
pact of string representation when modeling text
classification as text generation.

We experiment with T5-base and four diverse,
standard text classification tasks. For each task, we
design a wide range of label representations, includ-
ing canonical task labels; task-unrelated antonyms;
and completely random strings. As previous works
by Nogueira et al. (2020) have noted that the impact
of label representation is particularly noticeable in
lower data settings, we also vary the amount of
training data for each task.

Our experiments reveal that, in the full data set-
ting, the choice of label representation largely does
not affect overall performance, with only one of
the four datasets seeing any impact. In the low data
setting, label representations sometimes have an im-
pact on the overall performance, with task-related
labels being the most effective in these cases.

2 Related Work

Target Word Probing Experiments Nogueira
et al. (2020) probe the effects of label represen-
tation on document retrieval and ranking. They
set the baseline mapping as {Positive → true,
Negative→ false}, and also try the reverse map-
ping, antonyms, related words, unrelated words and
subwords. In the low data setting, they find that
the baseline mapping yields accuracy significantly
higher than other types of mappings do. In the high
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data setting, related words mapping is the most ef-
fective, though the differences between mappings
are not as large as in the low-data regime. We ex-
tend these experiments with more diverse tasks and
label representations.

Cloze Reformulation Schick and Schütze
(2020) introduce Pattern Exploiting Training,
where the input is transformed into a Cloze-style
sentence. For example, the task of identifying
whether two sentences a and b contradict or agree
with each other is reformulated into “a? [blank],
b.”, and a pretrained language model is used as-is
to generate Yes or No to fill in the blank. They
claim that this procedure significantly improves
the performance on several tasks in the zero-shot
setting. Similarly, Petroni et al. (2019) probe the
knowledge presented in state-of-the-art language
models without fine-tuning using similar sentences
with blanks. They find that these language models
contain rich factual knowledge from pretraining,
and are effective at recalling knowledge when
answering fact-related questions.

Prompt Design Jiang et al. (2020) propose sev-
eral methods to automatically generate efficient
prompts for extracting knowledge from pretrained
models, rather than manually designing them. They
find that different templates, e.g. “x who converted
to y”, compared to “x is affiliated with y religion”,
can improve accuracy by as much as 60%. This
line of work is orthogonal to ours: We focus on
optimal label representation whereas they focus on
the best way to format inputs.

3 Label Representations

We consider four standard text classification
datasets representing different tasks and textual
genres: (i) sentence acceptability judgments with
CoLA (Warstadt et al., 2019); (ii) sentiment analy-
sis with SST-2 (Socher et al., 2013); (iii) paraphrase
detection with PAWS (Zhang et al., 2019); and (iv)
commonsense reasoning with COPA (Roemmele
et al., 2011). For each of these datasets, we test a
wide variety of label representations.

3.1 Random Labels

As a simple baseline, we test whether the labels
need to be semantic at all. We focus on random
labels with short lengths, e.g. {unacceptable
→ i, acceptable→ c}.

3.2 Task-Unrelated Labels
Next, we choose sets of words for labels based on
their relationship to the task and to each other. We
generate them by the following different rules:

• Antonyms: We choose words that are
antonyms but are semantically unrelated to
our tasks, e.g. {unacceptable→ cold,
acceptable →hot}. This setting tests
whether it is important that labels be task re-
lated or if it is sufficient that they have oppos-
ing meanings.

• Synonyms: To contrast the antonyms,
we use words that are synonyms but are
semantically unrelated to our tasks, e.g.
{unacceptable→ cold, acceptable
→ chilly}.

• Irrelevant words: We choose words that are
not related to the task nor each other, e.g.
{unacceptable → ice, acceptable
→ happy}.

• Relevant words: We pick words that are rele-
vant to each other but are not antonyms or syn-
onyms, e.g. {unacceptable → apple,
acceptable: → orange}.

3.3 Task-Related Labels
We further study how much performance varies
between semantically similar task-related label rep-
resentations. We choose sets of words as labels
that have the same polarity scale or meanings
as the original targets, e.g. {unacceptable
→ no, acceptable → yes}; As an addi-
tional baseline, we use labels that have the op-
posite polarity or meaning as the original labels,
e.g. {unacceptable → yes, acceptable
→ no}.

4 Experiments and Results

4.1 Model and Optimization
Inspired by Nogueira et al. (2020), we experiment
with T5 (Raffel et al., 2019), specifically the T5-
base model. Among the four datasets, PAWS is the
only dataset that has not been pretrained on by T5.
So, for CoLA, SST-2, and COPA, we format each
example the same as by T5. For PAWS, because
it is the same task as MRPC (Dolan and Brockett,
2005), we format the examples identically to how
Raffel et al. (2019) process MRPC. See Table 1 for
examples.
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(CoLA) input: cola sentence: John
made Bill master of himself.
target: acceptable

(SST-2) input: sst2 sentence: it
confirms fincher ’s status as
a film maker who artfully bends
technical know-how to the service
of psychological insight.
target: positive

(COPA) input: copa choice1:
Many citizens relocated to
the capitol. choice2: Many
citizens took refuge in other
territories. premise: Political
violence broke out in the nation.
question: effect
target: choice2

(PAWS) input: paws sentence1:
In the early years , KETS
was associated with National
Educational Television , the
forerunner of the current PBS.
sentence2: In the early years ,
KETS was connected with National
Educational Television , the
forerunner of the current PBS.
target: equivalent

Table 1: Input formatting for all tasks, with the orig-
inal canonical label representations from Raffel et al.
(2019).

For COPA, CoLA, and SST-2, we finetune with
optimize Adam (Kingma and Ba, 2014) for 2000
steps with learning rate 10−4. For PAWS, we fine-
tune for 3000 steps and similarly evaluate the accu-
racy of the development set every 200 steps. For
all datasets, we evaluate the accuracy of the de-
velopment set every 200 steps and report the best
accuracy. For each dataset and setting, we evaluate
three runs with different random seeds.

4.2 Low-Data Settings

As Nogueira et al. (2020) found significant differ-
ences in performance with distinct data sizes, we
also run all four tasks in lower-data regimes. We
choose the datasets mainly following these rules:
For all tasks, we use the full training sets. Then, we
downsample the training set to sizes for which we
observe larger gaps between different labels than

at the full dataset size. For each run with the low-
data setting, we randomly generate a sample before
training it, so the sample set normally varies for
each run. To test an extremely low-data setting, for
COPA and SST-2, we also choose a dataset with an
absolute size of 10.

4.3 Results

We present results for SST-2 and COPA in Table 2
and for PAWS and CoLA in Table 3. In the full data
setting, we obtain performance near that of BERT
(Devlin et al., 2018) for all tasks. It is notable that
even in the extremely low data settings, we obtain
nontrivial performance for all tasks except COPA,
which is likely due to the amount of pretraining in
even the T5-base model.

For SST-2, by training on the full dataset, we
get similar results for all choices of label represen-
tation. Notably, even the random strings perform
as well as the task-specific labels. However, given
the large size of the full dataset, it is unsurprising
that the model can learn the class definitions from
random strings.

For the 100 and 10 example settings, we find that
the original labels achieve the best accuracy, 2%
less than the full data setting. However, a poten-
tial confounder is the fact that T5 was pretrained
on SST-2 with these labels, which likely explains
the high accuracy with only 10 examples. We find
the mutually unrelated and task-unrelated labels
perform as well as the original labels in the 100 ex-
ample setting (ice/happy), suggesting that even
with this few examples, the choice of labels or even
the relationship between them is not crucial. Sim-
ilarly, in the 10 example setting, these mutually
unrelated labels (ice/happy) perform as well as
task-specific labels and task-unrelated antonyms,
providing further evidence that the choice of labels
is not crucial to learning the task, even in extremely
low data settings. On the other hand, reversing
the original labels or reversing task-related labels
consistently performs the worst, even worse than
random labels. This suggests that the label repre-
sentations do not matter, as long as we do not pick
labels that flip the class definition.

For COPA, in the full data setting, we observe
notable performance differences between various
labels. We get the best performance using the orig-
inal labels and other task-related labels, while task-
unrelated labels generally perform much worse.
For the random labels, we observe high variability,
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SST-2 COPA
label type / training set size 67349 (100%) 100 (0.167%) 10 (0.015%) 400 (100%) 80 (20%) 10 (2.5%)

original 94.48 ± 0.37 93.83 ± 0.29 93.92 ± 0.00 68.00 ± 2.00 65.00 ± 1.00 58.33 ± 0.58
reversed 94.07 ± 0.54 89.46 ± 1.00 31.54 ± 15.10 66.00 ± 3.61 63.67 ± 8.74 52.67 ± 5.13

random i/c 94.38 ± 0.72 91.96 ± 0.90 72.36 ± 3.74 59.00 ± 5.00 54.67 ± 0.58 52.00 ± 4.00
n/p 93.96 ± 0.07 91.67 ± 0.76 73.43 ± 3.46 68.33 ± 3.51 62.67 ± 2.52 54.67 ± 4.73

related matched 94.50 ± 0.23 92.00 ± 0.87 75.96 ± 0.29 69.67 ± 2.31 68.33 ± 2.08 51.33 ± 9.24
reversed 94.46 ± 0.24 90.50 ± 2.18 54.01 ± 0.53 69.33 ± 3.79 57.00 ± 6.00 43.67 ± 2.31

unrelated cold/hot 94.75 ± 0.15 92.17 ± 0.76 84.29 ± 3.00 62.67 ± 2.52 55.00 ± 1.00 46.67 ± 2.08
cold/chilly 94.19 ± 0.18 91.86 ± 0.92 73.05 ± 7.47 67.00 ± 2.65 61.33 ± 1.53 52.67 ± 1.53

apple/orange 94.00 ± 0.18 91.17 ± 1.04 65.14 ± 2.56 55.67 ± 2.08 53.33 ± 2.08 52.00 ± 3.46
ice/happy 94.69 ± 0.18 93.67 ± 0.58 84.29 ± 3.51 56.33 ± 4.04 54.33 ± 4.73 49.00 ± 3.00

Table 2: Accuracy (mean ± std) for SST-2 and COPA for a variety of dataset sizes and label representations. The
original labels for SST-2 and COPA are ‘negative/positive’ and ‘choice1/choice2’, respectively. Matched labels for
SST-2 and COPA are ‘no/yes’ and ‘first/second’, respectively.

PAWS CoLA
label type / training set size 49401 (100%) 4000 (8.10%) 400 (0.81%) 8551 (100%) 4000 (46.8%) 400(4.68%)

original 94.09 ± 0.14 91.48 ± 0.24 83.50 ± 0.54 58.64 ± 0.15 57.15 ± 0.30 48.67 ± 0.00
reversed 94.68 ± 0.06 91.48 ± 0.24 85.04 ± 0.75 56.58 ± 1.95 55.78 ± 1.22 33.48 ± 6.74

random i/c 93.00 ± 0.36 91.02 ± 0.26 82.50 ± 4.05 58.53 ± 1.28 56.70 ± 0.53 49.28 ± 3.16
n/p 93.58 ± 0.44 91.49 ± 0.55 83.50 ± 1.82 57.14 ± 0.95 57.81 ± 1.75 46.85 ± 1.25

related matched 93.63 ± 0.23 91.08 ± 0.45 84.83 ± 0.51 57.47 ± 2.43 55.59 ± 1.17 41.30 ± 4.23
reversed 93.42 ± 0.51 92.81 ± 1.22 84.38 ± 1.19 57.22 ± 0.88 55.82 ± 0.39 28.33 ± 1.70

unrelated cold/hot 93.12 ± 0.47 91.73 ± 0.53 83.50 ± 2.10 57.53 ± 0.52 56.18 ± 1.14 39.21 ± 2.39
cold/chilly 93.55 ± 0.54 91.30 ± 0.19 84.28 ± 1.56 58.57 ± 3.01 57.47 ± 0.41 45.27 ± 1.58

apple/orange 93.85 ± 0.21 91.29 ± 0.27 82.50 ± 0.99 58.77 ± 1.48 56.48 ± 1.27 33.38 ± 1.32
ice/happy 93.16 ± 0.13 91.67 ± 0.38 83.00 ± 2.38 56.97 ± 1.80 56.34 ± 1.26 47.64 ± 2.67

Table 3: Accuracy (mean ± std) for PAWS and Matthews’ correlation coefficient for CoLA for a variety of
dataset sizes and label representations. The original labels for PAWS and CoLA are ‘not equivalent/equivalent’
and ‘unacceptable/acceptable’, respectively. Matched labels for PAWS and CoLA are ‘different/same’ and ‘no/yes’,
respectively.

with one pair of labels (n/p) worryingly performing
as well as the original task labels. Also concern-
ing is the fact that reversing the original or other
task-related labels performs nearly as well as not
reversing them. We speculate that the small dataset
size contributes to these odd performance trends,
as has been previously noted for COPA (Sap et al.,
2019).

In the extremely low data settings, differences
between labels become more significant and notice-
able, with several label representations failing to
learn the task and obtaining accuracy near chance
(50%). The original and reversed pairs, as well
as the task-related pairs, show similar accuracies,
and these labels generally perform the best among
all labels. Similar to SST-2, reversing the original
labels performs worse and shows more instability.
In the smallest setting, matched task-related labels
also perform better than reversed ones and all other
labels except for the original label pair.

For CoLA and PAWS, in full data and 4000 sam-
ple data regimes, the performances we get using dif-

ferent labels vary, but by no more than 2%. When
the data size is extremely low, we observe notable
gaps among labels for CoLA, but not for PAWS.
Similar to SST-2, for CoLA, we find that reversed
labels perform much worse than original ones.

5 Conclusion

In this work, we investigate the impact of label rep-
resentation in modeling classification as a seq2seq
task. For four standard text classification datasets
and task types, we design a wide range of label rep-
resentations, ranging from canonical task-related
labels to task-unrelated antonyms to random words
and strings. We experiment with the T5-base model
on these datasets and label representations in a
range of regimes with various data sizes.

Overall, we find that the choice of label repre-
sentation largely does not affect task performance,
though it varies by task and dataset size. In the
high data settings, there is generally no differences
between choices of label representations, and even
random strings can function well as label repre-
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sentations. In low data settings, the influence of
label representations varies significantly between
tasks. For PAWS, we observe no variation, but for
COPA and CoLA, we note that task-related labels
generally perform best.

Our experiments represent preliminary negative
evidence that label representations have limited im-
pact on task performance, but there are a number
of dimensions that our work does not investigate
that might affect a model’s sensitivity to label rep-
resentation.

First, we take as given that canonical task labels
as sufficient for all tasks. However, for some tasks,
the canonical label representation might be subop-
timal or not sufficiently convey the semantics of
the task, e.g. choice1/choice2 for COPA. A
natural way to mitigate this issue would be to use a
much larger set of possible label representations, or
even automatically discover label representations.
However, we expect this issue will be especially
problematic with more complex tasks that are dif-
ficult to represent with single-word labels or to
succinctly represent in text at all.

Second, we use a single task input format, but
the task formatting may be suboptimal and affect
the ability of the model to learn from the label se-
mantics. Schick and Schütze (2020) use multiple
example templates per task and find that perfor-
mance between templates can vary substantially.
While an obvious direction would be to simply
use multiple templates, automatically discovering
effective templates also seems like a promising di-
rection.
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