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Abstract

Aspect-level sentiment analysis(ASC) predicts

each specific aspect term’s sentiment polar-

ity in a given text or review. Recent stud-

ies used attention-based methods that can ef-

fectively improve the performance of aspect-

level sentiment analysis. These methods ig-

nored the syntactic relationship between the as-

pect and its corresponding context words, lead-

ing the model to focus on syntactically unre-

lated words mistakenly. One proposed solu-

tion, the graph convolutional network (GCN),

cannot completely avoid the problem. While it

does incorporate useful information about syn-

tax, it assigns equal weight to all the edges

between connected words. It may still incor-

rectly associate unrelated words to the target

aspect through the iterations of graph convo-

lutional propagation. In this study, a graph

attention network with memory fusion is pro-

posed to extend GCN’s idea by assigning dif-

ferent weights to edges. Syntactic constraints

can be imposed to block the graph convolu-

tional propagation of unrelated words. A con-

volutional layer and a memory fusion were ap-

plied to learn and exploit multiword relations

and draw different weights of words to im-

prove performance further. Experimental re-

sults on five datasets show that the proposed

method yields better performance than exist-

ing methods. The code of this paper is avail-

abled at https://github.com/YuanLi95/

GATT-For-Aspect.

1 Introduction

Aspect-level sentiment classification is a fine-

grained subtask in sentiment analysis (Wang et al.,

2019; Peng et al., 2020). Given a sentence and

an aspect that appears in the sentence, ASC aims

to determine the sentiment polarity of that aspect

(e.g., negative, neutral, or positive). For example,

a review of a restaurant “The price is reasonable
although the service is poor.” expresses a positive
sentiment for the price aspect, but also conveys a

negative sentiment for the service aspect, as shown

in Figure 1. Such a technique is widely used to

analyze online posts reviews, mainly from Ama-

zon reviews or Twitter, to help raise the ability to

understand consumer needs or experiences with a

product, guiding a manufacturer towards product

improvement. Aspect-level sentiment classifica-

tion is much more complicated than sentence-level

sentiment classification. ASC task is necessary to

identify the parts of the sentence that describe the

correspondence between multiple aspects. Tradi-

tional methods mostly use shallow machine learn-

ing models with hand-crafted features to build sen-

timent classifiers for the ASC task (Jiang et al.,

2011; Wagner et al., 2014).However, the process

for manual feature engineering is time-consuming

and labor-intensive as well as limited in classifica-

tion performance

Recently, with the development of deep learning

techniques, various attention-based neural models

have achieved remarkable success in ASC. (Wang

et al., 2016; Ma et al., 2017; Chen et al., 2017; Gu

et al., 2018; Tang et al., 2019). However, these

methods ignored the syntactic dependence between

context words and aspects in a sentence. As a result,

the current attention model may inappropriately fo-

cus on syntactically unrelated context words. As

shown in Figure 1, when predicting the emotional

polarity of price, the attention mechanism may fo-

cus on the word poor, which is not related to its

syntax.

To address this issue, Zhang et al. (2019) built a

graph convolutional network (GCN) over a depen-

dency tree to exploit syntactical information and

word dependencies. However, the model assigns

equal weight to the edges connected between words

so that words may mistakenly associate syntacti-

cally unrelated words to the target aspect through it-

erations of graph convolutional propagation. As in-

dicated in Figure 1, after three iterations, both rea-
sonable (yellow lines) and poor (red lines) may be
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The price is resonable although the service is poor

Figure 1: Grammatical Relational Examples.

identified as descriptors of the aspect price, which

is incorrect. As a result, the model will falsely

classify the aspect price as a negative sentiment.

In this paper, a graph attention model with mem-

ory fusion was proposed. This model extends the

idea of graph convolutional networks in two as-

pects. First, the graph attention mechanism is ap-

plied to assign different weights to the edge, so the

syntactical constraints can be imposed to block the

propagation of syntactically unrelated words to the

target aspect. Second, a convolutional operation is

applied to extract local information to exploit multi-

word relations, such as not good and far from per-
fect, which can further improve the performance.

To integrate all features, a memory fusion layer,

which is similar to a memory network, is applied

to draw different weights for words according to

their contribution to the final classification. Experi-

ments are conducted on five datasets demonstrate

how the proposed model outperforms baselines for

aspect-level sentiment analysis.

The remainder of this paper is organized as

follows. Section 2 briefly reviews the existing

works for aspect-level sentiment analysis. Section

3 presents a detailed description of the proposed

graph attention model with memory fusion. Sec-

tion 4 summarizes the implementation details and

experimental results. The conclusions of this study

are finally drawn in Section 5.

2 Related Works

Aspect-level sentiment classification is an impor-

tant branch of sentiment classification, aiming to

identify the sentiment polarity of an aspect target

in a sentence. ASC methods can be divided into

traditional and deep learning methods. Traditional

methods usually used feature-based machine learn-

ing algorithms, such as a feature-based support

vector machine (SVM) (Kiritchenko et al., 2014).

Due to the inefficiency of manually constructed fea-

tures, several neural network methods have been

proposed for aspect-level sentiment analysis (Jiang

et al., 2011), which are mainly based on long short-

term memory (LSTM) (Tang et al., 2016a; Wang

et al., 2020). Tang et al. (2016b) indicated that

the ASC task’s challenge is to identify better the

semantic correlation between context words and

aspect words so that several recent works widely

applied an attention mechanism and achieved good

performance. Ma et al. (2017) used an interac-

tive attention network to obtain a two-way atten-

tion representation of context words and aspect

words. Huang et al. (2018) proposed a joint model

based on an attention mechanism to model aspects

and sentences. Tang et al. (2019) proposed a self-

supervised attention model that can dynamically

update attention weights.

Yao et al. (2019) introduced the graph convo-

lutional network into the sentiment classification

task and achieved good performance. Subsequently,

Zhang et al. (2019) proposed to use GCN on the

dependency tree of a sentence to exploit the long-

range syntactic information for the ASC task.

3 Graph Attention Network with
Memory Fusion

The proposed graph attention network with mem-

ory fusion is mainly composed of the following

four parts: a context encoder, a graph attention

layer, a convolutional layer and a memory fusion

layer, as shown in Figure 2 .The context encoder

employs a vanilla bidirectional LSTM to capture

the textual features. It contains a word embedding

layer and a BiLSTM layer to produce a hidden rep-

resentation of the text. Taking the hidden represen-

tation as input, the graph attention layer (G-ATT)
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Figure 2: The overall architecture of the proposed graph attention network with memory fusion.

is trained on the dependency tree to mine explicit

structural information between words. The convo-

lutional layer was used to extract the local informa-

tion around the sentiment word, which can dynami-

cally deal with non-single word aspects such as not
good and far from perfect, instead of only taking

the average of its vectors. To merge all features,

we adopt a memory fusion layer similar to a mem-

ory network (Tang et al., 2016b), which can assign

different weights to the context words according

to their contribution to the final classification. The

detailed description is presented as follows.

3.1 Context Encoder
Given a sentence x=[x1, x2, · · · , xτ+1, · · · , xτ+m

, · · ·xn] containing n words, the target aspect starts

from the (τ + 1)-th word with a length of m. A

BiLSTM was applied as context encoder, which

can capture long-distance dependencies within the

sentence. We average the hidden representation of

both the forward direction and backward direction

to obtain the contextual representation, defined as,

(�hEi ,�c
E
i ) = LSTM(xi,�h

E
i−1,�c

E
i−1) (1)

(
←
h
E

i ,
←
c
E
i ) = LSTM(xi,

←
h
E

i+1,
←
c
E
i+1) (2)

hi= (
−→
hi ⊕←−

hi)/2 (3)

where ⊕ is an element-wise addition operator;−→
hi ∈ R

dh ,
←−
hi ∈ R

dh and hi ∈ R
dh are

the forward, backward and output representa-

tion, respectively; and dh is the dimension of

hidden state. Thus, the final representation of

the context encoder can be denoted as HE =
[hE1 , h

E
2 , · · · , hEτ+1, · · · , hEτ+m, · · · , hEτ+m] .

3.2 Graph Attention Layer

The graph attention (G-ATT) layer learns syntac-

tically relevant words to the target aspect on the

dependency tree1, which is widely used in several

NLP tasks to effectively identify the relationships

and roles of words. After parsing the given sen-

tence as a dependency tree, the adjacency matrix

was built from the tree topology. It is worth not-

ing that the dependency tree is a directed graph.

Therefore, the graph attention mechanism was ap-

plied with consideration of the direction, but the

mechanism could be adapted to the undirection-

aware scenario. Therefore, we propose a variant

on dependency graphs that are undirectional. The

obtained hidden state HE ∈ R
n×dh was fed into a

stacked G-ATT model, which was performed in a

multilayer fashion with an L graph attention layer.

In practice, the representation in the l-the layer

was not immediately fed into the G-ATT layer. To

enhance the relevance of the context words to the

corresponding aspect, we adopted a position weight

function to the representation of word i in layer l,

1We use spaCy toolkit: https://spacy.io/.
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which is widely used in previous works (Li et al.,

2018; Zhang et al., 2019), defined as,

qi =

⎧⎨
⎩

1− τ+1−i
n 1 ≤ i < τ + 1

0 τ + 1 ≤ i ≤ τ +m
1− i−τ−m

n τ +m < i ≤ n
(4)

ĥli = qih
l
i (5)

where qi ∈ R is the position weight to word i.
In each layer, an attention coefficient αl

ij was

applied to measure the importance between word i
and word j, defined as,

αl
i,j =

exp
(
LeakyReLU(aT [Wl

αĥ
l
i||Wl

αĥ
l
j ])

)

∑
k∈Ni

exp
(
LeakyReLU(aT [Wl

αĥ
l
i||Wl

αĥ
l
j ])

) (6)

where Ni is the set of the neighbor of word i and

Wl
α ∈ R

dh×dh is a shared weight matrix applied to

perform linear transformation to each word in order

to obtain sufficient express ability of high-level

representation. || is the concatenation operator,

a ∈ R
2dh is a weight vector, and the leaky rectified

linear unit (LeakyReLU) is the non-linearity.

To stabilize the learning process of the graph’s

attention, we implement K different attention with

the same parameter settings, which is similar to

the multi-head attention mechanism proposed by

Vaswani et al. (2017). Thus, the final representation

hl+1
i of word i in layer l+1 can be obtained as,

hl+1
i = ReLU(

1

K

K∑
k=1

∑
j∈Ni

αl,k
i,jW

l
kĥ

l
j) (7)

where αl,k
i,j is the k-th attention coefficients

computed by Eq. (6), Wl
k is the corresponding

weight matrix of k-th attention in l-th GAT layer,

and the nonlinear function is ReLU. The final

representation of the L-layer G-ATT is denoted

as HL= [hL1 , h
L
2 , · · · , hLτ+1 · · · , hLτ+m, · · · , hLn ],

hLi ∈ R
dh .

3.3 Convolutional Layer
The convolutional layer (Conv) was applied to ex-

tract local n-gram information which are composed

of multiple sentiment words (e.g, not good and

far from perfect), in order to improve the learning

ability of the n-gram features. The hidden repre-

sentation of context encoder HE is fed into two

convolutional layers. In each layer, we use F con-

volution filters to learn local n-gram features. In a

window of ω words hi:i+ω−1,the filter f -th gener-

ates the feature map cfi as follows,

cfi = ReLU(Wf ◦ hEi:i+ω−1 + bf ) (8)

where ◦ is a convolutional operator, Wf ∈ R
ω×dh

and bf ∈ R
dh respectively denote the weight ma-

trix and bias, ω is the length of the filter, and the

non-linearity is ReLU. By concatenating all fea-

ture maps, the representation for word i will be

hci = [c1i , c
2
i , · · · , cfi , · · · , cFi ]. To ensure that the

shape of the output is consistent with the shape of

the input in the convolutional layer, we set F to

dh and pad each sentence with zero vectors to the

maximum input length in the corpora. Then, we

send the feature maps to the second convolutional

layer, which has a similar structure, to obtain the

final representation of convolutional layer HC =
[hC1 , h

C
2 , · · · , hCτ+1, · · · , hCτ+m, · · ·hCn ], hCi ∈ dh .

3.4 Aspect-Specific Masking

The aspect-specific masking layer aims to learn

aspect-specific content for memory fusion and the

final classification. Therefore, we mask out the

hidden state vectors of the input from the G-ATT

and Conv layer, i.e., HL and HC . Formally, we

set all the vectors of non-aspect words to zero and

leave the vectors of the aspect words unchanged,

defined as,

hi=

{
0 1 ≤ i<τ+1,τ +m < i ≤ n
hi τ+1 ≤ i ≤ τ+m

(9)

The output vector of the G-ATT layer af-

ter the mask operation is HL
masked =

[0, · · · , hLτ+1, · · · , hLτ+m, · · · , 0], which has

perceived contexts around the aspect so both

syntactical dependencies and the long-range

multiword relations can be considered. Sim-

ilarly, the output representation of the con-

volutional layer after the mask operation is

HC
mask= [0, · · · , hCτ+1, · · · , hCτ+m, · · · , 0].

3.5 Memory Fusion

Memory fusion aims to learn the final representa-

tion related to the meaning of aspect words. The

idea is to retrieve significant features that are se-

mantically relevant to the aspect words from the

hidden representation by aligning the vectors of

both G-ATT and Conv to the hidden vectors. For-

mally, we calculate the attention score for the i-th
word in HE and j-th word in HL, defined as,
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Dataset Positive Neutral Negative Total Max Length Mean Length

Twitter Train 1561 3127 1560 6248 43 19
Test 173 346 173 692 39 19

Lap14 Train 994 464 870 2328 81 21
Test 341 169 128 638 70 17

Rest14 Train 2164 637 807 3608 77 18
Test 728 196 196 1120 68 17

Rest15 Train 912 36 256 1204 72 15
Test 326 34 182 542 61 17

Rest16 Train 1240 69 439 1748 72 16
Test 469 30 117 616 77 18

Table 1: The summary of datasets

ei =
n∑

j=1

hLi
T
Wlh

E
j =

τ+m∑
j=τ+1

hLi
T
Wlh

E
j (10)

where Wl ∈ R
dh×dh is a bilinear term that inter-

acts with these two vectors and captures the spe-

cific semantic relations. According to Socher et al.

(2013), such a tensor operator can be used to model

complicated compositions between those vectors.

Therefore, the attention score weight and final rep-

resentation of G-ATT are computed as,

αi =
exp(ei)∑n

k=1 exp(ek)
(11)

sg =
n∑

i=1

αih
E
i (12)

Accordingly, the final representation of the Conv

layer is computed as,

ri =
n∑

j=1

hCi
T
Wch

E
j =

τ+m∑
j=τ+1

hCi
T
Wch

E
j (13)

βi =
exp(ri)∑n

k=1 exp(rk)
(14)

sc =

n∑
i=1

βih
E
i (15)

3.6 Sentiment Classification
After obtaining representation sg and sc, they are

fed into a fully connected layer and then a softmax
layer to generate a probability distribution over the

classes,

ŷ= softmax(Ws[sg||sc]+bs) (16)

where Ws and bs respectively denote the weights

and bias in the output layer. Thus, given a training

set
{
x(t), y(t)

}T

t=1
= 1, where x(t) is a training

sample, y(t) is the corresponding actual sentiment

label, and T is the number of training samples in

the corpus. The training goal is to minimize the

cross-entropy Lcls(θ) defined as,

Lcls(θ)=− 1

T

T∑
t=1

log p(ŷ(t)|x(t); θ)+λ ‖θ‖22 (17)

where θ denotes all trainable parameters. To avoid

overfitting, an L2-regularization λ ‖θ‖22 is also in-

troduced to the loss function in the training phase,

where λ is the decay factor.

4 Experimental Results

This section conducts comparative experiments on

five corpora against several previously proposed

methods for aspect-level sentiment analysis. The

experimental setting and empirical results are then

presented in detail.

4.1 Dataset
To compare the proposed model with other aspect-

level sentiment analysis models, we conduct ex-

periments on the following five commonly used

datasets: Twitter was originally proposed by Dong

et al. (2014) and contains several Twitter posts,

while the other four corpora (Lap14, Rest14,

Rest15, Rest16) were respectively retrieved from

SemEval 2014 task 4 (Pontiki et al., 2014), Se-

mEval 2015 task 12 (Pontiki et al., 2015) and Se-

mEval 2016 Task 5 (Pontiki et al., 2016), which

include two types of data, i.e., reviews of laptops

and restaurants. The statistical descriptions of these

corpora are shown in Table 1. We use accuracy

and Macro-average F1-score as evaluation metrics;

these are commonly used in ASC task (Huang and

Carley, 2019; Zhang et al., 2019). A higher accu-

racy or F1-score indicates better prediction perfor-

mance
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Model Twitter Lap14 Rest14 Rest15 Rest16
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

LSTM 69.56 67.70 69.29 63.09 78.13 67.47 77.37 55.17 86.80 63.88
TD-LSTM 70.81 69.11 70.45 64.78 79.47 69.01 78.23 57.25 87.17 64.89
MemNet 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99

IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21
RAM 69.36 67.30 74.49 71.35 80.23 70.80 78.85 61.97 88.92 68.23
AOA 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21

TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43
ASGCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48

G-ATT-U 73.60 72.12 76.18 72.23 81.59 72.65 81.18 64.07 89.06 71.97
G-ATT-D 73.89 71.82 75.75 71.52 80.89 71.68 80.93 64.03 88.81 72.36

Table 2: Model comparison results (%). In the case of random initialization, the average accuracy of the 3 runs

and the macro F1-score. The best results of its baseline model and our model are shown in bold.

Model Twitter Lap14 Rest14 Rest15 Rest16
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

ASGCN-DG 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
G-ATT-U 73.60 72.12 76.18 72.23 81.59 72.65 81.18 64.07 89.06 71.97

G-ATT-U w/o Pos 73.74 72.00 75.13 71.26 81.82 73.91 80.07 62.42 88.69 69.54
G-ATT-U w/o Mask 73.36 71.47 75.24 70.70 80.15 70.49 79.89 62.78 88.53 70.34
G-ATT-U w/o GAT 73.03 71.04 74.56 71.23 80.21 71.16 80.38 61.31 87.66 68.27
G-ATT-U w/o Conv 73.23 71.22 74.82 71.35 80.86 71.77 80.54 62.02 87.39 69.22

Table 3: Ablation study results (%). Accuracy and macro F1-scores are the average value over 3 runs with random

initialization.

4.2 Implementation Details

To comprehensively evaluate the proposed model,

we selected the following baseline methods, which

are introduced as follows:

• LSTM (Tang et al., 2016a) uses the standard

LSTM model to send the state of the last layer

to the softmax layer to obtain the output of

sentiment probability.

• TD-LSTM (Tang et al., 2016a) connects as-

pect word embedding and context word em-

bedding to obtain the final word embedding

representation, and the two sides of the aspect

word are respectively modeled by LSTM to

obtain the hidden layer representation.

• MemNet (Tang et al., 2016b) consists of a

multilevel memory network, which effectively

retains context and aspect information.

• IAN (Ma et al., 2017) exchanges information

between context and aspect as an interactive

attention model.

• RAM (Chen et al., 2017) learns sentence

representation by layers consisting of an

attention-based aggregation of word features

and a GRU cell with multilayer architecture.

• AOA (Huang et al., 2018) captures the inter-

action between context and aspect words by

jointly modeling aspects and sentences.

• TNet-LFT (Li et al., 2018) increases the re-

tention of context information through a con-

text retention conversion mechanism.

• ASGCN (Zhang et al., 2019) uses external

grammatical information through the graph

convolution neural network, while aspect ob-

tains syntax-related context information.

• G-ATT uses either undirectional (G-ATT-U)

or directional (G-ATT-D) graphs to repre-

sent the parsed tree-structure as the proposed

model.

For all the models, the 300-dimensional GloVe

vector (Pennington et al., 2014) pretrained on 840B

Common Crawl was used as the initial word em-

bedding. Words that do not appear in GloVe were

initialized with a uniform distribution of U (-0.25,

0.25). The hidden layer vectors’ dimensions are all

300, and all model weights are initialized with the

Xavier normalization (Glorot and Bengio, 2010).

RMSprop was used as the optimizer with a learning

rate of 0.001 to train all the models. We set the L2-

regularization decay factor to 1e-4 and the batch

size to 40. The negative input slope of LeakyReLU

in the G-ATT layer is set to 0.2. All aforementioned
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Aspect Model Attention Visualization Prediction Label

OS

ASGCN neutral positive

Conv
positive positive

G-ATT

Cajun

shrimp

ASGCN negative positive

Conv
positive positive

G-ATT

Place

ASGCN neutral negative

Conv
negative negative

G-ATT

Table 4: Visualization of the proposed model.

hyperparameters are selected using a grid-search

strategy. The epoch was set depending on an early

stop strategy. The training processing stops after

five epochs if there is no improvement. The experi-

mental results are obtained by averaging the results

of three random initialization runs.

4.3 Comparative Results

Table 2 shows the comparative results of G-ATT-D

and G-ATT-U against several baselines. As indi-

cated, G-ATT-U outperformed all baseline models

by using F1-score as a criterion. In terms of accu-

racy, except results slightly lower than the TNet-LF

model on Rest16, both G-ATT-D and G-ATT-U

achieved better performance. The rational reason

is that the proposed model can capture both syn-

tactic and local information, thus improving perfor-

mance.

In addition, the improvement of the F1-score of

the proposed model on Rest15 and Rest16 is huge

compared to the baselines, which is 2.1% and 1.5%,

respectively. The possible reason is that the syn-

tactical structure of the texts in Rest15 and Rest16
is more complicated than those in Twitter, Lap14
and Rest14. The performance of directional ver-

sion (G-ATT-D) is slightly higher than the undi-

rectional version (G-ATT-U) on Twitter, Rest15
and Rest16, while performance is slightly lower on

Lap14 and Rest14, indicating an undirectional syn-

tax relationship that is more appropriate on those

datasets.

4.4 Ablation Experiment

Table 3 shows the ablation experiments to investi-

gate further how the models can benefit from each

component. As indicated, removing the position

weight (i.e., G-ATT-U w/o Pos) causes the perfor-

mance on Lap14, Rest15 and Rest16 to decrease.

However, the performance of G-ATT-U w/o Pos

increases F1-score by 1.26% when used on Twit-
ter and Rest14 since the local information is less

important than syntactic. Removing the mask op-
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(a) Twitter (b) Lap14 (c) Rest14

(d) Rest15 (e) Rest16

Figure 3: Effect of the number of G-ATT Layers

eration (i.e., G-ATT-U w/o mask) reduces the per-

formance, which shows that the mask operation

prevents the noise word from entering the final rep-

resentation. Further, Twitter, Lap14, and Rest14
are less syntactical, so the integration of position

weight does not benefit or can even negatively ben-

efit the results.

Besides, it is observed that G-ATT-U w/o Conv is

generally better than G-ATT-U w/o G-ATT, which

shows that the GAT layer benefits for the model

are greater than the Conv layer, indicating that the

contextual syntax-related information is more im-

portant than local information. Compared with

ASGCN-DG, the proposed G-ATT-U w/o Conv

achieved better performance, especially on Twitter
and Rest16, with F1-score improvements of 0.64%

and 1.74%, respectively. This result shows that G-

ATT-U w/o Conv outperformed the ASGCN model

in most cases, indicating that graph attention layers

with different edge weights are more effective than

graph convolution layers with equal edge weights.

4.5 Visualization

Memory fusion can capture both syntax-related

and local information with the attention mecha-

nism. For visualization, we selected three examples

from Lap14 and Rest16 that are significantly im-

proved by the proposed G-ATT model against the

ASGCN-DG model. We conducted a visualization

experiment using a heat map to show the attention

score offered by parameters α and β in Eq.(11) and

Eq.(14), respectively, as shown in Table 4. The

color density is the attention score of each token. A

deeper color indicates that more weight is assigned

to the token according to its contribution to the fi-

nal classification. As indicated, ASGCN allows the

syntactically unrelated words to be associated with

the target aspect by assigning equal weight to the

edge, such as great for OS, good for Cajun shrimp
and not inviting for place. Conversely, G-ATT-U

tends to block graph convolution propagation from

unrelated words to the target aspect by assigned

attention weights to the edges. The convolution

operation can also exploit some explicit structure,

such as not great and not inviting. Such phrases are

expressive and task-specific, thus improve perfor-

mance.

4.6 Number of GAT layers
Since G-ATT involves L layers of graph attention,

we investigate whether the number of layers can

determine the proposed model’s performance. As

indicated, the best performance can be achieved

when L is 2 on Twitter, 7 on Lap14, 3 on Rest14
and 6 on Rest15 and Rest16. When L is greater

than 7, a decreasing trend in both metrics is pre-

sented. As L reaches 10, the model contains too

many parameters and becomes more difficult to

train.

5 Conclusions

In this study, a graph attention network with mem-

ory fusion is proposed for aspect-level sentiment

analysis. A graph attention layer was implemented
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to capture a context word’s syntactic relationship

to the target aspect by learning different weights

for edges to block the propagation from unrelated

words. Moreover, a convolutional layer and a mem-

ory fusion were used to learn the local informa-

tion and draw different weights for context words.

Experimental results show that the G-ATT model

yields better performance than the existing methods

for aspect-based sentiment analysis. Besides, abla-

tion studies and case studies are provided to prove

the effectiveness of the proposed model further. Fu-

ture works will improve the graph attention layer

and dynamic to learn the attention score, so the

proposed model can better integrate syntax-related

context information.
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