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Abstract

Point-of-Interest (POI) oriented question an-
swering (QA) aims to return a list of POIs
given a question issued by a user. Recent
advances in intelligent virtual assistants have
opened the possibility of engaging the client
software more actively in the provision of
location-based services, thereby showing great
promise for automatic POI retrieval. Some ex-
isting QA methods can be adopted on this task
such as QA similarity calculation and semantic
parsing using pre-defined rules. The returned
results, however, are subject to inherent limita-
tions due to the lack of the ability for handling
some important POI related information, in-
cluding tags, location entities, and proximity-
related terms (e.g. “nearby”, “close”). In this
paper, we present a novel deep learning frame-
work integrated with joint inference to cap-
ture both tag semantic and geographic corre-
lation between question and POIs. One char-
acteristic of our model is to propose a special
cross attention question embedding neural net-
work structure to obtain question-to-POI and
POI-to-question information. Besides, we uti-
lize a skewed distribution to simulate the spa-
tial relationship between questions and POIs.
By measuring the results offered by the model
against existing methods, we demonstrate its
robustness and practicability, and supplement
our conclusions with empirical evidence.

1 Introduction

Point-of-Interest (POI) oriented question answer-
ing (QA) problem is a special QA task which aims
to answer users’ questions by generating a list of
POIs. With the rapid development of smart agents
(e.g. Amazon Echo) and intelligent virtual assis-
tants (e.g. Apple Siri and Google Assistant), there
are many POI oriented queries being requested
everyday. Some examples of these questions are
“Where can I take my kid to have fun nearby New
York City” or “Where can we go in LA with my
friends”. The answers are typically a list of POIs

such as parks, malls, or restaurants corresponding
to the details provided by users in the questions.
According to some statistics, there are millions of
POI oriented QA questions being requested per day
on a mobile search engine in China.

Generally speaking, semantic parsing and simi-
larity matching methods are utilized to tackle the
POI oriented QA problem in current solutions. Nev-
ertheless, both of them are subject to inherent lim-
itations and deserve to be improved. Semantic
parsing based methods convert the questions to for-
mal representations (such as SQL queries) using
pre-defined rules, then get the POI results from the
query. Difficulties arise, however, when the form
of the questions varies from person to person. Be-
sides, due to ambiguous expressions of a specific
tag, semantic parsing methods always fail to match
mentioned tags to the POI database. Furthermore,
based only on tag information, it is almost impos-
sible for semantic parsing methods to make use
of the distance correlation between questions and
POIs.

Another line of solution is adopting similar-
ity matching models for calculating the similarity
score between questions and POIs. Recent years
have witnessed rapid growth in various kinds of
semantic similarity based QA systems such as Con-
volutional Neural Network Architecture (Hu et al.,
2014), LSTM Based Answer Selection (Tan et al.,
2015, 2016), and Cross-Attention Based Question
Answering System (Hao et al., 2017). Despite the
success in common landscapes, most existing stud-
ies of this family cannot work well for POI oriented
QA, since it is ineffective for them to handle the
unique properties of POI elements such as tags and
locations. As a result, a significant gap remains
between academic proposals and the industry stan-
dard of implementing location based services.

It is nontrivial to extend existing QA models to
handle the challenges of POI oriented QA. In gen-
eral, the unique challenges for this problem mainly
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Figure 1: The overall architecture of our model. Generally, the model is made up of two parts, namely tag semantic
module pt and distance correlation module pd. The model takes the Question-POI pair as input, and the probability
of choosing a POI given the question as output.

come from two aspects. First of all, when asking
POI oriented questions, people tend to emphasize
certain needs, which correspond to some POI prop-
erties, such as the popular users of the POI, the ser-
vice provided by the POI, and the types of the POI,
etc. Hereafter we name all such POI properties as
tags. Identifying such information in the question
that is related to the tags of POI is crucial in this
task, thus creating a bottleneck. Take the question
“Where can children go nearby New York City” as
an example, the word “children”, being regarded
as both a question term and a POI tag, plays an im-
portant role in identifying the corresponding POIs.
Second, proximity-related terms such as “nearby”
and “close” deserve special treatment. Considering
the same example, if there is “nearby” in the ques-
tion, the candidate POIs should be mainly located
outside New York City; whereas if without, the
candidate POIs should be within New York City.
Furthermore, for different location entities such as
“nearby New York City” v.s. “nearby Manhattan”,
the distance scopes of “nearby” are also different.
In contrast, traditional QA methods are not able to
treat these terms in their models properly and thus
leading to a poor performance on POI oriented QA.

In this paper, we propose a POI oriented QA
model with Joint Inference (named as PJI for short)
to tackle the challenges mentioned before. PJI
mainly has two modules which are named as tag
semantic module and distance correlation module.
The tag semantic module is used to automatically
search for relevant POIs based on semantic tag in-

formation. Besides, in order to capture specific
patterns buried in questions and POIs, we develop
a novel cross attention based question embedding
structure. Therefore the mutual influence between
questions and POIs is taken into account. In the
distance correlation module, we adopt a skewed
distribution on three-level locations including city,
district, Area of Interest (AOI) to fit the distance
distribution between candidate POIs and mentioned
location terms in the question. Both modules are
fused together and optimized in an end-to-end man-
ner for retrieving the final POI list. Our major
contributions can be summarized as follows:

• We tackle the POI oriented QA problem by
proposing a new deep learning model with
joint inference.

• We leverage two neural network modules to
build a bridge between questions and POIs
on both POI tags and question location terms.
We also adopt a skewed distribution method
to deal with proximity-related terms.

• We design a special embedding structure us-
ing cross attention mechanism to obtain a
more precise and flexible representation of
questions.

• We conduct comprehensive experiments on
two real-world datasets enabling the evalua-
tion of the results from different perspectives.
Experimental results demonstrate significant
improvements of PJI over all the state-of-the-
art baselines.
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2 Related Work

QA with Semantic Parser Semantic parsing
shines at handling complex linguistic constructions
and obtains reasonable performance on question an-
swering problems. Traditionally, semantic parsers
like AMR (Banarescu et al., 2012) and SQL (An-
droutsopoulos et al., 1995) map sentences to formal
representations of their underlying meaning (Shen
and Lapata, 2007; Yao et al., 2014; Hill et al., 2015;
Talmor et al., 2017). By leveraging a knowledge
base, semantic parsing is reduced to query graph
generation and stage searching.

Neural Approaches for QA With the recent de-
velopment in deep learning, neural networks have
achieved great success in question answer prob-
lems (Salakhutdinov and Hinton, 2009; Collobert
et al., 2011; Socher et al., 2012; Hu et al., 2014;
Tan et al., 2015, 2016). Most of these models use a
deep neural network like GRU (Chung et al., 2014)
and LSTM (Hochreiter and Schmidhuber, 1997) to
handle the long texts required for QA. Further im-
provements like attention mechanism are applied to
focus on the most relevant facts (Hao et al., 2017;
Zhao et al., 2019). The relevance score of each QA
pair is the cosine similarity of the semantic vectors.
The final answers to each question are then sorted
by the similarity score.

Probabilistic Deep Learning Models The base
of probabilistic deep learning models is to use the
neural network as a conditional model parame-
terised by the weights in the network when some
inputs are given. The output is obtained by optimiz-
ing the parameters in the model with the estimates
provided by Bayesian framework. Several proba-
bilistic models have been used in tasks like question
answering with knowledge graph and link predic-
tion (Wang et al., 2007, 2014; Zhang et al., 2018).
The main advantage of this complete separation of
the neural network from Bayesian model is that the
good features generated by the network are well
used to make predictions, which gives the model
high flexibility and accuracy.

3 Our Model

3.1 Preliminaries

Point of interest (POI) is a dedicated geographic
entity on an online map where someone may find
useful information, like a restaurant, a hotel, or a
travel spot. Compared with the common entities in

knowledge graph, POI has two important properties
which are tags and location. Tags refer to a short
text (one or several words) in a POI describing
its service (e.g. fast food or entertainment), its
major users (e.g. kids or lovers), its types (e.g.
restaurants or shopping mal), etc. Users are greatly
facilitated by informative tags when searching for
the POIs. In addition, each POI has three location
properties named as location entities recording the
POI located city, district, and area of interest (AOI).
Here AOI refers to a polygonal area in a 2D map
which usually contains several POIs, New York
Central Park for example. For each location entity,
it is possible to find a set of POIs within the entity.

Given a question q, the POI oriented question
answering seeks to parse the question, then return a
set of POIs which can be seen as the answer result
according to the question. For example when q is
the question “Where can children go on weekend
in New York City?”, the answer is a set of POIs
which are places for kids to play in New York City
satisfying the information request conveyed by the
user. It is possible to further rank the POIs accord-
ing to some POI recommendation algorithms but it
is beyond the scope of this paper.

3.2 Model Overview

In our framework, the dataset is a set of
question-POI pairs which can be represented as
D ={qi, ai}Ni=1 , where qi refers to a question, ai
refers to a POI answering the question. Our model
PJI aims to retrieve the correct POIs with respect
to each question which corresponds to the function
P (ai|qj) returning the probability that POI ai sat-
isfies the question qj . The overall structure of our
model is illustrated in Fig 1. Our model consists of
two neural network modules, as described below:

Tag Semantic Module In the POI oriented QA,
some question terms correspond to POI tags and
thus serving as a bridge between questions and
POIs. In Fig 1, “children” is both a term in the
question and a tag of POI. However, it is not easy
to match the query terms to POI tags directly. For
example, terms such as “kids”, “baby” can also
correspond to the tag “children”. In our model, for
each question qj , we learn the probability that a
tag ya is included in the question qj , which can be
represented as P (ya|qj). Given the question em-
bedding and tags, POIs with the corresponding tags
are chosen as the answers at the tag level. We then
develop a neural network module specialized for
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calculating P (ai|ya, qj), which is the likelihood of
POI ai being selected given the tag ya and the ques-
tion qj . Above all, the likelihood of choosing POI
ai as the answer to the question qj is the marginal
probability mass function over all tags:

pt(ai|qj , θt) =
∑
ya∈Vt

P (ai|ya, qj) ∗ P (ya|qj) (1)

which sums out all possibilities of tag variables,
where Vt refers to the tag set.

Distance Correlation Module Apart from tags,
there also exists a distance correlation between
questions and POIs. In this module, we first ex-
tract the location entity using NER tools, since
the location entity vocabulary is very large and
has fixed names. The questions usually contain
some proximity-related terms, such as “nearby”
and “close to”. It is hard to confidently determine
whether a POI is in or out an extracted location
entity polygon considering such proximity-related
terms. Thus, instead of directly identifying the
candidate POIs by the location entity appeared in
the question, we also calculate the probability of
candidate POIs considering both the distance to
the extracted entity polygon and the question con-
text. With this motivation, we introduce another
probability function P (ai|yl, qj), which captures
the probability of POI ai being the answer of the
question qj if the location entity yl appears in qj .
We denote the likelihood of choosing POI ai given
the question qj based on distance correlation as:

pd(ai|qj , θd) =
∑
yl∈Vd

P (ai|yl, qj) ∗ P (yl|qj) (2)

where P (yl|qj) = 1 if yl appears in qj , otherwise
P (yl|qj) = 0, yl ∈ Vd and Vd refers to the location
entity set.

Overall Formulation With the two modules
above, the parameters of the function p(ai|qj) can
be estimated by maximizing the log-likelihood as
follows:

max
θt,θd

(
1

N

N∑
i=1

logpt +
1

N

N∑
i=1

logpd) (3)

3.3 Neural Network Module for Tag
Semantic Matching

Due to the linguistic diversity of describing a cer-
tain tag, it is almost impossible to recognize the
tag with exact matching. Therefore, we build a

tag recognizer which can be jointly trained with
the model. After that, we can get the POIs given
the tag and question representations with a cross
attention architecture.

QA Embedding We use two dense d dimen-
sional vector representations of questions in the
module. The first one is represented as fent(·) :
q → Rd, which takes the Word2Vec vectors as
input, then feeds them into a Bi LSTM neural net-
work with a pooling layer. It helps to capture the
sequence information in the question and is used
in POI tag recognition. The other one is denoted as
fpr(·) : q → Rd, which leverages attention mech-
anism to distinguish and catch the most important
information in questions. Rather than apply a sim-
ple attention layer, we introduce a special cross
attention mechanism tailored to this task originally
first brought by Hao et al. (2017). The answer POI
is embedded with function g(·) : a → Rd, which
calculates the average value of POI tag vectors ob-
tained from Word2Vec.

Cross Attention Mechanism Similar to fent,
the structure fpr consists of a Bi LSTM network
with a pooling layer, whereas the output of it in-
teracts with the POI representation and takes the
attention weights into account. The final attentive
embedding consists of POI-towards-question em-
bedding and question-towards-POI embedding. In
POI-towards-question step, we train weights be-
tween every state in the Bi LSTM hidden layer and
POI tag, then get a set of weighted question vectors
regarding each POI tag. The following formulas
are proposed to calculate the vectors:

αmn = softmax(h(W T [hn; em] + b)) (4)

fpr(q)m =
∑
n

αmnhn (5)

where hn denotes the question hidden layer vector.
em denotes the POI tag embedding vector. αmn is
the weight of attention from the tag em to the nth
word in the question. h(·) is an activation function.

In question-towards-POI step, we learn a set of
weights between the question pooling layer vector
and POI tag. Using the weighted question vectors
in the first step and the weights in the second step,
we can then get the final weighted double-sided
attentive question vector by multiplying and adding
them up.

fpr(q) =
∑
m

βmfpr(q)m (6)
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βm = softmax(h(W T [fent(q); em] + b)) (7)

where βm denotes the attention of question towards
answer aspects.

POI Tag Recognition We exploit the question
context to build the tag recognizer. For instance, if
the question contains the word “dating”, it means
that the target audience is lovers and the POI type
should be like parks and restaurants. Specifically,
we embed the question to a d dimensional vector
using embedding function fent(·) : q → Rd as
described above. Then given the embedding vector
of the question q, we set the likelihood of choosing
tag ya by adding a softmax layer as follows:

P (ya|q) = softmax(W T
y fent(q)) (8)

=
exp(W T

y fent(q))∑
y′∈Vt exp(W

T
y′fent(q))

(9)

where Vt refers to the tag set in the POI dataset.

Tag Based POI Retrieval Since the number of
POIs in the dataset is often very large, it is neces-
sary to obtain some candidate POIs based on tag
information and discard the irrelevant ones. Having
P (ya|q), we can get POI tag ya with the highest
score. We then filter out POIs with the tag ya from
the dataset and form the candidate set. Precisely,
we introduce a Dirac delta function ε to accomplish
this process. For POIs with ya, the function εya(a)
is set to 1, while for POIs without, εya(a) is set to 0.
The filtering of POI greatly reduces the workload
of subsequent process, and has a significant effect
for large-scale data.

After obtaining the tag ya in the question qj
and the function ε, the next step is to retrieve
the corresponding POIs, which is represented as
P (ai|ya, qj) in Section 3.2. Suppose questions are
embedded using the embedding function fpr(·) :
q → Rd. In this function, the final output ques-
tion embedding is the weighted cross-attentive vec-
tors where informative patterns in questions are
strongly focused. The likelihood of choosing ai
given question answer embedding and POI tag can
be represented as follows:

P (ai|ya, q) = sigmoid(fpr(q)
T g(ai)) · εya(ai)

(10)

3.4 Neural Network Module for Distance
Correlation

This section mainly discusses the approach for
matching the POIs to the question based on the
aspect of distance correlation. As discussed in
Section 3.2, the first step of distance correlation
module is to find location entities in the question.
In our model, we assume that there are three types
of location entities: city, district, AOI (Area of In-
terest). AOI is a location entity on the map with
boundaries (e.g. Central Park) which usually be-
longs to a district (e.g. Manhattan) of a city (e.g.
New York). We first build a dictionary storing
all of the location entities and their corresponding
scopes as well as types. For every question, we
extract the location terms in the question with an
NER (named entity recognition) tool before map-
ping them onto the dictionary. Note that the lo-
cation term extracted directly from questions can
be hierarchical. For example, AOIs may appear
in the form of District+AOI (e.g. Manhattan Cen-
tral Park) or City+AOI (New York Central Park) or
City+District+AOI (New York Manhattan Central
Park) or just itself (Central Park). Thus, we set
the priority order to AOI > district > city when
conducting entity mapping.

Proximity-related Terms While retrieving the
POIs according the location entity, another factor
we should consider is whether the question contains
some proximity-related terms such as “nearby”,
“close to” , or “neighboring”. When these terms
appear in the question, people are actually expect-
ing POIs which are close to, or outside the location
boarder. It implies that the model should avoid sim-
ply returning POIs within the location polygon. Fig
2(a) shows the real-data distribution of POI with
respect to questions with and without proximity-
related terms according to real-world data used in
our experiments.

In addition, concerning questions with
proximity-related terms, the area of the location en-
tity also has an important impact on the probability
distribution of the distance between the selected
POI coordinate and location entity polygon. As
shown in Fig 2(b), when asking city-level questions
with proximity-related terms (e.g. “Where can
children go nearby New York?”), the result may
contain POIs located in city suburban district or
outside the city; while as for AOI-level questions
(e.g. “Where can children go nearby Central
Park?”), the result may only contain POIs outside
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(a) (b)

Figure 2: The POI probability distribution concerning
distance. X axis is the log distance between the POI
and the location entity polygon. If POI is outside the
polygon, the distance is positive, otherwise is negative.
Y axis is the probability the POI is recommended. (PRT
denotes proximity-related terms.

but close to the border of the AOI. This is because
the area of a city is much bigger than that of an
AOI. With different area sizes of the location entity,
the probability distribution functions are quite
different.

Distance Correlation Calculation The proba-
bility of choosing POI ai given the location entity
in question qj has a proportional relationship with
the distance between the POI and the location entity
polygon. That is, if a POI is very far away from the
expected location, the probability we recommend
it is close to zero. Apart from the distance, as dis-
cussed above, proximity-related terms and location
entity areas should also be taken into account when
calculating the likelihood.

Given the location entity yl extracted from the
question qj , all factors, including the distance be-
tween the polygon of yl and POI ai, the area size
of yl and proximity-related terms, have an impact
on the likelihood distribution. Specifically, we pro-
pose a skewed distribution based model, which
takes the distance from POI to the location entity
d(ai, yl), indicator function τ(qj), as well as the
area of location entity s(yl) as inputs. τ(qj) is the
indicator function that τ(qj) = −1 if the ques-
tion contains proximity-related terms, otherwise
τ(qj) = 1. The probability of choosing POI ai
having the location entity yl and the question qj is:

P (ai|yl, qj) = sigmoid(Wdf(
τ(qj)d(ai, yl)

sy
))

(11)

f(x) =
2

ω
φ(
x− ξ
ω

)Φ(α
x− ξ
ω

) (12)

φ(x) =
1√
2π
e
−x2

2 (13)

Φ(x) =

∫ x

−∞
φ(t)dt =

1

2
(1 + erf(

x√
2

)) (14)

Where f(x) is the skewed normal distribution of
x, Wd is what we want to optimize. Note that
α, ξ, ω are hyper parameters. Given the formu-
lation above, we can see if the questions do not
contain proximity-related terms, τ(qj) value is
equal to 1, POIs inside the polygon scope are what
we need. As for questions containing proximity-
related terms, the smaller polygon area sy is, the
steeper the distribution curve will be, as a result,
POIs closer to the polygon boundary will be more
likely to be selected.

3.5 Inference

During inference, ideally we want to find the can-
didate POIs given the question qj . In the aspect of
POI tags, we select the tag ya receiving the max-
imum score from P (ya|qj). Then we reduce the
candidate POI number by filtering out the POIs
whose corresponding tag is equal to ya. After that,
we calculate the semantic probability of choosing
the POI as the answer. In distance correlation stage,
the computation is quadratic in the number of lo-
cation entities and thus is too expensive. We first
extract the location entity yl by NER and calculate
the distance from POI coordinates to the polygon
of yl afterwards. Take the question in Fig 1 as an
example, after the extraction step, we obtain the
location entity “New York City”. Finally, we select
the top 5 candidate POIs with top scores as the
result.

4 Experiments

4.1 Experiment Setup

Datasets We construct two large-scale datasets,
both of which are based on queries extracted from
query logs of a widely used mobile search engine
App and POIs obtained from an online map service
provider. In order to filter the POI related questions
from the search engine App, we design a set of tem-
plates such as “where can [*] go in [*]” and keep all
the queries that match with the templates. To con-
struct the ground truth of question-POI pairs used
in the training period, given questions satisfying
the templates, we crawl the related website clicked
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by the user inquiring the question, then calculate
the similarity between the website text and POIs.
Finally we choose POIs that are most similar to
the website as the answer POI. For determining the
answer POIs, we sort the POIs according to their
probability and choose the top-K result as the final
output. Moreover, all the datasets are anonymized
due to privacy concerns.

• Dataset A. This dataset mainly contains POI
related questions whose geographic entities
are located in Beijing. We sample ques-
tions out of one month records satisfying the
template, and construct 11,000 question-POI
pairs. The question data is divided into two
parts randomly. The training set contains
10,900 question-POI pairs. The testing set
is made up of 100 questions which do not
appear in the training set.

• Dataset B. In this dataset, the location of the
questions is not restricted in Beijing. We
randomly sample questions to construct the
question-POI pairs which covers most of the
cities and many popular visited districts and
AOIs in China. Similarly, there are 350,900
question-POI pairs in the training set, and 100
questions in the testing set.

On average, the length of questions in 2 datasets
is 37.8 Chinese characters. The average length
of POIs including its tag information (name, tags,
city, district and AOI) is 30.3 characters. We later
evaluate our model on these two datasets by the
percent of hits at K (%hits@K) which is the percent
of question-POI pairs whose POI appears in top-K
retrieved POI.

Baselines We compare our model with several
state-of-the-art baselines to show the effectiveness
of our model. The first two are semantic parser
based methods using tag information and the left
ones are deep learning methods based on semantic
matching.

• Template Matching Method (TMM) This
method first converts the questions into SQL
queries according to the templates, then re-
trieves POIs from database.

• StanfordCoreNLP Stanford CoreNLP is an
integrated NLP toolkit providing a wide range
of linguistic analysis tools. We use it as a
Chinese semantic parser to recognize the tags.

Based on the tool, we can turn the question
into SQL queries according to the semantic
characteristics of the tags.

• Bi-LSTM It is a basic deep neural network
model which takes the Word2Vec vectors of
query and answer as input and their cosine
similarity as output (Tan et al., 2015). It uti-
lizes a Bi-LSTM layer to capture question
semantic features and then feed them into a
pooling layer. This model takes the max mar-
gin hinge loss as the loss function.

• Bi-LSTM+ATT (AQA) Compared with Bi-
LSTM, in this model, each Bi-LSTM output
vector will be multiplied by a softmax weight,
which is determined by the answer embed-
ding.

• Bi-LSTM+C-ATT (CAQA) This is a state-of-
the-art end-to-end neural question answering
model introduced by (Hao et al., 2017). It con-
siders the double-sided attention containing
question-to-answer attention and answer-to-
question attention.

4.2 Experiment Results
Overall Performance We compare our model
with all the baselines whose results are shown in
Table 1. Conclusions observed are listed as follows.
(1) Compared with typical neural network based
models, semantic parsing based methods have a
higher %hits@K rate on the whole. However, with
the lack of flexibility, their %hits@K rate is worse
than our PJI model. (2) In general, models with
attention mechanism reach better performance than
models without. Bidirectional attention models
achieve higher %hits@K rate than unidirectional
one, which indicates there exists several parts in
the questions as well as POI attributes that should
be put emphasis on. (3) Our model achieves the
best overall performance among all the models. In
terms of %hits@K rate, no matter what K is, the
rate of our model is beyond 95%. Our model uti-
lizes several neural network modules instead of cal-
culating the semantic similarity directly. Moreover,
thanks to the cross-attention question embedding
structure, our model puts strong emphasis on the
distance and tag related patterns of both questions
and POIs. In addition, we use a special probabil-
ity distribution to handle questions with proximity-
related geographic terms which are treated the same
as normal questions in the baselines.
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Dataset A Dataset B
hits@1 hits@3 hits@5 hits@1 hits@3 hits@5

TMM 84.9% 84.9% 84.9% 82.8% 82.8% 82.8%
CoreNLP 88.9% 88.9% 88.9% 86.5% 86.5% 86.5%
Bi-LSTM 55.6% 56.0% 61.7% 29.1% 29.4% 31.1%
AQA 65.2% 67.3% 68.8% 37.5% 38.9% 35.6%
CAQA 69.2% 56.1% 68.1% 42.1% 42.8% 49.0%
PJI 98.6% 98.9% 99.0% 97.2% 97.9% 99.1%

Table 1: The overall performance over two datasets.

Three-level Location Performance. Table 2
shows the %hits@5 of two datasets where ques-
tions contain city, district and AOI location enti-
ties, respectively. As shown in the table, no matter
which model we use, city level questions obtain
the best result compared to other two types. The
reason is that the number of cities in the whole
nation is rather small and there is almost no du-
plicate city names among them. However, both
AOI and district names can have a lot of duplica-
tions thus causing ambiguity and noise. Moreover,
due to the hierarchical nature of the location entity,
AOI names appear in different formats, which in-
creases the difficulty of POI retrieval. Therefore,
the template-based method and the end-to-end sim-
ilarity matching method may be far from meet-
ing the real-world demands of POI oriented QA.
Despite the challenges we mentioned above, our
model still outperforms all the baselines on city,
district and AOI questions.

Dataset A Dataset B
Cit. Dis. AOI Cit. Dis. AOI

TMM 94.1% 92.0% 91.3% 93.2% 91.6% 90.2%
CoreNLP 96.0% 93.4% 58.3% 90.3% 90.1% 31.8%
Bi-LSTM 92.1% 76.2% 8.4% 90.9% 62.1% 3.5%
AQA 92.4% 78.5% 9.1% 92.2% 62.8% 9.3%
CAQA 92.9% 79.4% 9.7% 92.6% 63.1% 9.7%
PJI 100% 99.6% 97.3% 99.8% 99.2% 97.0%

Table 2: The %hits@5 rate on questions containing dif-
ferent location entities.

4.3 Proximity-related Term Analysis
Fig 3 shows the %hits@5 with and without
proximity-related terms on Dataset A and B. From
the result we can conclude that all existing base-
lines cannot handle questions with proximity-
related geographic terms. For traditional neural
network QA models, the model has no idea how
important these words are and considers them just
as normal words. As a result, the results returned
do not make sense to the users. Nevertheless, this
problem gets tackled by the distance probability
module in our model. Therefore, our model outper-
forms the baselines when it comes to these kinds
of problems to a great extent.

(a) Dataset A (b) Dataset B

Figure 3: The %hits@5 rate concerning questions with
and without proximity-related terms on two datasets.

5 Conclusion

In this paper, we propose a novel deep learning
framework with joint inference to solve the POI
oriented question answering task. Our main con-
tributions lie in three aspects. First, this model
handles the POI oriented QA with the help of tag
semantic module and distance correlation mod-
ule. Second, by introducing a cross attention based
question embedding structure, we achieve a precise
and flexible representation of questions. Third, the
proposed model can overcome several challenges
of POI oriented QA including POI tag recognition,
proximity-related term processing and diverse dis-
tance correlation. Extensive experiments on two
real-world datasets are carried out to demonstrate
the effectiveness of our model. The result shows
that our approach outperforms all the baselines and
state-of-the-art models.
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