
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing, pages 726–734

December 4 - 7, 2020. c©2020 Association for Computational Linguistics

726

Multi-view Classification Model for Knowledge Graph Completion

Wenbin Jiang 1, Mengfei Guo 2∗,
Yufeng Chen 2, Ying Li 1, Jinan Xu 2, Yajuan Lyu 1, Yong Zhu 1

1Baidu Inc., Beijing, China
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

{jiangwenbin, nicole, lvyajuan, zhuyong}@baidu.com
{guomengfei, jaxu, chenyf}@bjtu.edu.cn

Abstract

Most previous work on knowledge graph
completion conducted single-view prediction
or calculation for candidate triple evaluation,
based only on the content information of the
candidate triples. This paper describes a novel
multi-view classification model for knowledge
graph completion, where multiple classifica-
tion views are performed based on both con-
tent and context information for candidate
triple evaluation. Each classification view eval-
uates the validity of a candidate triple from
a specific viewpoint, based on the content in-
formation inside the candidate triple and the
context information nearby the triple. These
classification views are implemented by a uni-
fied neural network and the classification pre-
dictions are weightedly integrated to obtain
the final evaluation. Experiments show that,
the multi-view model brings very significant
improvements over previous methods, and
achieves the new state-of-the-art on two rep-
resentative datasets. We believe that, the flexi-
bility and the scalability of the multi-view clas-
sification model facilitates the introduction of
additional information and resources for better
performance.

1 Introduction

Knowledge graph (KG) is a typical kind of graph-
structured knowledge base (KB). Nowdays, there
exist many famous KGs such as YAGO (Suchanek
et al., 2007), Freebase (Bollacker et al., 2008)
and DBpedia (Lehmann et al., 2015). Large-scale
KGs are widely used in many applications such as
semantic searching (Kasneci et al., 2008; Schuh-
macher and Ponzetto, 2014; Xiong et al., 2017),
question answering (Zhang et al., 2016; Hao et al.,
2017) and machine reading (Yang and Mitchell,

∗Joint first author. Guo participated in the optimization
of this work during the internship in Baidu.

2017). A KG contains a set of triples indicating
facts, each of which is composed of a head entity, a
tail entity, and a relation indicating the relationship
between the two entities. It is nearly impossible to
collect a complete set of facts or triples for a KG,
especially in open domains. In fact, many valuable
valid triples are missing even for the existing well-
built large-scale KGs such as Freebase (Socher
et al., 2013; West et al., 2014). Many researchers
devote their efforts to the problem of knowledge
graph completion (KGC), the core operation of
which is to evaluate the validity of candidate triples.

Previous work on KGC mainly include
two groups, embedding-based methods and
classification-based methods. Embedding-based
models learn embeddings for entities and relations,
and evaluate candidate triples based on the embed-
dings and specific distance metrics. Representative
models include TransE (Bordes et al., 2013) and its
extensions (Wang et al., 2014; Lin et al., 2015b; Ji
et al., 2015; Nguyen et al., 2016), DistMult (Yang
et al., 2015) and ComplEx (Trouillon et al., 2016).
Classification-based models learn neural networks
to evaluate the validity of candidate triples. Repre-
sentative models include ConvE (Dettmers et al.,
2018) and ConvKB (Nguyen, 2017). The major
advantage of classification-based methods is that
they directly model the evaluation of the validity
of candidate triples, probably leading to better per-
formance. Most of these previous work conducted
single-view prediction based on content informa-
tion, that is, evaluating a candidate triple according
to a single distance metric or classification schema,
resorting to information restricted in the scope of
the candidate triple. We believe that multiple learn-
ing views for triple evaluation as well as context
information of the candidate triple would contribute
to better performance.

In this work, we propose for KGC a novel multi-
view classification model, where multiple classifi-

727

Figure 1: Illustration of sub-graphs corresponding to the learning views. The colored nodes indicate the head and
tail entities of the candidate triple. The bold nodes and edges are the elements in the retrieved sub-graphs. The
question marks indicate the elements to be predicted.

cation views are performed to estimate the validity
of a candidate triple, based on both content and
context information of the triple. There are four
classification views for candidate triple evaluation.
Each of the first three views performs component
prediction, where a specific component of the can-
didate triple is predicted according to the other two
components as well as its nearby triples. The last
view performs plausibility prediction, where the
plausibility of the candidate triple is predicted ac-
cording to its components as well as its nearby
triples. The prediction conditions of these views
investigate both content and context information of
the candidate triple, that is, the components in the
candidate triple, and the triples nearby the candi-
date triple. The content and context information
can be represented as a sub-graph surrounding the
candidate triple. These classification views are im-
plemented by a unified neural network with shared
embedding and encoding layers and separated pre-
diction layers, and the classification predictions
are integrated by a weighted integration procedure
for better candidate triple evaluation. In the uni-
fied neural network, the sub-graphs indicating the
content and context of the candidate triples are en-
coded in a sequencial manner, by converting the
sub-graphs into sequential tree representations. It
facilitates the utilization of advanced encoders such
as BiLSTM or Transformer.

We experiment on two widely used benchmark
datasets, FB15k-237 and WN18RR, specific ver-
sions of Freebase and WordNet. We find that the
multi-view model achieves the new state-of-the-art,
significantly outperforming pervious work on KGC.
We also find that we can promote the efficiency of
the multi-view model in realistic applications, by
a coarse-to-fine strategy where the first two views
are performed to give a list of candidates, and the

overall model is then performed to evaluate these
candidates. We believe that, the flexibility and the
scalability of the multi-view classification model fa-
cilitates the introduction of additional information
and resources for better performance.

2 Related Work

Most existing KGC models are based on KG em-
beddings, which aims at learning distributed rep-
resentations for entities and relations in a KG. In
these models, the candidate triples are evaluated
by some specific distance metrics based on the
embeddings. These models perform embedding
learning with local information in individual triples,
including translation-based models (Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015b), seman-
tic matching models (Yang et al., 2015; Nickel
et al., 2016; Trouillon et al., 2016), and neural net-
work models (Dettmers et al., 2018; Jiang et al.,
2019; Nguyen, 2017). There also exist KGC mod-
els based on classification, where classifiers are
learnt to evaluate the validity of candidate triples
(Dettmers et al., 2018; Nguyen, 2017). Both kinds
of previous work consider only one view, with sim-
ple distance metrics and classification operations.
In contrast, multi-view learning enables the incor-
poration of much more views that utilize internal
and external information for triple evaluation.

In recent years, many efforts were devoted to
embedding learning based on non-local informa-
tion such as multi-hop paths (Lin et al., 2015a; Das
et al., 2017) and k-degree neighborhoods (Feng
et al., 2016; Schlichtkrull et al., 2017). Some re-
searchers also investigated graph embeddings in
social network and other areas (Perozzi et al.,
2014; Grover and Leskovec, 2016; Ristoski and
Paulheim, 2016; Cochez et al., 2017). Compared
with these work, our method not only learns em-

728

View Type Instance from gv Instance from g−v
hr→t ghr→t = 〈G(h, r, ?), t〉 g−hr→t = 〈G(S(h, r, ?)),none〉, s.t. S(h, r, ?) /∈ KG
rt→h grt→h = 〈G(?, r, t), h〉 g−rt→h = 〈G(S(?, r, t)),none〉, s.t. S(?, r, t) /∈ KG
ht→r ght→r = 〈G(h, ?, t), r〉 g−ht→r = 〈G(S(h, ?, t)),none〉, s.t. S(h, ?, t) /∈ KG
hrt→ ghrt→ = 〈G(h, r, t), true〉 g−hrt→ = 〈G(S(h, r, t)), false〉, s.t. S(h, r, t) /∈ KG

Table 1: Instance generation for each learning view. The first/second part in an instance is used as the input/output
for classification. The function G retrieves the sub-graph surrounding the candidate triple with the maximum height
and width limitations. The function S receives a tuple and returns a randomly corrupted tuple that not exists in
the KG, by randomly replacing a known component which is not denoted by the question mark. The operator ∈
incidates that a tuple is equal to or inside of a triple.

beddings for individual entities and relations based
on non-local information, but also obtains repre-
sentations for sub-graphs resorting to complicated
neural encoders. This manner probably brings bet-
ter KGC performance by leveraging global infor-
mation more effectively.

3 Method: Multi-view Classification

A knowledge graph KG contains a set of triples in-
dicating facts, {(h, r, t)} ⊆ E ×R×E . Each triple
(h, r, t) consists of two entities h and t referred to
the subject and object of the triple, and a relation
r referred to the relationship between the two enti-
ties. E andR indicates the possible entity set and
the possible relation set, respectively. The funda-
mental problem for KGC is to define a candidate
triple evaluation model f : E ×R×E → R, giving
each candidate triple (h, r, t) a score indicting the
validity of the triple.

3.1 Classification Views
We adopt a multi-view classification model for
KGC, where a candidate triple is evaluated from
four different views. The first three views adopt the
generative methodology, each view predicts a spe-
cific component of the candidate triple according
to the other two components and the nearby triples.
The last view adopts the discriminative methodol-
ogy, it predicts the plausibility of the whole triple
according to its components as well as its nearby
triples. In the prediction conditions of these views,
the components in the candidate triple are content
information inside the triple, and the triples nearby
the candidate triple are context information outside
the triple.

In details, the first view hr→t predicts t based
on h, r and their context, the second view rt→h
predicts h based on r, t and their context, the third
view ht→r predicts r based on h, t and their con-
text, and the fourth view hrt→ predicts the plausi-

bility given h, r, t and their context. We denote the
view set as V , containing the four views mentions
above. These views evaluate the candidate triple
from different viewpoints and can be integrated to
give better prediction.

In the prediction condition of each view, the con-
text information includes the entities and relations
nearby the candidate triple, and excludes the enti-
ties and relations that can only be reached by way
of the entity or relation to be predicted. The content
and context can be jointly represented as the sub-
graph surrounding the candidate triple. For each
of the first three views, the entity of relation to be
predicted is replaced by a specific placeholder. The
sub-graph can be extracted by breadth-first traver-
sal from the candidate triple, without passing by
the entity or relation to be predicted. In the traver-
sal procedure, two hyperparameters d and w are
introduced to restrict the depth and width of the
sub-graph. Specifically, d defines the maximum
distance between an entity and the candidate triple,
and w defines the maximum branch count when
passing by an entity.

The sub-graphs can be linearized as sequences
of of symbols with paired brackets in specific po-
sitions. The linearization facilitates the sequential
encoding of graphic structures, which is proved to
be effective and efficient in syntactic parsing. Table
1 shows the learning views and Figure 1 shows the
content and context information for each view.

3.2 Instance Generation

Given a learning view v ∈ V , we define a pair of
instance generation functions, gv and g−v , to gener-
ate positive and negative classification instances for
a candidate triple under this view. The instances
are used as classification instances for triple evalu-
ation. In an instance 〈x, y〉, the source part x is a
linearized sequence representing a sub-graph, and
the target part y is a label indicating an entity, a

729

Figure 2: The overall multi-task learning architecture for the multi-view learning model.

relation or a boolean symbol. They correspond to
the input and output for the learning of the clas-
sification models. For a given triple and a given
view v, we always generate one positive view in-
stance, but only generate a negative instance with
a certain frequency ρv. The frequencies for the
first three views should be much smaller than 1 in
order to balance the instances with respect to the
classification labels.

The positive instances are generated directly ac-
cording to the schemas of the views. The negative
instances are necessary for the learning of the triple
evaluation model especially for the forth view. The
source part of a negative instance can be generated
by replacing a random component in the tuple with
a random symbol of the same type, to satisfy the
condition that the changed tuple is not equal to or
inside of a triple in the KG. The target part for a
negative instance is none for the first three views,
and false for the fourth view. Table 1 shows the
instance generation functions and their instances.

For each learning view, both positive and neg-
ative instances generated from the training triples
are used for training, while only positive instances
generated from the candidate triple are needed for
testing. The classification models for the learn-
ing views can be trained with separated classifiers
or in a multi-task framework. To promote the in-
formation sharing and interaction between learn-
ing views, we realized the multi-view model in a
multi-task learning architecture, where each sub-
task takes charge of a specific learning view. In the
multi-task architecture, the instances for a training

or testing triple are simultaneously assigned to the
sub-tasks according to their corresponding views.
The details for realization will be described in the
next section.

3.3 Triple Evaluation

Given a candidate triple, four classification in-
stances are generated for the learning views by the
corresponding positive instance generation func-
tions. The evaluation given by each learning view is
obtained by evaluating the corresponding instance
with the corresponding classifier. The evaluation
given by the whole multi-view model is the weight-
edly summation of the evaluations given by these
views:

f(h, r, t) =
∑
v∈V

wvfv(h, r, t)

The function fv and the hyperparameter wv indi-
cate the view-specific evaluation function and its
weighting coefficient, respectively.

The view-specific evaluation function invokes
the classification model of the view with the source
part of the instance as input, and returns the predic-
tion score corresponding to the target part of the
instance:

fv(h, r, t) =
∑
v∈V

wvFv(g
+
v (h, r, t)·x)[g+v (h, r, t)·y]

The function F indicates the classification proce-
dure of the sub-task corresponding to a specific
learning view, it takes the source part of the in-
stance as input and gives the prediction scores

730

on all possible labels. The operator · indexes the
source or target part of the instance, and the opera-
tor [] indexes the score corresponding to the target
part.

For each triple in the testing set, we should com-
pare its validity with those of the candidate triples,
which are generated by replacing the head or tail
entity with another entity. This means that, for a
KG with millions of entities, millions of candidate
triples should be evaluated by the multi-view model
for each testing triple. To promote the efficiency
of the multi-view model, we adopt a coarse-to-fine
strategy in testing, where the first or second view
is performed to give a list of k-best candidates, and
the overall model is then performed to evaluate
these candidates.

4 Realization: Multi-task Architecture

We implement the multi-view learning in a multi-
task architecture, where each sub-task takes charge
of a specific learning view. The multi-task learning
strategy enables information sharing and interac-
tion between the sub-tasks, thus leading to better
performance.

4.1 Overall Pipeline

We design a unified neural multi-task learning ar-
chitecture for the multi-view model. The overall
procedure of the multi-task architecture is shown
in Figure 2. The overall procedure is composed
of three stages, instance generation, instance clas-
sification and prediction integration. The instance
generation stage takes as input the given triple, and
generates classification instances for all learning
views by the instance generation functions. The in-
stance classification stage takes as input the source
parts of these instances, and predicts the labels for
each input with the corresponding view-specific
classification model. The prediction integration
stage takes as input the predictions of all the classi-
fication models, and computes the overall training
cost and evaluation score according to the target
parts of the instances. Note that we need not com-
pute the overall evaluation score for training, nor
generate the negative instances for testing.

In the instance classification stage, all the classi-
fication models follow the same pipeline composed
of embedding, encoding and predicting. For pre-
dicting, these models adopt separated predicting
layers due to their essentially different learning ob-
jects. For embedding and encoding, these models

adopt the shared layers following the conventional
strategy in NLP multi-task learning work. This
is reasonable because the relationship between an
instance and its components is analogous to that be-
tween a sentence and its words. The architecture in
Figure 2 shows the multi-task learning architecture
with shared embedding and encoding layers.

We add a specific symbol indicating the learn-
ing view at the beginning of the source part of the
instance. This is similar to the idea in multilin-
gual NMT that a specific markup is added at the
beginning of a source language sentence to indi-
cate the target language. The marked source parts
of the instances are input into the same encoding
layer. According to the added markups, the neural
network learns and applies different information
propagation regularities for instances of different
views, while sharing network parameters as much
as possible.

4.2 Neural Classifier

We use multi-layer Transformer as the encoding
layers and logistic regression with softmax as the
classification layers. Given the source part of an
instance, x = (x1, x2, ..., xn), which is a sequence
of entities and relations with paired brackets indi-
cating an linearized sub-graph, we construct the
representation for each element xi ∈ x as:

h0
i = xe

i + xp
i

where xei is the element embedding and xpi the posi-
tion embedding, indicating the current element and
its position in the sequence, respectively. We feed
these representations into a stack of L successive
Transformer encoders as:

hl
i = Transformer(hl−1

i), l = 1, 2, ..., L

where hl
i is the hidden state of xi after the l-th

encoding layer. We omit the detailed description of
Transformer since it is already ubiquitous recently.

The representation used for the subsequent clas-
sification layer is the concatenation of the final
hidden states corresponding to the components of
the triple for evaluation. Note that for the first three
views, one of the three components is a placeholder.
The training procedure aims to find the parameters
minimizing the cross-entropy loss:

L(θ) =
∑
z∈KG

∑
v∈V

∑
〈x,y〉∈{g+v (z),g−v (z)}

C(Fv(x, θ), y)

731

Setting
FB15k-237 WN18RR

Content +Context Content +Context
MR MRR H@10 MR MRR H@10 MR MRR H@10 MR MRR H@10

V - hr→t 161 .267 .431 209 .289 .485 2420 .408 .477 2262 .412 .498
V - rt→h 155 .277 .443 178 .296 .476 3318 .377 .437 3573 .393 .473
V - ht→r 150 .294 .468 215 .310 .481 2824 .424 .491 2713 .462 .522
V - hrt→ 156 .290 .475 161 .335 .492 3011 .421 .477 2713 .436 .509
V 139 .330 .491 151 .359 .521 2193 .446 .526 2210 .484 .540

Table 2: The contributions of the individual views to the overall model, evaluated on the development sets.

FB15k-237 WN18RR

Statistics # entrity 14,541 40,943
relation 237 11
Train 272,115 86,835

Partition Develop 17,535 3,034
Test 20,466 3,134

Table 3: The statistics of FB15k-237 and WN18RR,
including number of entities, relations, and triples in
each partition.

Here, we use F to indicate the feedforward proce-
dure, C to indicate the cross-entropy cost function,
and KG to indicate the set of training triples. In the
testing procedure, only positive instances are used
for a testing triple. The testing procedure evaluates
a triple by integrating the four views as mentioned
before.

5 Experiments

5.1 Datasets and Evaluation Protocol
We evaluate the multi-view model on two
widely used benchmark datasets, FB15k-237 and
WN18RR, which are subsets of two common
datasets FB15k and WN18. The original FB15k
and WN18 are easy for KGC due to the reversible
relations, it could not reflect the real performance
of KGC models. Therefore, researchers create
FB15k-237 and WN18RR to fix the reversible re-
lation problem, and make the KGC task more real-
istic (Toutanova and Chen, 2015; Dettmers et al.,
2018). The statistics of the datasets are summarized
in Table 3.

The purpose of KGC is to predict a missing en-
tity given a relation and another entity. Following
Bordes et al. (2013), for every testing triple, we
replace the head or tail entities with all entities ex-
isted in the knowledge graph, and rank these triples
in ascending order according to the triple evalua-
tion function, following the filtered setting protocol

which does not consider any corrupted triples that
appear in the original KG. Following (Nguyen,
2017), we use three common evaluation metrics,
mean rank (MR), mean reciprocal rank (MRR), and
the proportion of the valid test triples ranking in
top n predictions (H@n) with n ∈ {1, 3, 10}.

5.2 Details for Training and Testing

The multi-view model is trained with instances
generated from the training triples, and is used to
evaluate the instances generated from the testing
triples. There are parameters to be tuned in the
procedures of instance generation, model training,
and model testing.

For the definition of the subgraph indicating the
content and context of a triple, the maximum depth
d and width w will be determined in the devel-
oping procedure. For the transformer used for
classification, the number of Transformer blocks
is L = 6, the number of self-attention heads is
A = 4, and the hidden size and the feed-forward
size areD = 256 and 2D = 512, respectively. The
dropout strategy is applied on embedding and en-
coding layers with dropout rate 0.5. We adopt the
Adam algorithm (Kingma and Ba, 2014) for tuning
with a learning rate η = 5× 10−4. The multi-view
model is trained with batch size B = 256 for at
most 1000 epochs. For the coarse-to-fine predic-
tion strategy in the testing procedure, the number k
of best candidates given by the first or second view
is determined on the development set. We choose
ρ = [0.001, 0.001, 0.01, 1.0] for negative instance
generation, d = 2 and w = 3 for sub-graph re-
trieval, and w = [0.30, 0.30, 0.25, 0.15] for view
combination by grid search experiments on devel-
opment sets. The above models are implemented
on PaddlePaddle1.

1 https://github.com/PaddlePaddle/Paddle

732

Model FB15k-237 WN18RR
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

R-GCN+ - .249 .151 .264 .417 - - - - -
KB-LRN 209 .309 .219 - .493 - - - - -
ConvE 246 .316 .239 .350 .491 5277 .460 .390 .430 .480
ConvR - .350 .261 .385 .528 - .475 .443 .489 .537
RotatE 177 .338 .241 .375 .533 3340 .476 .428 .492 .571
TuckER - .358 .266 .394 .544 - .470 .443 .482 .526
pLogicNet 173 .332 .237 .367 .524 3408 .441 .398 .446 .537
SimpleClassification 161 .307 .223 .382 .525 2193 .446 .393 .456 .522
MultiView 134 .320 .276 .412 .544 1738 .463 .462 .494 .549

Table 4: Performance of multi-view learning compared with previous methods, on the testing sets of FB15k-
237 and WN18RR. R-GCN+: (Schlichtkrull et al., 2017), KB-LRN: (Garcia-Duran and Niepert, 2017), ConvE:
(Dettmers et al., 2018), ConvR: (Jiang et al., 2019), RotatE: (Sun et al., 2019), TuckER: (Balažević et al., 2019),
pLogicNet: (Qu and Tang, 2019). SimpleClassification: multi-view model based on simple classification (hr→t
and rt→h), MultiView: multi-view model with all components (hr→t + rt→h + ht→r + hrt→) .

5.3 Main Results and Analysis

We verify the effectiveness of the multi-view model,
by investigating the contributions of the learning
views to the overall model. Table 2 shows the
performance on the development sets of the two
datasets. Note that for each experimental setting,
the model is retrained on the classification instances
generated according to the views in the setting. We
find that each of the learning views contributes
to the final performance, and context information
brings further improvement.

The performance of the multi-view model on the
testing sets of the two datasets is shown in Table
4, where the performance of methods in previous
work is also listed. The multi-view learning model
achieves the new state-of-the-art on both bench-
mark datasets. Compared with previous work, it
gives significantly better MR on both datasets. It
reveals that in the multi-view model, the answers
are high in the ranked lists on average. Considering
that it does not use any optimization tricks, we think
that it still has potential for further improvement
by intruding additional information and resources,
such as pre-trained embeddings, text descriptions
and surface morphologies of entities and relations.
We also find that, the simple classification model
based on the first two views, which brutally pre-
dict the head and tail entities according to the rest
components, achieves very promising results. In
other words, the first two views lead to simple but
effective classification-based KGC models.

The simple classification model works very fast
in evaluation of candidate triples, since direct pre-

200 400 600 800 1000 1200 1400 1600 1800 2000
k-best

70

75

80

85

90

95

Re
ca
ll

FB15k-237
WN18RR

Figure 3: The recall curves of k-best pre-filtering.

diction of the missing entities is equivalent to evalu-
ating thousands of candidate triples simultaneously.
We can adopt a coarse-to-fine strategy in realistic
applications. It pre-selects the k-best candidates by
the first two views, and reranks the candidates by
the whole multi-view model. Figure 3 shows the
experimental results. The quality of the candidate
list is measured with recall, indicating the percent-
age of the instances for which the candidate lists
contain the answers. We find that the pre-selection
of 2000-best list achieves very high recalls on the
two datasets, especially on FB15k-237. Therefore,
we can safely filter out most of the candidates with
little loss of final precision. It facilitates the intro-
duction of more features in the multi-view model
by restricting the search space to a small but precise
k-best list.

733

6 Conclusion

We propose a novel multi-view classification model
for knowledge graph completion, where multiple
classification views are performed based on both
content and context information for candidate triple
evaluation. The multi-view model is implemented
with a simple and unified multi-task learning ar-
chitecture where the parameters are shared across
all the learning views. It achieves the new state-
of-the-art although without using any optimization
tricks. The multi-view model can be improve from
two perspectives in the future. First, the multi-view
model can leverage more kinds of information and
resources for better performance, such as the de-
scriptions of the entities and relations, as well as
related information in external knowledge bases.
Second, the multi-task learning architecture can in-
troduce different kinds of neural networks to better
model different kinds of information, for example,
sequential neural networks for sequences and graph
neural networks for graphs.

Acknowledgments

The authors Chen and Xu were also supported
by the National Nature Science Foundation of
China (No. 61876198, 61976015, 61370130 and
61473294), the Fundamental Research Funds for
the Central Universities (No. 2018YJS025), the
Beijing Municipal Natural Science Foundation (No.
4172047), and the International Science and Tech-
nology Cooperation Program of China under Grant
No. K11F100010. We sincerely thank Quan Wang
in Baidu for the enlightening suggestions in the
research procedure, and the anonymous reviewers
for their valuable comments and suggestions.

References

Ivana Balažević, Carl Allen, and Timothy M.
Hospedales. 2019. TuckER: Tensor factorization
for knowledge graph completion. In Proceedings of
EMNLP-IJCNLP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of ICMD.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Proceedings of NIPS.

Michael Cochez, Petar Ristoski, Simone Paolo
Ponzetto, and Heiko Paulheim. 2017. Global rdf
vector space embeddings. In Proceedings of ISWC.

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew McCallum. 2017. Chains of reasoning
over entities, relations, and text using recurrent neu-
ral networks. In Proceedings of EACL.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
AAAI.

Jun Feng, Minlie Huang, Yang Yang, and Xiaoyan Zhu.
2016. Gake: Graph aware knowledge embedding.
In Proceedings of COLING.

Alberto Garcia-Duran and Mathias Niepert. 2017.
Kblrn: End-to-end learning of knowledge base repre-
sentations with latent, relational, and numerical fea-
tures. In arXiv preprint abs/1709.04676.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of SIGKDD.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He,
Zhanyi Liu Hua Wu, and Jun Zhao. 2017. An end-to-
end model for question answering over knowledge
base with cross-attention combining global knowl-
edge. In Proceedings of ACL.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of ACL-
IJCNLP.

Xiaotian Jiang, Quan Wang, and Bin Wang. 2019.
Adaptive convolution for multi-relational learning.
In Proceedings of NAACL-HLT.

Gjergji Kasneci, Fabian M Suchanek, Georgiana Ifrim,
Maya Ramanath, and Gerhard Weikum. 2008. Naga:
Searching and ranking knowledge. Proceedings of
ICDE.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. In arXiv
preprint arXiv:1412.6980.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, and et al. 2015. Dbpedia-a large-
scale, multilingual knowledge base extracted from
wikipedia. Semantic Web.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling relation
paths for representation learning of knowledge bases.
In Proceedings of EMNLP.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of AAAI.

734

Dat Quoc Nguyen. 2017. An overview of embedding
models of entities and relationships for knowledge
base completion. In arXiv:1703.08098.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. Stranse: a novel embedding model
of entities and relationships in knowledge bases. In
Proceedings of NAACL-HLT, pages 460–466.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In Proceedings of AAAI.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social repre-
sentations. In Proceedings of SIGKDD.

Meng Qu and Jian Tang. 2019. Probabilistic logic neu-
ral networks for reasoning. arXiv:1906.08495.

Petar Ristoski and Heiko Paulheim. 2016. Rdf2vec:
Rdf graph embeddings for data mining. In Proceed-
ings of ISWC.

Michael Schlichtkrull, Thomas Kipf, Peter Bloem,
Ivan Titov Rianne van den Berg, and Max Welling.
2017. Modeling relational data with graph convolu-
tional networks. In arXiv:1703.06103.

Michael Schuhmacher and Simone Paolo Ponzetto.
2014. Knowledge-based graph document modeling.
In Proceedings of WSDM, pages 543–552.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. NIPS,
pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: A core of semantic knowl-
edge. Proceedings of WWW, pages 697–706.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and
Jian Tang. 2019. Rotate: Knowledge graph em-
bedding by relational rotation in complex space.
arXiv:1902.10197.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the ACL Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 57–66.

Theo Trouillon, JohannesWelbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. Proceedings
of ICML, pages 2071–2080.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of AAAI,
pages 1112–1119.

Robert West, Evgeniy Gabrilovich, Kevin Murphy,
Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014.
Knowledge base completion via search-based ques-
tion answering. In Proceedings of WWW, pages
515–526.

Chenyan Xiong, Russell Power, and Jamie Callan.
2017. Explicit semantic ranking for academic
search via knowledge graph embedding. Proceed-
ings of WWW, pages 1271–1279.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in lstms for improving machine
reading. In Proceedings of ACL.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In Proceedings of ICLR.

Yuanzhe Zhang, Kang Liu, Shizhu He, Guoliang Ji,
Zhanyi Liu, Hua Wu, and Jun Zhao. 2016. Ques-
tion answering over knowledge base with neural
attention combining global knowledge information.
arXiv:1606.00979.

