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Abstract

Existing event coreference resolvers have
largely focused on exploiting the information
extracted from the local contexts of the event
mentions under consideration. Hypothesizing
that non-local information could also be useful
for event coreference resolution, we present
two extensions to a state-of-the-art joint event
coreference model that involve incorporating
(1) a supervised topic model for improving
trigger detection by providing global context,
and (2) a preprocessing module that seeks to
improve event coreference by discarding un-
likely candidate antecedents of an event men-
tion using discourse contexts computed based
on salient entities. The resulting model yields
the best results reported to date on the KBP
2017 English and Chinese datasets.

1 Introduction

Event coreference resolution is the task of deter-
mining the event mentions in a document that refer
to the same real-world event. One of its major
challenges concerns error propagation: since the
event coreference resolution component typically
lies towards the end of the standard information
extraction pipeline, the performance of an event
coreference resolver can be adversely affected by
errors propagated from its upstream components.
The upstream component that has the largest im-
pact on event coreference performance is arguably
trigger detection. Recall that the goal of a trigger
detector is to identify event triggers and assign an
event subtype to each of them. Failure to detect
triggers could therefore limit the upper bound on
event coreference performance.

To address error propagation, one way that has
been shown to be effective for a variety of NLP
tasks is to develop joint models, which allow cross-
task output constraints to be learned from anno-
tated training data. For event coreference, a learner

can easily learn, for instance, that two coreferent
event mentions must have the same event subtype,
thereby allowing event coreference to influence
trigger detection. Unfortunately, the vast major-
ity of existing event coreference resolvers have
adopted a pipeline architecture where trigger detec-
tion precedes event coreference. In particular, joint
models are both under-studied and under-exploited
for event coreference given the usefulness they
have demonstrated for other NLP tasks. One ex-
ception is Lu and Ng’s (2017a) joint model, which
jointly learns trigger detection and event corefer-
ence and has achieved state-of-the-art results. As a
structured conditional random field, the model em-
ploys unary factors to encode the features specific
for each task and binary/ternary factors to capture
the interaction between each pair of tasks. The use
of binary/ternary factors is a particularly appealing
aspect of this model: it allows these cross-task in-
teractions to be captured in a soft manner, enabling
the learner to learn which combinations of values
of the output variables are more probable.

We hypothesize that the power of this joint event
coreference model has not been fully exploited and
seek to extend it in this paper. Our extensions are
based on the observation that the strength of a joint
model stems from its ability to facilitate cross-task
knowledge transfer. In other words, the better we
can model each task involved, the more we can
potentially get out of joint modeling. Given this
observation, we seek to improve the modeling of
these tasks in this joint model as follows.

First, we improve trigger detection by exploiting
topic information. State-of-the-art trigger detec-
tors, including those based on deep neural networks
(e.g., Nguyen et al. (2016)), classify each candidate
trigger using local information and largely ignore
the fact that the topic of the document in which a
trigger appears plays an important role in determin-
ing its event subtype. To understand the usefulness
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Three journalists at The New York Times on Tuesday announced plans to {leave}ev1 the newspaper. The {departures}ev2
follow moves last month by several other Times employees, all of whom were {leaving}ev3 to join digital companies.
Pakistan’s Interior Ministry has ordered New York Times Reporter to {leave}ev4. The ministry gave no explanation for
the expulsion order. “You are therefore advised to {leave}ev5 the country within 72 hours,” the order stated.

Table 1: Event coreference resolution examples.

of document topics, consider the examples in Ta-
ble 1: although all five events have similar trigger
words, we can see that the meaning of the triggers
and their event subtypes are different in different
contexts. Hence, if an event coreference model
knows that the topics of these two documents are
different, it can exploit this information to more ac-
curately classify their event subtypes. In particular,
we propose to train a supervised topic model to in-
fer the topic of each word in a test document, with
the goal of understanding each candidate trigger
using its global in addition to local context.

Second, we improve event coreference by ex-
ploiting discourse information. Specifically, we in-
troduce a preprocessing component for event coref-
erence resolution where we prune the candidate
antecedents of an event mention that are unlikely
to be its correct antecedent based on discourse con-
text. In essence, this discourse-based preprocessing
step seeks to simplify the job of the event corefer-
ence model by reducing the number of candidate
antecedents it has to consider for a given event
mention. We encode the discourse context of an
event mention using the entities that are salient at
the point of the discourse in which the event men-
tion appears. To our knowledge, we are the first
to show that event coreference performance can be
improved using discourse contexts that are encoded
using salient discourse entities.

In sum, the contributions of this paper are two-
fold. First, while existing event coreference re-
solvers have largely focused on exploiting the in-
formation extracted from the local contexts of the
event mentions under consideration, we show how
a state-of-the-art joint event coreference model
can be improved using the non-local information
provided by a supervised topic model and salient
discourse entities. Second, the resulting model
achieves the best results to date on the KBP 2017
English and Chinese event coreference datasets.

2 Definitions and Corpora

2.1 Definitions

We employ the following definitions in our discus-
sion of trigger detection and event coreference:

• An event trigger is a string of text that most
clearly expresses the occurrence of an event,
usually a word or a multi-word phrase.

• An event mention is an explicit occurrence
of an event consisting of a textual trigger, ar-
guments or participants (if any), and the event
type/subtype.

• An event coreference chain (a.k.a. an event
hopper) is a group of event mentions that re-
fer to the same real-world event. They must
have the same event (sub)type.

To understand these definitions, consider the ex-
ample in Table 1, which contains five event men-
tions from two documents. The first one con-
sists of three event mentions of subtype Person-
nel.Endposition, among which ev1 and ev2, which
are triggered by “leave” and “departures” respec-
tively, are coreferent since they describe the event
that three journalists resign. The second one con-
sists of two coreferent event mentions, ev4 and ev5,
both of which are triggered by “leave” and have
subtype Movement.Transport Person.

2.2 Corpora
We employ the English and Chinese corpora used
in the TAC KBP 2017 Event Nugget Detection and
Coreference task for evaluation, which are com-
posed of two types of documents, newswire doc-
uments and discussion forum documents. There
are no official training sets: the task organizers
have simply made available a number of event
coreference-annotated corpora for training. For
English, we use LDC2015E29, E68, E73, E94,
and LDC2016E64 for training. Together they con-
tain 817 documents with 22894 event mentions
distributed over 13146 coreference chains. For
Chinese, we use LDC2015E78, E105, E112, and
LDC2016E64 for training. Together they con-
tain 548 documents with 7388 event mentions dis-
tributed over 5526 coreference chains.

The KBP 2017 English test set consists of 167
documents with 4375 event mentions distributed
over 2963 coreference chains. The Chinese test set
consists of 167 documents with 3884 event men-
tions distributed over 2558 coreference chains.
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3 Model

Following Lu and Ng (2017a), we employ a struc-
tured conditional random field, which operates at
the document level. Specifically, given a test docu-
ment, we first extract from it all single- and multi-
word nouns and verbs that have appeared at least
once as a trigger in the training data. We treat each
of these extracted nouns and verbs as a candidate
event mention. The goal of the model is to make
joint predictions for the candidate event mentions
in a document. Three predictions will be made for
each candidate event mention that correspond to
the three tasks in the model: its trigger subtype, its
induced topic, and its antecedent.

Given this formulation, we define three types of
output variables. The first type consists of event
subtype variables s = (s1, . . . , sn). Each si takes a
value in the set of the 18 event subtypes defined in
KBP 2017 or NONE, which indicates that the event
mention is not a trigger. The second type consists
of coreference variables c = (c1, . . . , cn), where
ci ∈ {1, . . . , i − 1, NEW}. In other words, the
value of each ci is the id of its antecedent, which
can be one of the preceding event mentions, or
NEW (if the mention underlying ci starts a new
cluster). The third type consists of topic variables t
= (t1, . . . , tn). Each ti takes a value in a 19-element
set in which the topics have a one-to-one correspon-
dence with the event subtype labels defined above.
Despite this one-to-one mapping, these two types
of labels should not be interpreted in the same man-
ner. As we will see, a word’s induced topic label is
influenced by our supervised topic model, whereas
a word’s subtype is not.

Each candidate event mention is associated with
one coreference variable, one event subtype vari-
able, and one topic variable. Our model induces a
probability distribution over these variables:

p(s, c, t|x; Θ) ∝ exp(
∑
i

θifi(s, c, t, x))

where θi ∈ Θ is the weight associated with feature
function fi and x is the input document.

3.1 Independent Models
3.1.1 Trigger Detection Model
Each instance for training the trigger detection
model corresponds to a candidate trigger in the
training set, which is created as follows. For each
word w that appears as a true trigger at least once
in the training data, we create a candidate trigger

from each occurrence of w in the training data. If a
given occurrence of w is a true trigger in the associ-
ated document, the class label of the corresponding
training instance is its subtype label. Otherwise,
we label the instance as NONE.

Each candidate trigger m is represented us-
ing features generated from the following feature
templates: m’s word, m’s lemma, word bigrams
formed with a window size of three fromm; feature
conjunctions created by pairing m’s lemma with
each of the following features: the head word of the
entity syntactically closest to m, the head word of
the entity textually closest to m, the entity type of
the entity that is syntactically closest to m, and the
entity type of the entity that is textually closest to
m.1 In addition, for event mentions with verb trig-
gers, we use the head words and the entity types of
their subjects and objects as features, where the sub-
jects and objects are extracted from the dependency
parses produced by Stanford CoreNLP (Manning
et al., 2014). For event mentions with noun triggers,
we create the same features except that we replace
the subjects and verbs with heuristically extracted
agents and patients.

3.1.2 Topic Model
Our first extension to Lu and Ng’s (2017a) model
seeks to improve trigger detection using topic infor-
mation. We train a supervised topic model to infer
the topic of each word in a test document, with the
goal of understanding each candidate trigger using
its global in addition to local context.

Like the trigger detection model, each training in-
stance corresponds to a candidate trigger. The class
label is the topic label of the candidate trigger. We
have 19 topic labels in total: there is a one-to-one
correspondence between the 18 subtype labels and
18 of the topic labels. The remaining topic label is
OTHER, which is reserved for those words that do
not belong to any of the 18 topics. Topic labels can
be derived directly from subtype labels given the
one-to-one correspondence between them. Each
candidate trigger is represented using 19 features,
which correspond to the 19 topic labels. The value
of a feature, which is derived from the output of a
LabeledLDA model (Ramage et al., 2009), encodes
the probability that the candidate trigger belongs to
the corresponding topic.

To train the LabeledLDA model, we first apply
LabeledLDA using the Mallet toolkit (McCallum,

1We use an in-house CRF-based entity extraction model
to jointly identify the entity mentions and their types.
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2002) to the training documents, which learns a
distribution over words for each topic, β. We rep-
resent each training document using the candidate
triggers as well as the context words that are useful
for distinguishing the topics.2 To get the useful
context words, we rank the words in the training
documents by their weighted log-likelihood ratios:

P (wi|mj , vk) log
P (wi|mj , vk)

P (wi|mj ,¬vk)

where wi, mj and vk denote the ith word in the
vocabulary, the jth candidate trigger word and the
kth subtype (including NONE), respectively. Intu-
itively, a wordwi will have a high rank with respect
to a candidate trigger word mj of subtype vk if it
appears frequently withmj of subtype vk and infre-
quently with mj of other subtypes. We employ as
the useful context words the top 125 words ranked
by the weighted log likelihood ratio w.r.t. each pair
of trigger and subtype. The label set of each train-
ing document is the set of subtypes collected from
all the triggers in the document plus NONE.

After training, we apply the resulting La-
beledLDA model to a test document, which is rep-
resented using the candidate triggers and the useful
context words, as defined above. Specifically, given
a test document, we (1) apply the model to infer the
distribution of topics in the document, and then (2)
compute the posterior distribution of topics given
each candidate trigger in the document using Bayes
rule as follows:

P (z|m) ∝ P (m|z : β)P (z)

where P (z) is the distribution of topic z in the test
document, P (m|z : β) is the topic-dependent dis-
tribution of candidate triggers m that is learned
from the training documents, and P (z|m) is the
posterior distribution of z given m in the test docu-
ment. We use this posterior distribution to generate
features for representing each instance for train-
ing/testing the topic model, as described above.

Note that while the label sets used by the trigger
detector and the topic model are functionally equiv-
alent, they are trained using different feature sets.
The features used by the trigger detector encodes a
candidate trigger’s local context, while the features
used by the topic model encodes its global context
(e.g., its relationship with other words).

2If a candidate trigger is a multi-word phrase, we treat
it as a “word” by concatenating its constituent words using
underscores (e.g.,“step down” is represented as “step down”).

3.1.3 Event Coreference Model

Our event coreference model is an adaptation of
Durrett and Klein’s (2013) mention-ranking model,
which was originally developed for entity corefer-
ence, to the task of event coreference. This model
selects the most probable antecedent for a mention
to be resolved from its set of candidate antecedents
(or NEW if the mention is non-anaphoric).

We employ two types of feature templates to
represent the candidate antecedents for the event
mention to be resolved, mj . The first type is com-
posed of features that represent the NULL candi-
date antecedent.3 These include: mj’s word, mj’s
lemma, a conjoined feature created by pairingmj’s
lemma with the number of sentences preceding mj ,
and another conjoined feature created by pairing
mj’s lemma with the number of mentions preced-
ing mj in the document. The second type is com-
posed of features that represent a non-NULL can-
didate antecedent, mi. These include mi’s word,
mi’s lemma, whether mi and mj have the same
lemma, and the following feature conjunctions: (1)
mi’s word paired with mj’s word, (2) mi’s lemma
paired with mj’s lemma, (3) the sentence distance
between mi and mj paired with mi’s lemma and
mj’s lemma, (4) the mention distance between mi

and mj paired with mi’s lemma and mj’s lemma,
(5) a quadruple consisting of mi and mj’s subjects
and their lemmas, and (6) a quadruple consisting
of mi and mj’s objects and their lemmas.

Our second extension to Lu and Ng’s (2017a)
model involves leveraging discourse information
to improve this event coreference model. Specif-
ically, we introduce a preprocessing component
for event coreference resolution where we prune
the candidate antecedents of an event mention that
are unlikely to be its correct antecedent based on
discourse context. The idea is to (1) encode the dis-
course context of each event mention in a document
using the entities that are salient at the point of the
discourse in which the event mention appears, and
by hypothesizing that two event mentions that ap-
pear in different discourse contexts are unlikely
to be coreferent, we (2) prune any candidate an-
tecedent of an event mention m whose discourse
context is different from that of m, allowing the
event coreference model to resolve an event men-
tion to one of the candidate antecedents that survive
this discourse-based filtering step. In essence, this

3Resolving a mention to the NULL antecedent is the same
as having the mention starts a NEW cluster.
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preprocessing step seeks to simplify the job of the
event coreference model by reducing the number
of candidate antecedents it has to consider for a
given event mention.

Since we aim to encode the discourse context
of each event mention using the entities that are
salient at the point of the discourse in which the
event mention appears, we need to compute the
salience score of each entity E w.r.t. each event
mention m. We employ the following formula,
which was proposed by Chen and Ng (2015b):∑

e∈E
g(e)× decay(e)

In this formula, e is a mention of entity E that
appears in either the same sentence as m or one
of its preceding sentences. g(e) is a score that is
computed based on the grammatical role of e in the
sentence: 4 if e is a subject, 2 if it is an object, and
1 otherwise. decay(e) is a decay factor that is set to
0.5dis, where dis is the sentence distance between
e andm. We compute discourse entities using Stan-
ford CoreNLP’s neural entity coreference resolver
and grammatical roles using CoreNLP’s syntactic
dependency parser.

Next, we define the discourse context of an event
mention m to be the list of entities whose salience
score is at least 1 when computed w.r.t. m. As
noted before, we aim to prune the unlikely candi-
date antecedents of an event mention m, namely
those candidates whose discourse contexts are dif-
ferent from that of m. Rather than heuristically
defining a function for computing the similarity
between two different discourse contexts, we train
a ranker that ranks the candidate antecedents of m
based on two types of features derived from their
discourse contexts:
Salience score ratios (SSRs): For each entity E
that appears in the discourse contexts of both can-
didate antecedent c and m, we first compute E’s
SSR as the ratio of E’s salience score computed
w.r.t. m to E’s salience score computed w.r.t. c.
(If this ratio is less than 1, we take its reciprocal.)
Then, for each (c,m) pair, we create five features
that encode the number of entities whose SSR falls
into each of these five intervals: [1,1], (1, 2], (2, 3],
(3,4], (4,5], and [5, inf]. Intuitively, c’s and m’s
discourse contexts tend to be more similar if they
have more entities in the lower buckets.
Lexical features: For each mention em1 of each
entity in candidate antecedent c’s discourse con-

Figure 1: Unary factors for the three tasks, the variables
they are connected to, and the possible values of the
variables.

text and each mention em2 of each entity in m’s
discourse context, we create a lexical feature that
pairs em1’s head with em2’s head.

To train this ranker, we employ the same log-
linear model as the one used for the event coref-
erence model, where the training objective is to
maximize the likelihood of selecting the correct
antecedent for each event mention.

After training, we apply this ranker to prune all
but the top k candidate antecedents of each event
mention in a test document. These k candidate
antecedents, together with the NULL candidate an-
tecedent, will be ranked by the event coreference
model, and the highest-ranked candidate will be se-
lected as the antecedent of the event mention under
consideration.4 We treat k as a hyperparameter and
tune it on the development set.

It is worth noting that we prune the candidate
antecedents of the event mentions not only in the
test set but also in the training set. We produce the
top k candidate antecedents of each event mention
in the training set via five-fold cross-validation over
the training documents.

Figure 1 illustrates the unary factors, which en-
code the features used in the three independent
models. Specifically, the sentence fragment at the
bottom of the figure contains two event mentions,
one triggered by leave and the other by departure.
Each of them is associated with three variables, one
for each of the three models. Next to each variable
is the set of possible values of that variable.

3.2 Joint Learning
To perform joint training over the three models
described in the previous subsection, we need to

4The discourse preprocessing module does not handle
NULL candidate antecedents, so they will always be avail-
able to the event coreference model.
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Figure 2: Binary and ternary factors.

define (1) features that capture the interaction be-
tween the two tasks, (2) the joint training scheme,
and (3) the inference mechanism.

3.2.1 Cross-Task Interaction Features
Our cross-task interaction features, which capture
the pairwise interaction between our tasks, are as-
sociated with ternary factors, as described below.

Trigger detection and coreference. We define
our joint coreference and trigger detection factors
such that the features defined on subtype variables
si and sj are fired only if current mention mj is
coreferent with preceding mention mi. These fea-
tures are: (1) the pair of mi and mj’s subtypes; (2)
the pair of mj’s subtype and mi’s word; and (3)
the pair of mi’s subtype and mj’s word.

Trigger detection and topic modeling. We fire
features (encoded as binary factors) that conjoin
each candidate event mention’s event subtype, its
topic and the lemma of its trigger.

Topic modeling and coreference. Our joint
coreference and topic modeling factors and fea-
tures are the same as those for trigger detection
and coreference, except that event subtype labels
are replaced with topic labels. In other words, the
features are defined on the topic labels.

Figure 2 shows the cross-task interaction fea-
tures. The green factor is binary, connecting a
subtype variable and a topic variable. The red fac-
tor is ternary, connecting two subtype variables to
a coreference variable. Finally, the blue factor is
also ternary, connecting topic with coreference.

3.2.2 Training
The joint training scheme seeks to learn the model
parameters Θ from a set of d training documents,
where document i contains content xi, gold trigger
annotations s∗i , topic labels t∗i inferred from the
LabeledLDA model using Gibbs sampling, and

gold event coreference partitionC∗i , by maximizing
the following conditional likelihood of the training
data with L1 regularization:5

L(Θ) =

d∑
i=1

log
∑

c∗∈A(C∗
i )

p′(s∗i , t
∗
i , c
∗|xi; Θ) + λ‖Θ‖1

where p′(s∗, t∗, c∗|x; Θ) is p(s∗, t∗, c∗|x; Θ) aug-
mented with task-specific loss functions. Specifi-
cally,

p′(s∗, t∗, c∗|x; Θ) ∝ p(s∗, t∗, c∗|x; Θ) exp[

αsls(s, s∗) + αtlt(t, t
∗) + αclc(c, C

∗)]

where ls, lt and lc are task-specific loss functions6,
and αs, αt and αc are the associated weight pa-
rameters that specify the relative importance of the
three tasks in the objective function.7 We use Ada-
Grad (Duchi et al., 2011) to optimize our objective
function with λ = 0.001.

3.2.3 Inference
Inference, which is performed during training and
decoding, involves computing the marginals for
a variable or a set of variables to which a factor
connects. For efficiency, we perform approximate
inference using belief propagation, running it un-
til convergence. We use minimum Bayes risk de-
coding, where we compute the marginals for each
variable in our model and independently return the
most likely setting of each variable. Marginals
typically converge in 3–5 iterations of belief propa-
gation, so we use 5 iterations in our experiments.

4 Evaluation

4.1 Experimental Setup
We perform training and evaluation on the KBP
2017 English and Chinese corpora. For English,

5In the conditional log likelihood function, A(C∗i ) is the
set of antecedent structures that are consistent with C∗i . Since
our model needs to be trained on antecedent vectors c∗ but the
gold coreference annotation for each document i is provided in
the form of a clusteringC∗i , we need to sum over all consistent
antecedent structures.

6The loss function for event coreference, which is intro-
duced by Durrett and Klein (2013) for entity coreference res-
olution, is a weighted sum of (1) the number of anaphoric
mentions misclassified as non-anaphoric, (2) the number of
non-anaphoric mentions misclassified as anaphoric, and (3)
the number of incorrectly resolved mentions. The loss func-
tion for trigger detection is parameterized in a similar way,
having three parameters associated with (1) the number of non-
triggers misclassified as triggers, (2) the number of triggers
misclassified as non-triggers, and (3) the number of triggers
labeled with the wrong subtype. The loss function for topic
detection is defined in a similar way as trigger detection.

7These weight parameters, as well as those that are used
within the loss functions, are tuned on the development set
using grid search.
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Event Coreference Trigger Detection
English MUC B3 CEAFe BLANC AVG-F ∆ P R F ∆

1 Huang et al. (2019) 35.7 43.2 40.0 32.4 36.8 56.8 46.4 51.1
2 Full 37.11 44.49 40.03 29.93 37.89 64.45 46.92 54.30
3 − Topic 34.16 43.76 40.78 28.20 36.72 −1.17 64.39 46.67 54.11 −0.19
4 − Discourse 34.53 43.06 40.07 27.95 36.40 −1.49 62.15 47.49 53.84 −0.46
5 − Both 31.94 42.84 40.21 26.49 35.37 −2.52 63.57 45.87 53.29 −0.89

Event Coreference Trigger Detection
Chinese MUC B3 CEAFe BLANC AVG-F ∆ P R F ∆

6 Lu and Ng (2017b) 27.07 34.18 32.22 18.57 28.01 46.61 46.91 46.76
7 Full 27.89 40.95 39.49 22.00 32.58 51.81 54.81 53.27
8 − Topic 26.39 40.43 38.75 21.18 31.69 −0.89 51.81 53.28 52.53 −0.74
9 − Discourse 26.13 40.78 39.31 21.02 31.81 −0.77 51.65 54.65 53.11 −0.16

10 − Both 25.93 37.50 34.24 19.92 29.40 −3.18 56.78 44.63 49.98 −3.29

Table 2: Results of event coreference and trigger detection on the KBP 2017 English and Chinese test sets. Baseline
results (rows 1 and 6) are copied verbatim from the original papers.

we train models on 646 of the training documents,
tune parameters on 171 training documents, and
report results on the official KBP 2017 English test
set. For Chinese, we train models on 438 of the
training documents, tune parameters on 110 train-
ing documents, and report results on the official
KBP 2017 Chinese test set.

Results of event coreference and trigger detec-
tion are obtained using version 1.8 of the official
scorer provided by the KBP 2017 organizers. To
evaluate event coreference performance, the scorer
employs four commonly-used scoring measures,
namely MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005) and
BLANC (Recasens and Hovy, 2011), as well as
the unweighted average of their F-scores (AVG-F).
The scorer reports event mention detection perfor-
mance in terms of Precision (P), Recall (R) and
F-score, considering a mention correctly detected
if it has an exact match with a gold mention in
terms of boundary and event subtype.

4.2 Results
Results on the English test set are shown in the
top half of Table 2. Specifically, row 1 shows the
results of Huang et al.’s (2019) resolver, which has
produced best results to date on this test set. Row 2
shows the results of our full model, which sub-
stantially outperforms the baseline system (row 1),
yielding an improvement of 1.09 points in AVG-F
for event coreference and 3.2 points in F-score for
trigger detection. Note that the improvement in
the MUC and B3 F-scores is largely offset by the
precipitation in the BLANC F-score.

Results on the Chinese test set are shown in the
bottom half of Table 2. Specifically, row 6 shows
the results of Lu and Ng’s (2017b) resolver, which
is the top KBP 2017 system for Chinese and has

produced the best results to date on this test set.
Our full model (row 7) outperforms this baseline
by 4.57 points in AVG-F for event coreference and
6.51 points in F-score for trigger detection. De-
spite the large improvement in AVG-F, the MUC
F-score only increases by 0.82 points. Since MUC
F-scores are computed solely based on coreference
links, these results suggest that the improvement in
AVG-F can largely be attributed to successful iden-
tification singleton clusters rather than successful
identification of coreference links.

4.3 Model Ablations
To evaluate the importance of each of the two ex-
tensions in the full model, we perform ablation
experiments. Rows 3–5 and rows 8–10 in Table 2
show the English and Chinese results obtained us-
ing models that are retrained after one or both of
the extensions are removed from the full model.
The changes in AVG-F as a result of the ablations
are shown in the ∆ columns for both tasks.

Similar conclusions can be drawn from the ab-
lation results for both languages. First, ablating
each of the two extensions causes a drop in per-
formance for both event coreference and trigger
detection. These results suggest that topic model-
ing and discourse pruning are both useful for the
two tasks. Second, ablating both extensions causes
a more abrupt drop in performance than ablating
one of the extensions. This implies that each ex-
tension is providing useful information for each
task that cannot be provided by the other exten-
sion. Third, when both extensions are ablated, the
resulting models still outperform the baselines for
both tasks. Nevertheless, we can see that for En-
glish, discourse pruning contributes more to the
performance of our full model than topic modeling,
whereas the reverse is true for Chinese.
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English Chinese
Training Test Training Test

1 Number of candidate event mentions to be resolved 52370 9494 39758 9918
2 Number of candidate antecedents before pruning 371718 48750 124292 26406
3 Number of candidate antecedents after pruning 119416 20956 83378 20109

4 Number (%) of anaphoric event mentions 4362
(8.3%)

914
(9.6%)

1713
(4.3%)

821
(8.3%)

5 Number (%) of anaphoric event mentions whose correct
antecedent are among the candidates before pruning

4317
(99.0%)

803
(87.8%)

1671
(97.6%)

585
(71.3%)

6 Number (%) of anaphoric event mentions whose correct
antecedent are among the candidates after pruning

3171
(72.7%)

670
(73.3%)

1610
(94.0%)

565
(68.8%)

Table 3: Statistics on salience-based candidate pruning.

4.4 Analysis of Salience-Based Pruning

To gain insights into the effectiveness of dis-
course modeling in terms of pruning candidate an-
tecedents, Table 3 shows some statistics on the
candidate antecedents before and after applying
pruning. Concretely, row 1 shows the total number
of event mentions to be resolved in the English and
Chinese training and test sets. For English, as we
can see in rows 2–3, only 32.1% and 43.0% of the
candidate antecedents remain in the training and
test sets respectively after pruning. This can be
attributed to the fact that we aggressively prune the
candidate antecedents by allowing k (the number
of top candidate antecedents that can survive the
pruning for each event mention) to be in the range
of 1 to 5 during parameter tuning.8 Row 4 shows
that among all event mentions to be resolved, only
8.3% of them are anaphoric. Row 5 shows that
before pruning, the correct antecedent of almost all
of the anaphoric event mentions in the training set
is among the set of candidate antecedents, whereas
the corresponding number on the test set is only
87.8% due to the presence of unseen event men-
tions. Row 6 shows that 72.7% and 73.3% of the
correct antecedents on the training set and the test
set survive the pruning, respectively. Similar trends
can be observed for the Chinese datasets. Overall,
these statistics shed light on why discourse-based
pruning is beneficial: the percentage of correct an-
tecedents that survive the pruning is far greater
than the percentage of candidate antecedents that
are pruned.

4.5 Discussion

One thing that the reader may not be able to appre-
ciate just by looking at the performance numbers
in Table 2 is that our two extensions are starting
to attack some of the non-trivial aspects of event

8The best k according to the development set is 2 for
English and 3 for Chinese.

coreference that involve semantics and discourse,
as opposed to those previous approaches that focus
on low-level issues (e.g., string matching). For this
reason, we will take a look at some of the errors
addressed by our extensions below.

Let us first consider the kind of errors topic mod-
eling allows us to address. Consider the first two
sentences in Table 4, both of which contain the
trigger candidate “struck”. While “struck” trig-
gers a “Conflict.Attack” event in the first sentence,
neither of its occurrences in the second sentence
corresponds to a true trigger (and therefore their
subtypes should both be NONE). Without topic
modeling, the model predicts all occurrences of
“struck” in these sentences as belonging to Con-
flict.Attack (and hence misclassifies the subtypes
of m2 and m3). The reasons are that (1) “struck” is
most frequently associated with “Conflict.Attack”
in the training data, and (2) since the two sentences
have a similar syntactic structure and contain en-
tities of the same type, the model fails to identify
their differences. In contrast, with topic model-
ing, our model correctly predicts the topic of the
document in which the second example appears
as Contact.Meeting. Since the model manages to
learn that the subtype of “struck” should be NONE

when the topic is Contact.Meeting and that its sub-
type should be “Conflict.Attack” when the topic
is “Conflict.Attack”, it correctly predicts m2 and
m3 as having subtype NONE and, as a result, it
also correctly determines that they are not corefer-
ent. In other words, by using global information
encoded by the topic model, our model can distin-
guish between words that have different meanings
in different contexts.

Next, consider the last example in Table 4, which
aims to give the reader an idea of the usefulness of
discourse-based pruning. In this example, m4, m5,
and m8 refer to the event of the French soldier be-
ing stabbed and are coreferent, whereasm6 andm7
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A barrage of US missile {struck}m1 Pakistan’s North Waziristan tribal district on Tuesday, killing at least 15 militants.
President Vladimir Putin sent his condolences to U.S. President Barack Obama on Tuesday over the deadly tornado that
{struck}m2 Oaklahoma City. The tornado {struck}m3 the southern suburbs of the Oklahoma state capital Monday
afternoon, killing at least 51 people and injuring at least 140 others.
The French police said they were continuing to search for the man responsible for {stabbing}m4 a uniformed soldier in the
neck Saturday evening. The soldier was {stabbed}m5 in the back of the neck with a box cutter or short knife as he patrolled
with two colleagues through the transport station of La Défense, a business area in a suburb of Paris. The police suggested
that the deed may have been inspired by the {attack}m6 on a British soldier in a London street Wednesday. A spokesman
for the police union UNSA, Christophe Crépin, said there were similarities with the London {attack}m7 . The case of the
{wounded}m8 soldier, Pfc. Cédric Cordier, 23, is being handled by France’s anti-terrorism court, officials said Sunday.

Table 4: Examples illustrating the usefulness of topic modeling and salience-based pruning.

refer to the attack on the British solider and form an-
other coreference cluster. Without discourse-based
pruning, the model mistakenly links m8 with m7

because they both have subtype “Conflict.Attack”.
In contrast, discourse-based pruning ranks m4 and
m5 higher than m6 and m7 in m8’s list of candi-
date antecedents, the reason being thatm4,m5, and
m8 share the same entity (realized as “a uniformed
soldier”, “The soldier”, and “the wounded soldier”)
in their contexts. Since the model retains only the
top two candidate antecedents for English, m6 and
m7 are being pruned, and the model successfully
resolves m8 to m5.

5 Related Work

Using topics and salience. For event corefer-
ence, the notion of “topics” has thus far been ex-
ploited only for cross-document event coreference,
where documents are clustered by topics so that
no cross-document coreference links can be estab-
lished between documents in different clusters (Lee
et al., 2012; Choubey and Huang, 2017). These
resolvers, unlike ours, are pipelined systems, mean-
ing that topic detection can influence event coref-
erence resolution but not the other way round. As
for discourse salience, we are not aware of any
event coreference work that attempts to explicitly
model it, although one can argue that existing sys-
tems may have implicitly encoded it in a shallow
manner via exploiting features that encode the dis-
tance between two event mentions (Liu et al., 2014;
Cybulska and Vossen, 2015).
Computing argument compatibility. In addi-
tion to discourse-based pruning, candidate an-
tecedents can be pruned based on how compatible
the arguments of the two event mentions are. To
capture argument compatibility, argument features
have been extensively exploited. Basic features
such as the number of overlapping arguments and
the number of unique arguments, and a binary fea-
ture encoding whether arguments are conflicting

have been proposed (Chen et al., 2009; Chen and
Ji, 2009; Chen and Ng, 2016). More sophisticated
features based on different kinds of similarity mea-
sures have also been considered, such as the sur-
face similarity based on Dice coefficient and the
WuPalmer WordNet similarity between argument
heads (McConky et al., 2012; Cybulska and Vossen,
2013; Araki et al., 2014; Krause et al., 2016). These
features are computed using either the outputs of
event argument extractors and entity coreference re-
solvers (Ahn, 2006; Chen and Ng, 2014, 2015a; Lu
and Ng, 2016) or the outputs of semantic parsers
(Bejan and Harabagiu, 2014; Yang et al., 2015;
Peng et al., 2016), and therefore suffer from er-
ror propagation (see Lu and Ng (2018)). Several
previous works proposed joint models to address
this problem (Lee et al., 2012; Lu et al., 2016),
while others utilized iterative methods to propagate
argument information (Liu et al., 2014; Choubey
and Huang, 2017) in order to alleviate this issue.
Nevertheless, argument extraction remains a very
challenging task, especially when the arguments do
not appear in the same sentence as the trigger. Our
discourse-based pruning method can be thought of
as a way of approximating argument compatibility
without performing argument extraction.

6 Conclusion

We incorporated non-local information into a state-
of-the-art joint model for event coreference resolu-
tion via topic modeling and discourse-based prun-
ing. The resulting model not only significantly out-
performs the independent models but also achieves
the best results to date on the KBP 2017 English
and Chinese event coreference corpora.
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