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Abstract

Unlike non-conversation scenes, emotion
recognition in dialogues (ERD) poses more
complicated challenges due to its interactive
nature and intricate contextual information.
All present methods model historical utter-
ances without considering the content of the
target utterance. However, different parts of a
historical utterance may contribute differently
to emotion inference of different target utter-
ances. Therefore we propose Fine-grained
Extraction and Reasoning Network (FERNet)
to generate target-specific historical utterance
representations. The reasoning module effec-
tively handles both local and global sequential
dependencies to reason over context, and up-
dates target utterance representations to more
informed vectors. Experiments on two bench-
marks show that our method achieves com-
petitive performance compared with previous
methods.

1 Introduction

With the development of human-machine interac-
tion (HMI) applications, textual dialogue scenes
appear more frequently. These scenes request ef-
fective and high-performance emotion recognition
systems helping in building empathetic machines
(Young et al., 2018). Therefore, emotion recogni-
tion in dialogues (ERD) is getting growing atten-
tion from both academic and business community.

Different from non-conversation scenes, the
ERD task poses a more complicated challenge of
modeling context-sensitive dependencies. Most of
existing approaches adopt Convolution Neural Net-
work (CNN) (Krizhevsky et al., 2012), followed
by a max-pooling layer to obtain utterance rep-
resentations (Kim, 2014; Torres, 2018; Hazarika
et al., 2018a,b; Majumder et al., 2019; Ghosal et al.,
2019). The process proceeds without the guidance
of the target utterance, thus generated historical

utterance representations are indistinguishable to-
ward different target utterances. Emotion recogni-
tion may fail in cases where historical utterances
express various emotions toward various targets,
which may confuse the emotion recognition of tar-
get utterances. As Figure 1 shows, for different tar-
get utterances B1 and B2, the model should attend
the words “good service” and “bad food” in A1,
separately. In a word, it is desired to pay different
attention to different words of a certain historical
utterance to generate the target-specific historical
utterance representation.

The restaurant where we
had dinner provided [good
service] but [bad food].

😐

What about the food?

I can’t agree with you
more.

😐

😞

😄Yeah, I was impressed by
the service.

𝐴"

𝐴#

𝐵"

𝐵#

Figure 1: A dialogue shows that modeling intricate con-
textual information is crucial for emotion recognition.

In this paper, we propose Fine-grained Extrac-
tion and Reasoning Network (FERNet) to gener-
ate target-specific historical utterance representa-
tions conditioned on the content of target utter-
ances by using the multi-head attention mechanism
(Vaswani et al., 2017), extracting more fine-grained,
relevant and contributing information for emotion
recognition. Besides, we devise the reasoning mod-
ule, which employs historical utterances as a se-
quence of triggers, and updates the representation
of the target utterance to a more informed vector
as it observes historical utterances through time.
In the reasoning process, the module models both
short-term and long-term sequential dependencies
effectively. We demonstrate the effectiveness of
our method on two benchmarks. Experimental re-
sults show that our method achieves competitive
performance compared with previous methods.
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2 Related Work

Primitive approaches deal with the ERD task as
simple solely-sentence emotion recognition task
with no consideration of the historical information
(Joulin et al., 2016; Chen et al., 2016; Yang et al.,
2016; Chatterjee et al., 2019).

To exploit contextual information, Poria et al.
(2017); Huang et al. (2019); Jiao et al. (2019); Haz-
arika et al. (2018a,b); Torres (2018) use RNN ar-
chitecture, Hazarika et al. (2018b,a) use conversa-
tional memory networks (Sukhbaatar et al., 2015),
Torres (2018); Jiao et al. (2019) use attention mech-
anism and Ghosal et al. (2019) uses graph neural
network.

Besides, Majumder et al. (2019); Hazarika et al.
(2018a) propose to keep track of states of individual
speakers throughout the dialogue and Ghosal et al.
(2019) incorporates speaker information into edge
types.

Some of these works consider the context follow-
ing the target utterance such as Luo et al. (2018);
Saxena et al. (2018); Ghosal et al. (2019) and some
variants of Majumder et al. (2019). However, this
condition is quite incompatible with some practical
situations like real-time dialogue systems in which
we possess no future utterances while handling the
target utterance. So in our paper, we only focus
on the setting that only historical utterances can be
utilized.

3 Proposed Model

Each dialogue D consists of two parts denoted as
D = {(U, S)}, where U = [u1, u2, ..., un] is a
sequence of utterances ordered based on their tem-
poral occurrence. S = [s1, s2, ..., sn] denotes cor-
responding speakers and n is the number of utter-
ances in the dialogue. The ERD task aims to predict
Y = [y1, y2, ..., yn], where yi ∈ C (1 ≤ i ≤ n)
denotes the underlying emotion of the utterance ui.
C is the set of candidate emotion categories. The
FERNet consists of four successive modules: fea-
ture extraction module, attention module, reason-
ing module and output module. Figure 2 presents
the overall architecture of the proposed model.

3.1 Feature Extraction Module
We use two multi-layer bidirectional Gated Recur-
rent Unit (bi-GRU) Networks (Tang et al., 2015)
to accumulate contextual information from two di-
rections for each word of target utterances and his-
torical utterances, separately. The inputs consist of

Multi-layer
Bi-GRU

Multi-layer
Bi-GRU

Multi-head
Attention

Reasoning
Module

𝑢"

𝑢#

𝐾
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𝑅""
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Figure 2: The overall architecture of the model.

300 dimensional pre-trained GloVe vectors (Pen-
nington et al., 2014). The k−th contextual word

representation hlk = [
−→
hlk;
←−
hlk] is generated by con-

catenating the hidden states of the k−th time steps
of forward and backward GRU, where l is the num-
ber of layers.

3.2 Attention Module
We utilize multi-head attention mechanism
(Vaswani et al., 2017) to focus on more relevant
parts of each historical utterance according to the
target utterance. We also employ residual connec-
tion (He et al., 2016) followed by layer normal-
ization (Ba et al., 2016) to make model training
easier.

The target-specific representations of historical
utterances are obtained by:

X = Concat(head1, ...headt)W
O (1)

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ) (2)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

where queries Q = R are representations of target
utterances, keys K and values V are contextual
word representations for words of historical utter-
ances. WQ

i ∈ Rd×dk ,WK
i ∈ Rd×dk ,W V

i ∈ Rd×dv

and WO ∈ Rtdv×d are parameter matrices, where
dk is the dimension of queries and keys, dv is the di-
mension of values, d is the dimension of the output
of feature extraction module and t is the number of
heads. X = [x1, x2, ..., xn−1] are target-specific
representations of historical utterances.

3.3 Reasoning Module
The reasoning module takes target-specific histori-
cal utterance representations [x1, x2, ...xn−1] and
target utterance representations R as inputs. Target
utterance representations are updated through time
and layers.

Each unit in this module takes two inputs: R
and xi(1 ≤ i ≤ n− 1). The t−th unit updates R
according to xt by:

zt = α(xt, R) = σ(W z(xt ◦R) + bz) (4)
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rt = β(xt, R) = σ(W r(xt ◦R) + br) (5)

R̃t = ρ(xt, R) = tanh(W h[xt;R] + bh) (6)

Rt = ztrtR̃t + (1− zt)Rt−1 (7)

where zt is the update gate, rt is a reset function,
R̃t is the candidate of updated representation of
target utterance and Rt is the updated representa-
tion after observing the t−th historical utterance.
σ is sigmoid activation, tanh is hyperbolic tangent
activation, ◦ is element-wise vector multiplication,
and [; ] is vector concatenation along the last dimen-
sion. W z ∈ Rd×d, W r ∈ Rd×d, W h ∈ Rd×2d are
weight matrices, bz ∈ Rd, br ∈ Rd, bh ∈ Rd are
bias terms.

Specifically, zt measures the relevance between
the target utterance representation and the tth his-
torical utterance representation for fine-controlled
gating. Compared with global attention computed
over all historical utterances, the gate can be con-
sidered as local attention which models short-term
sequential dependency. rt is a reset function to
determine how much previous information should
be ignored by resetting the candidate of updated
representation of target utterance.

As shown in Sukhbaatar et al. (2015), multi-hop
can perform reasoning over multiple facts more
effectively. So we stack several layers with outputs
of the current layer used as inputs to the next layer.
Besides, to model more abundant information, we
compute

−→
Rl

t and
←−
Rl

t in both forward and backward
directions and add them together to get Rl

t as the
updated representation of the t−th unit in l−th
layer:

Rl
t =
−→
R l

t +
←−
R l

t (8)

Finally, we get the updated representation of
target utterance Rupdate = RL

n−1, where n− 1 and
L are the number of units and the number of layers
in the reasoning module, respectively.

3.4 Output Module
After the feature extraction and reasoning mod-
ules, we obtain the updated representation of target
utterance. To preserve original semantic content,
we concatenate the updated representation and the
original representation together:

Rfinal = [Rupdate;R] (9)

We use a fully connected layer with softmax as
activation to calculate emotion-class probabilities:

P = softmax(W fRfinal + bf ) (10)

where W f ∈ Rdclass×2d is a weight matrix, bf ∈
Rdclass is a bias term and P ∈ Rdclass are emotion-
class probabilities.

4 Experiment

Datasets We perform experiments on two bench-
marks: IEMOCAP (Busso et al., 2008) and AVEC
(Schuller et al., 2012). They are multimodal
datasets involved in two-way dynamic conversa-
tions. In this paper, we only focus on using textual
modality to recognize the emotion. The data distri-
bution is shown in Appendices.
Evaluation Metrics We use accuracy (Acc.), F1-
score (F1) and weighted average F1-socre (Aver-
age) as evaluation metrics for IEMOCAP dataset.
Mean Absolute Error (MAE) and Pearson correla-
tion coefficient (r) are used as metrics for AVEC
dataset.
Baselines We compare the FERNet with following
existing approaches: CNN (Kim, 2014), c-LSTM
(Poria et al., 2017), c-LSTM+Attention (Poria et al.,
2017), Memnet (Ba et al., 2016), CMN (Hazarika
et al., 2018b), DialogueRNN (Majumder et al.,
2019).
Training Details The training details such as
hyper-parameters and settings we used are shown
in Appendices.

4.1 Results

The overall results of experiments are shown in
Table 1. We can see that our model outperforms
baselines significantly on all evaluation metrics of
both datasets. Specifically, our model surpasses
DialogueRNN by 1.69% on weighted average F1-
score. For AVEC dataset, our model lower mean
absolute error by 0.03, 0.027, 0.009 and 0.31 for
valence, arousal, expectancy and power, separately.
We attribute the enhancement to the fundamental
improvement of FERNet, which are generating
target-specific representations of historical utter-
ances and handling both short-term and long-term
sequential dependencies.

4.2 Discussion and Analysis

Parameters We conduct experiments with differ-
ent values of the number of historical utterances
(N ) and the number of layers of reasoning module
(L) on the IEMOCAP dataset. Results are shown in
Figure 4. We observe that as N increases, the per-
formance of the model tends to be improved. This
trend shows that adequate historical information
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methods
IEMOCAP AVEC

Happy Sad Neutral Angry Excited Frustrated Average Valence Arousal Expectancy Power
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 MAE r MAE r MAE r MAE r

CNN 27.22 29.86 57.14 53.83 34.33 40.14 61.17 52.44 46.15 50.09 62.99 55.75 48.92 48.18 0.545 -0.01 0.542 0.01 0.605 -0.01 8.71 0.19
c-LSTM 29.17 34.43 57.14 60.87 54.17 51.81 57.06 56.73 51.17 57.95 67.19 58.92 55.21 54.95 0.194 0.14 0.212 0.23 0.201 0.25 8.90 -0.04

c-LSTM+Attention 30.56 35.63 56.73 62.90 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41 56.32 56.19 0.189 0.16 0.213 0.25 0.190 0.24 8.67 0.10
Memnet 25.72 33.53 55.53 61.77 58.12 52.84 59.32 55.39 51.50 58.30 67.2 59.00 55.72 55.10 0.202 0.16 0.211 0.24 0.216 0.23 8.97 0.05

CMN 25.00 30.38 55.92 62.41 52.86 52.39 61.76 59.83 55.52 60.25 71.13 60.69 56.56 56.13 0.192 0.23 0.213 0.29 0.195 0.26 8.74 -0.02
DialogueRNN∗ 31.25 33.83 66.12 69.83 63.02 57.76 61.76 62.50 61.54 64.45 59.58 59.46 59.33 59.89 0.188 0.28 0.201 0.36 0.188 0.32 8.19 0.31

FERNet 38.89 40.14 72.65 70.22 67.19 61.50 66.47 62.43 68.90 68.21 50.39 58.63 61.80 61.58 0.158 0.44 0.174 0.43 0.179 0.37 7.88 0.36

Table 1: Performance of FERNet compared with baselines on the IEMOCAP dataset and AVEC dataset. Bold font
denotes the best performances. ∗ presents the state-of-the-art method in the setting that only historical utterances
can be utilized.

I’m getting married. [excited]
No way. [excited].                     [1]
No way, when? When, when,
when did it happen? [excited]

[1]Just a couple days ago. [excited]
I can’t believe it. [2]
I never thought you would 
get married. [excited]

[2]I know me neither. [excited] No way , when ? When , when , when did it happen ? <EOS>

Figure 3: Average attention vectors across all attention heads for words of a historical utterance with regard to
different target utterances. [1] shows the attention vector for the sentence ”Just a couple days ago”; [2] shows the
attention vector for the sentence ”I know me either”.

contributes to the performance of emotion recogni-
tion. However, a further increase ofN degrades the
performance of the model. It is mainly due to that
there is too much-unrelated information confusing
the model. As for L, the trend is similar to the
parameter N . Models with hops in the range of 2-8
outperform the single layer variant. However, with
L increasing, the reasoning module deepens and
may cause the gradient vanishing problem which
damages the performance of the model.
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Figure 4: Performance of FERNet with different values
of N and L. In (a), L = 2 and in (b), N = 20.

Ablation Study In order to demonstrate the ef-
fect of each module, we perform ablation stud-
ies. We compare the attention-based model with
the attention-free model and replace the reasoning
module with a memory network. As shown in Ta-
ble 2, attention module and reasoning module both
have a positive impact on model performance.
Case Study and Error Analysis We analyze the
predicted results and find that misclassification of-
ten occurs when utterances are short. For example,
our model classifies “what? ” as “neutral”, but
the label is “excited”. We think it is due to the
lack of visual and audio modality. In this utterance,

methods Acc. F1
FERNet without attention 58.84 58.58

FERNet with memory network 59.77 59.33
FERNet 61.80 61.58

Table 2: Performance of variants of FERNet on the
IEMOCAP dataset. Bold font denotes the best perfor-
mances.

high pitched audio can provide vital information
for recognizing the emotion. Besides, we find our
model misclassifies several “excited” utterances
as “happy” utterances, several “sad” utterances as
“frustrated” utterances, and vice versa. The reason
is that it is hard for the model to distinguish the
subtle difference between these similar emotions.

Besides, we perform qualitative visualization
of the attention module. The dialogue in Figure 3
shows that for different target utterances, the model
allocates different attention to words of a historical
utterance. It demonstrates the effectiveness of the
attention module.

5 Conclusion

In this paper, we propose FERNet to solve the ERD
task. The model generates target-specific historical
utterances according to the content of the target ut-
terance using attention mechanism. The reasoning
module effectively handles both local and global
sequential dependencies to update the original rep-
resentation of the target utterance to a more in-
formed vector. Our model achieves competitive
performance on two benchmarks.
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A Appendices

Dataset Partition # of utterances # of dialogues

IEMOCAP
train 5810 120
test 1623 31

AVEC
train 4368 63
test 1430 32

Table 3: Data distribution of IEMOCAP and AVEC
datasets.

Training Details We use 10% of the training set as
the validation set for hyper-parameters tuning. All
tokens are lowercased with removal of stop words,
symbols and digits, and sentences are zero-padded
to the length of the longest sentence in the dataset.
We alter the weight that each training instance car-
ries when computing the loss to mitigate the influ-
ence of data imbalance. The weights are specific
factors depending on corresponding emotions.

Hyper-parameters IEMOCAP AVEC
Optimizer Adam Adam
Learning rate 0.001 0.001
Batch size 16 16
Bi-GRU layer 2 2
Reasoning module layer 2 2
Historical utterance 30 20
GRU hidden size 150 150
Attention head 4 2
Attention hidden size 256 256

Table 4: Hyper-parameters and settings used for the
two datasets.


