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Abstract

Large pre-trained language models reach state-
of-the-art results on many different NLP tasks
when fine-tuned individually; They also come
with a significant memory and computational
requirements, calling for methods to reduce
model sizes (green AI). We propose a two-
stage model-compression method to reduce a
model’s inference time cost. We first decom-
pose the matrices in the model into smaller
matrices and then perform feature distillation
on the internal representation to recover from
the decomposition. This approach has the
benefit of reducing the number of parame-
ters while preserving much of the information
within the model. We experimented on BERT-
base model with the GLUE benchmark dataset
and show that we can reduce the number of
parameters by a factor of 0.4x, and increase in-
ference speed by a factor of 1.45x, while main-
taining a minimal loss in metric performance.

1 Introduction

Deep learning models have been demonstrated to
achieve state-of-the-art results, but require large
parameter storage and computation. It’s estimated
that training a Transformer model with a neural
architecture search has a CO2 emissions equiv-
alent to nearly five times the lifetime emissions
of the average U.S. car, including its manufactur-
ing (Strubell et al., 2019). Alongside the increase
in deep learning models complexity, in the NLP
domain, there has been a shift in the NLP mod-
eling paradigm from training a randomly initial-
ized model to fine-tuning a large and computa-
tional heavy pre-trained language model (Howard
and Ruder, 2018; Peters et al., 2018; Devlin et al.,
2018; Radford, 2018; Radford et al., 2019; Dai
et al., 2019; Yang et al., 2019; Lample and Con-
neau, 2019; Liu et al., 2019b; Raffel et al., 2019;
Lan et al., 2019; Lewis et al., 2019).

While re-using pre-trained models offsets the
training costs, inference time costs of the fine-
tuned models remain significant, and are show-
stoppers in many applications. The main chal-
lenge with pre-trained models is how can we re-
duce their size while saving the information con-
tained within them. Recent work, approached this
by keeping some of the layers while removing oth-
ers (Sanh et al., 2019; Sun et al., 2019; Xu et al.,
2020). A main drawback of such approach is
in its coarse-grained nature: removing entire lay-
ers might discard important information contained
within the model, and working at the granularity
of layers makes the trade-off between compression
and accuracy of a model hard to control. Moti-
vated by this, in this work we suggest a more fine-
grained approach which decomposes each matrix
to two smaller matrices and then perform feature
distillation on the internal representation to re-
cover from the decomposition. This approach has
the benefit of preserving much of the information
while reducing the number of parameters. Along-
side the advantage of preserving the information
within each layer, there is also a memory flexi-
bility advantage compared to removing entire lay-
ers; As a result of decomposing each matrix to two
smaller matrices, we can store each of the two ma-
trices in two different memory blocks. This has
the benefit of distributing the model matrices in
many small memory blocks, which is useful when
working in shared CPU-based environments.

We evaluated our approach on the General Lan-
guage Understanding Evaluation (GLUE) bench-
mark dataset (Wang et al., 2018) and show that
our approach is superior or competitive in the dif-
ferent GLUE tasks to previous approaches which
remove entire layers. Furthermore, we study the
effects of different base models to decompose and
show the superiority of decomposing a fine-tuned
model compared to a pre-trained model or a ran-
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domly initialized model. Finally, we demonstrate
the trade-off between compression and accuracy
of a model.

2 Related Work

In the past year, there have been many attempts
to compress transformer models involving prun-
ing (McCarley, 2019; Guo et al., 2019; Wang
et al., 2019; Michel et al., 2019; Voita et al., 2019;
Gordon et al., 2020), quantization (Zafrir et al.,
2019; Shen et al., 2019) and distillation (Sanh
et al., 2019; Zhao et al., 2019; Tang et al., 2019;
Mukherjee and Awadallah, 2019; Sun et al., 2019;
Liu et al., 2019a; Jiao et al., 2019; Izsak et al.,
2019). Specifically, works on compressing pre-
trained transformer language models focused on
pruning layers. Sun et al. (2019) suggested to
prune layers while distilling information from the
unpruned model layers. Xu et al. (2020) proposed
to gradually remove layers during training.

We also note that very recently a work sim-
ilar to ours was uploaded to arxiv (Mao et al.,
2020). There are a few differences from their work
to ours. Firstly, we distill different parts of the
model (see Section 3 for details). Secondly, we
focus on training the decomposed model and do
not prune the model parameters. Thirdly, our base
model, which is used for decomposition and as a
teacher, is a fine-tuned model; This has the bene-
fit of task-specific information as we show in our
experiments in Section 4.2.

3 Method

Our goal is to decompose each matrix W ∈ Rn×d

as two smaller matrices, obtaining an approxi-
mated matrix W ′ = AB, A ∈ Rn×r, B ∈ Rr×d,
where r < nd

n+d . We seek a decomposition s.t.
W ′ is close to W in the sense that d(Wx,W ′x)
is small for all x, where d is a distance metric be-
tween vectors. In practice, we require the condi-
tion to hold not for all x, but for vectors seen in
a finite relevant sample (in our case, the training
data). While one could start with random matri-
ces and optimize the objective using gradient de-
scent, we show that a two-staged approach per-
forms better: we first decompose the matrices us-
ing SVD, obtaining A′, B′ s.t. ||A′B′ − W ||22
is small (SVD is guaranteed to produce the best
rank-r approximation to W , (Stewart, 1991)). We
then use these matrices as initialization and op-
timize d(Wx,W ′x) (feature distillation), while

also optimizing for task loss. We show that this
process works substantially better in practice. Our
loss function is thus composed of three different
objectives:

Cross Entropy Loss The cross entropy loss over
an example x with label y is defined likewise:
LCE = − log ps(y|x), where ps is the probabil-
ity for label y given by the decomposed student
model.

Knowledge Distillation Loss The goal of
knowledge distillation is to imitate the output layer
of a teacher model by a student model. The
Knowledge Distillation Loss is defined likewise:
LKD =

∥∥zs−zt
T

∥∥
2
, where zs and zt are the log-

its of the decomposed and original models respec-
tively and T is a temperature hyper-parameter.

Feature Distillation Loss The goal of feature
distillation is to imitate the intermediate layers of a
teacher model by a student model. we use the fol-
lowing intermediate representations to distill the
knowledge from1:

• Query, Key and Value Layers - The dot prod-
uct of a matrix of concatenated tokens rep-
resentation vectors X by the query, key and
value parameter matrices, Zq = X · WQ,
Zk = X ·WK , Zv = X ·W V

• Attention Matrix - The attention matrix prob-
abilities. Zatt = softmax(Zq · ZT

k )

• Attention Heads - The output of the attention
heads. ZH = Zatt · Zv

• The Multihead Attention Layer Output - The
dot product of the attention heads by the ma-
trix WO. ZMH = ZH ·WO

• The first feed forward layer - The dot product
of the multihead attention layer by the first
feed forward layer. Zf1 = ZMH ·W1

• The second feed forward layer - The dot
product of the first feed forward layer by the
second feed forward layer. Zf2 = Zf1 ·W2

We denote Si
z and T i

z as the intermediate represen-
tations which were described above of layer i for

1We follow the notations of Vaswani et al. (2017) for the
transformer parameters and omit biases for notation conve-
nience.
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the decomposed student and original teacher mod-
els respectively. Our loss function then is defined

by: LFD =
∑
i

T i
z ,S

i
z∑

Tz ,Sz

‖Tz − Sz‖2

Full Objective Our loss function is then de-
fined by a weighted combination of these three
loss functions likewise: L = αLCE + (1 −
α)LKD+LFD where α ∈ [0, 1] is a chosen hyper-
parameter.

4 Experiments

We compare various variants of our compression
method, corresponding to different subsets of our
loss. All variants decompose the matrices us-
ing SVD, but differ in their objective functions.
These correspond to the four last lines in Table
1. Low Rank BERT Fine-tuning (LRBF) corre-
sponds to L = LCE . LRBF+KD corresponds to
L = αLCE + (1 − α)LKD. LRBF+FD corre-
sponds toL = LCE+LFD, while LRBF+FD+KD
corresponds to the complete objective.

The other lines in the table correspond to un-
compressed model (first line) and to baselines
which prune layers and distill. Fine-tuning fine-
tunes a six layered BERT model. Vanilla KD
trains a six-layered BERT model with L =
αLCE+(1−α)LKD. BERT-PKD trains a six lay-
ered BERT model with L = αLCE+(1−α)LKD

while also adding an LFD objective, but on the
hidden states between every consecutive layer.
BERT-of-Theseus fine-tunes BERT model while
gradually pruning half of the layers. We chose this
baselines for several reasons: like our method they
result in a practical reduction of parameters;2, they
are task-specific;3 and they do not require the pre-
training stage, which is expensive and not practical
for most practitioners.

Datasets We evaluate our proposed approach on
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018), a collec-
tion of diverse NLP tasks.

Training Details We fine-tune a pre-trained
BERT model (Devlin et al., 2018) for each task
with a batch size of 8 and a learning rate of 2e−5
for 3 epochs with an early stop mechanism accord-
ing to the validation set. We perform the matrix

2Unlike, e.g., pruning, which sets parameters to zero and
requires specialized hardware to fully take advantage of.

3Unlike, e.g., DistillBERT which is meant to be run be-
fore fine-tuning.

decomposition on every parametric weight ma-
trix of the encoder (excluding the embedding ma-
trix) in a fine-tuned model and train the decom-
posed model as the student model and the orig-
inal fine-tuned model as the teacher. For each
task we train for 3 epochs with an early stop-
ping mechanism according to the task validation
set, the maximum sequence length is 128 and
we perform a grid search over the learning rates
{2e−6, 5e−6, 2e−5, 5e−5, 2e−4, 5e−4} and 5 dif-
ferent seeds and choose the best model according
to the validation set of each task.4 For knowledge
distillation hyper-parameters we used a tempera-
ture hyper-parameter T = 10 and α = 0.7.5

4.1 Main Results

Table 1 compares the results for validation and test
of other compression approaches which prune lay-
ers, along with low rank models which were fine-
tuned and trained with one or more of the distil-
lation objectives described in Section 3. As can
be seen, Low Rank BERT Feature Distillation +
KD and Low Rank BERT Feature Distillation sur-
pass all of results of all methods in both valida-
tion and test sets except BERT-of-Theseus method
in the test set, in which Low Rank BERT Fea-
ture Distillation + KD surpasses the results in 5
of the tasks and reach comparable results in 2 of
the tasks. Also, as can be seen knowledge distil-
lation alone is not sufficient to compensate for the
decomposition, but it slightly improves the results
when incorporating feature distillation alone.

4.2 Further Analysis

Effect of Base Model and Decomposition In
this experiment we test the importance of the base
model we use to decompose and use as a teacher.
We compared between three types of distillation
sources: fine-tuned teacher, pre-trained teacher
and no teacher. Furthermore, we compared be-
tween three types of model initializations: a de-
composed fine-tuned model, a decomposed pre-
trained model and a randomly initialized model
with the same architecture as the decomposed
models. The results are shown in Table 2, on
all tasks when training with no teacher distilla-

4We detailed the changes we made to the original fine-
tuning procedure, every other hyper-parameters which were
not mentioned, is set as described in (Devlin et al., 2018).

5We chose those hyper-parameters from a grid search over
T = {5, 10, 20} and α = {0.2, 0.5, 0.7} on the MRPC vali-
dation set.
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Method CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Macro Score
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

Uncompressed Models - 110M Parameters

BERT-base (uncompressed) 59.9 53.9 84.6 83.9 89.0 85.6 91.6 90.9 88.1 80.2 71.5 67.2 93.5 93.6 89.8 84.8 83.5 80.0

6 Layers Transformer Models - 66M Parameters

Fine-tuning 43.4 41.5 80.1 80.1 86.0 83.1 86.9 86.7 87.8 78.7 62.1 63.6 89.6 90.7 81.9 81.1 77.2 75.7
Vanilla KD (Hinton et al., 2015) 45.1 42.9 80.1 80.0 86.2 83.4 88.0 88.3 88.1 79.5 64.9 64.7 90.5 91.5 84.9 81.2 78.5 76.4
BERT-PKD (Sun et al., 2019) 45.5 43.5 81.3 81.3 85.7 82.5 88.4 89.0 88.4 79.8 66.5 65.5 91.3 92.0 86.2 82.5 79.2 77.0
BERT-of-Theseus (Xu et al., 2020) 51.1 47.8 82.3 82.3 89.0 85.4 89.5 89.6 89.6 80.5 68.2 66.2 91.5 92.2 88.7 84.9 81.2 78.6

Low Rank Approximated Models - 65.2M Parameters (This Work)

Low Rank BERT Fine-tuning 41.0 40.5 82.9 82.3 82.4 79.8 89.4 88.8 89.0 79.5 65.0 60.4 91.3 92.0 87.0 81.2 78.5 75.6
Low Rank BERT + KD 44.7 34.0 83.1 82.4 83.4 80.4 89.1 88.7 89.0 79.9 64.3 60.6 91.3 91.5 86.6 80.9 78.9 74.8
Low Rank BERT Feature Distillation 51.2 43.4 84.9 83.8 89.4 86.1 91.4 90.7 89.8 80.5 70.8 66.0 92.2 92.9 89.3 84.2 82.4 78.4
Low Rank BERT Feature Distillation + KD 53.0 42.9 84.8 83.7 90.4 86.2 91.4 90.8 89.7 80.5 71.1 67.8 92.4 92.9 89.4 84.6 82.8 78.7

Table 1: Results on GLUE dev and test sets. Metrics are Accuracy (MNLI (average of MNLI match and MNLI
mis-match), QNLI, RTE, SST-2), Avg of Accuracy and F1 (MRPC, QQP), Matthew’s correlation (CoLA), Avg of
Pearson and Spearman correlations (STS-B). BERT-base (Teacher) is our fine-tuned BERT model. The numbers
for the 6 layered models are taken from (Xu et al., 2020), Best results are indicated in Bold.

CoLA MRPC SST-2
Base Model/Teacher Model Fine-tuned Pre-trained None Fine-tuned Pre-trained None Fine-tuned Pre-trained None

Fine-tuned 48.7± 2.4 47.5± 0.7 40.1± 0.6 88.5± 0.5 85.8± 0.5 81.6± 1.3 91.8± 0.4 91.3± 0.5 90.9± 0.4
Pre-trained 49.4± 1.7 44.8± 2.1 10.8± 2.6 89.2± 0.4 86.3± 1.0 77.1± 0.6 91.7± 0.2 91.2± 0.4 89.6± 1.1
Random 3.6± 5.1 0.0± 0.0 0.6± 0.6 75.9± 1.1 75.3± 0.7 75.0± 0.4 88.2± 0.5 87.2± 0.7 81.2± 0.5

Table 2: Results on the dev set of CoLA, MRPC and SST-2 tasks with different initializations and different teachers.
The results are averages and standard deviations of five runs with different seeds.

tion, the results are best when decomposing a fine-
tuned model and decomposing a pre-trained model
is better than randomly initializing a model; This
indicates that the decomposition saves the infor-
mation within the model and when decomposing
a fine-tuned model it saves some of the more task
specific information. Furthermore, on all tasks and
all initialization the best results are when using a
fine-tuned model as a teacher.

Rank (Parameter Count) CoLA MRPC SST-2

Full Rank (110M) 58.4± 1.2 88.3± 0.7 92.8± 0.5
350 (82.6M) 57.7± 0.9 88.9± 0.7 92.0± 0.5
245 (65.2M) 48.7± 2.4 88.5± 0.5 91.8± 0.4
150 (49.4M) 38.7± 1.6 87.8± 0.6 91.3± 0.4

Table 3: Results on the dev set of CoLA, MRPC and
SST-2 tasks with different ranks. The results are aver-
ages and standard deviations of five runs with different
seeds.

Compression vs. Performance Trade-off Our
method requires to determine a rank for the com-
pression. But can we achieve better results when
choosing a higher rank? Can we choose a lower
rank for smaller models and still achieve satisfac-
tory results? To determine this we experimented
on three different ranks. As shown in Table 3,
higher ranks achieve better results, while lower
ranks achieve satisfactory results while compro-
mising metric performance.

Figure 1: Average time in milliseconds to run a batch
of samples from all of the GLUE tasks, when running
on a Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz
and on a single TITAN V 12GB GPU.

Run-time Savings In this experiment we mea-
sured the average time in milliseconds it takes
for BERT-base compared to its decomposed and
six-layered counterparts to output predictions for
a batch of samples with varying batch sizes. As
shown in Figure 1, we still gain a significant time
performance improvement when running on both
CPU and GPU architectures over a BERT-base
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model. Models that are decomposed to a rank r =
245 are about 1.45 faster than their uncompressed
counterpart for batches larger than one when run-
ning on a GPU and around 1.2 − 1.55 faster for
batches 8, 16, 32, 64 when running on a CPU. Fur-
thermore, higher ranks still benefit running time
and lower ranks improve the running time fur-
ther. Also, we note that although a six-layered
BERT does achieve faster inference time, due to
the coarse-grained compression, it losses more in-
formation contained within it and thus achieves
inferior results; As shown in the results in Ta-
ble 1, a six-layered model trained with distillation
(e.g. BERT-PKD (Sun et al., 2019)) achieves sig-
nificantly lower results and the BERT-of-Theseus
model, which does improve upon BERT-PKD, re-
quires many training iterations to achieve this to
overcome the loss of information when gradu-
ally removing entire layers, which result in higher
training times.

5 Conclusions

We presented a way to compress pre-trained large
language models fine-tuned for specific tasks,
while preserving much of the information con-
tained within them, by using matrix decomposi-
tion to two small matrices. For future work it
might be interesting to combine this approach with
another approach such as pruning or quantization
to achieve smaller models.
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