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Abstract

Abstractive community detection is an im-
portant spoken language understanding task,
whose goal is to group utterances in a con-
versation according to whether they can be
jointly summarized by a common abstractive
sentence. This paper provides a novel ap-
proach to this task. We first introduce a neural
contextual utterance encoder featuring three
types of self-attention mechanisms. We then
train it using the siamese and triplet energy-
based meta-architectures. Experiments on the
AMI corpus show that our system outperforms
multiple energy-based and non-energy based
baselines from the state-of-the-art. Code and
data are publicly available1.

1 Introduction

Today, large amounts of digital text are generated
by spoken or written conversations, let them be
human-human (customer service, multi-party meet-
ings) or human-machine (chatbots, virtual assis-
tants). Such text comes in the form of transcrip-
tions. A transcription is a list of time-ordered text
fragments called utterances. Abstractive summa-
rization of conversations is an open problem in
NLP. Previous work (Mehdad et al., 2013; Oya
et al., 2014; Banerjee et al., 2015; Shang et al.,
2018) decomposes this task into two subtasks a
and b as shown in Fig. 1.

Subtask a, or Abstractive Community Detection
(ACD), is the focus of this paper. It consists in
grouping utterances according to whether they can
be jointly summarized by a common abstractive
sentence (Murray et al., 2012). Such groups of ut-
terances are called abstractive communities. Once
they are obtained, an abstractive sentence is gen-
erated for each group (subtask b), thus forming
the final summary. ACD includes, but is a more

1https://bitbucket.org/guokan_shang/
abscomm
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Figure 1: Abstractive summarization of conversations.

general problem than, topic clustering. Indeed, as
shown in Fig. 2, communities should capture more
complex relationship than simple semantic similar-
ity. Also, two utterances may be part of the same
community even if they are not close to each other
in the transcription. Finally, a given utterance may
belong to more than one community, which results
in overlapping groupings (e.g., A and D in Fig. 2),
or be a singleton community (B in Fig. 2).

In this paper, we depart from previous work
and argue that the ACD subtask should be bro-
ken down into two steps, a1 and a2 in Fig. 1.
That is, summary-worthy utterances should first
be extracted from the transcription (a1), and then,
grouped into abstractive communities (a2). This
process is more consistent with the way humans
treat the summarization task. E.g., during the cre-
ation of the AMI corpus (McCowan et al., 2005),
annotators were first asked to extract summary-
worthy utterances from the transcription, and then
to link the selected utterances to the sentences
in the abstractive summary (links in Fig. 2),
i.e., create communities. Abstractive summaries
comprise four sections: ABSTRACT, ACTIONS,
PROBLEMS, and DECISIONS. Step a1 plays an
important filtering role, since in practice, only a
small part of the original utterances are used to con-
struct the abstractive communities (17% on average
for AMI). However, this step is closely related to ex-
tractive summarization, which has been extensively
studied in the conversational domain (Murray et al.,

https://bitbucket.org/guokan_shang/abscomm
https://bitbucket.org/guokan_shang/abscomm
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UI: But what if we ha what if we had like a Spongy
sort of like stress balley kinda [disfmarker]

PM: If you have like that stress ball material kind 
of as what you’re actually holding in your hand,
PM: and then there’s more of a hard plastic thing 
where that thing is.
PM: And on that hard plastic thing you can change
either the colour or the fruit or vegetable that’s 
on there.

ME: see you’re thinking, it’s weird, you’re thinking
the opposite of me

ME: Because I was thinking if you have a cover for
the squashy bit,

UI: oh so so you’re saying the squishy part’s like
detachable,
UI: so so maybe one you know [disfmarker] you 
can have like the broccoli squishy thing, and then
you could have like the banana squishy thing

PM: Oh when we move on, you two are going to 
be playing with playdough.

ABSTRACT
Some part of the casing will be made of a spongy
material.
...

ACTIONS
The Project Manager instructed the User Interface 
Designer and the Industrial Designer to construct 
the prototype.
...

DECISIONS
The remote will feature a changeable outer casing.
...

PROBLEMS
The group wanted to include a changeable outer 
casing but could not decide whether the spongy
or the hard plastic component should be the 
removable casing.
...

⬇time

AA

BB

CC

DD

⬆

Figure 2: Example of ground truth human annotations from the ES2011c AMI meeting. Successive grey nodes on the left
denote utterances in the transcription. Black nodes correspond to the utterances judged important. Sentences (e.g., A, B, C, D)
from the abstractive summary are shown on the right. All utterances linked to the same abstractive sentence form one community.

2005; Garg et al., 2009; Tixier et al., 2017).
Rather, we focus in this paper on the rarely ex-

plored a2 utterance clustering step, which we think
is an important spoken language understanding
problem, as it plays a crucial role of bridge be-
tween two major types of summaries: extractive
and abstractive.

2 Departure from previous work

Prior work performed ACD either in a supervised
(Murray et al., 2012; Mehdad et al., 2013) or un-
supervised way (Oya et al., 2014; Banerjee et al.,
2015; Singla et al., 2017; Shang et al., 2018).

In the supervised case, Murray et al. (2012) train
a logistic regression classifier with handcrafted fea-
tures to predict extractive-abstractive links, then
build an utterance graph whose edges represent the
binary predictions of the classifier, and finally ap-
ply an overlapping community detection algorithm
to the graph. Mehdad et al. (2013) add to the pre-
vious approach by building an entailment graph
for each community, where edges are entailment
relations between utterances, predicted by a SVM
classifier trained with handcrafted features on an
external dataset. The entailment graph allows less
informative utterances to be eliminated from each
community.

On the other hand, unsupervised approaches to
ACD do not make use of extractive-abstractive
links. Oya et al. (2014); Banerjee et al. (2015);
Singla et al. (2017) assume that disjoint topic seg-
ments (Galley et al., 2003) align with abstrac-
tive communities, while Shang et al. (2018) use
the classical vector space representation with TF-

IDF weights, and apply k-means to the LSA-
compressed utterance-term matrix.

To sum up, prior ACD methods either train multi-
ple models on different labeled datasets and heavily
rely on handcrafted features, or are incapable of
capturing the complicated structure of abstractive
communities described in the introduction.

Motivated by the recent success of energy-based
approaches to similarity learning tasks such as
face verification (Schroff et al., 2015) and sentence
matching (Mueller and Thyagarajan, 2016), we in-
troduce in this paper a novel utterance encoder, and
train it within the siamese (Chopra et al., 2005)
and triplet (Hoffer and Ailon, 2015) energy-based
meta-architectures. Our final network is able to
accurately capture the complexity of abstractive
community structure, while at the same time, it is
trainable in an end-to-end fashion without the need
for human intervention and handcrafted features.
Our contributions are threefold: (1) we formalize
ACD, a crucial subtask for abstractive summariza-
tion of conversations, and publicly release a version
of the AMI corpus preprocessed for this subtask,
to foster research on this topic, (2) we propose one
of the first applications of energy-based learning
to spoken language understanding, and (3) we in-
troduce a novel utterance encoder featuring three
types of self-attention mechanisms and taking con-
textual and temporal information into account.

3 Energy framework

Energy-Based Modeling (EBM) (LeCun and
Huang, 2005; Lecun et al., 2006) is a unified frame-
work that can be applied to many machine learning
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Figure 3: Three EBM architectures. When all Gs
and W s are equal, (b) and (c) correspond to the
siamese/triplet cases.

problems. In EBM, an energy function assigns a
scalar called energy to each pair of random vari-
ables (X,Y ). The energy can be interpreted as the
incompatibility between the values of X and Y .
Training consists in finding the parameters W ∗ of
the energy function EW that, for all (Xi, Y i) in
the training set S of size P , assign low energy to
compatible (correct) combinations and high energy
to all other incompatible (incorrect) ones. This is
done by minimizing a loss functional2 L:

W ∗ = argmin
W∈W

L(EW (X,Y ),S) (1)

For a given X , prediction consists in finding the
value of Y that minimizes the energy.

3.1 Single architecture

In the EBM framework, a regression problem can
be formulated as shown in Fig. 3a, where the input
X is passed through a regressor model GW and
the scalar output is compared to the desired out-
put Y with a dissimilarity measure D such as the
squared error. Here, the energy function is the loss
functional to be minimized.

L =
1

P

P∑
i=1

EW (Xi, Y i) =
1

P

P∑
i=1

‖GW (Xi)−Y i‖2 (2)

3.2 Siamese architecture

In the regression problem previously described, the
dependence between X and Y is expressed by a
direct mapping Y = f(X), and there is a single
best Y ∗ for every X . However, when X and Y
are not in a predictor/predictand relationship but
are exchangeable instances of the same family of
objects, there is no such mapping. E.g., in para-
phrase identification, a sentence may be similar

2the loss functional is passed the output of the energy
function, unlike a loss function which is directly fed the output
of the model.

to many other ones, or, in language modeling, a
given n-gram may be likely to be followed by many
different words.

Thereby, Lecun et al. (2006) introduced EBM for
implicit regression or constraint satisfaction (see
Fig. 3b), in which a constraint that X and Y must
satisfy is defined, and the energy function measures
the extent to which that constraint is violated:

EW1,W2(X,Y ) = D(GW1(X), GW2(Y )) (3)

where GW2 and GW1 are two functions parame-
terized by W1 and W2. When GW1 = GW2 and
W1 = W2, we obtain the well-known siamese ar-
chitecture (Bromley et al., 1994; Chopra et al.,
2005), which has been applied with success to
many tasks, including sentence similarity (Mueller
and Thyagarajan, 2016).

Here, the constraint is determined by a
collection-level set of binary labels {Ci}Pi=1. Ci =
0 indicates that (Xi, Y i) is a genuine pair (e.g., two
paraphrases), while Ci = 1 indicates that (Xi, Y i)
is an impostor pair (e.g., two sentences with differ-
ent meanings).

The function GW projects objects into an em-
bedding space such that the defined dissimilarity
measure D (e.g., Euclidean distance) in that space
reflects the notion of dissimilarity in the input space.
Thus, the energy function can be seen as a metric
to be learned.
We experiment with deep neural network encoders
as GW , and, following (Mueller and Thyagarajan,
2016), we adopt the exponential negative Manhat-
tan distance as dissimilarity measure and the mean
squared error as loss functional:

EW (X,Y ) = 1− exp(−‖GW (X)−GW (Y )‖1) (4)

L =
1

P

P∑
i=1

‖EW (Xi, Y i)− Ci‖2 (5)

3.3 Triplet architecture
The triplet architecture (Schroff et al., 2015; Hoffer
and Ailon, 2015; Wang et al., 2014), as can be seen
in Fig. 3c, is a direct extension of the siamese archi-
tecture that takes as input a triplet (X,Y, Z) in lieu
of a pair (X,Y ). X , Y , and Z are referred to as the
positive, anchor, and negative objects, respectively.
X and Y are similar, while both being dissimilar
to Z. Learning consists in jointly minimizing the
positive-anchor energy EW (Xi, Y i) while maxi-
mizing the anchor-negative energy EW (Y i, Zi).

Here, we use the softmax triplet loss (Hoffer and
Ailon, 2015) as our loss functional:
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L =
1

2P

P∑
i=1

(
‖ne+ − 0‖2 + ‖ne− − 1‖2

)
(6)

ne+ =
eEW (Xi,Y i)

eEW (Xi,Y i) + eEW (Y i,Zi)
(7)

ne− =
eEW (Y i,Zi)

eEW (Xi,Y i) + eEW (Y i,Zi)
(8)

where ne stands for normalized energy, and the
dissimilarity measure is the Euclidean distance, i.e.,
EW (Xi, Y i) = ‖GW (Xi) − GW (Y i)‖2. Essentially,
the softmax triplet loss is the mean squared error
between the normalized energy vector [ne+, ne−]
and [0, 1]. We justify our choice of loss functionals
in App. F.

3.4 Sampling procedures
We sample tuples from the ground truth abstractive
communities to train our utterance encoder GW
under the siamese and triplet meta-architectures as
follows.
Pair sampling. All utterances belonging to the
same community are paired as genuine pairs, while
impostor pairs are any two utterances coming from
different communities.
Triplet sampling. Utterances from the same com-
munity provide positive and anchor items, while
the negative item is taken from any other commu-
nity.

4 Proposed utterance encoder

Notation. The time t (as superscript) denotes the
position of a given utterance in the conversation of
length T , and the position i (as subscript) denotes
the position of a token within a given utterance of
length N . E.g., ut1 is the representation of the first
token of Ut, the tth utterance in the transcription.
Word encoder. As shown in the upper right cor-
ner of Fig. 4, we obtain uti by concatenating the
pre-trained vector of the corresponding token with
the discourse features of Ut (role, position and di-
alogue act), and passing the resulting vector to a
dense layer.
Utterance encoder. As shown in the center of
Fig. 4, we represent Ut as a sequence of N d-
dimensional token representations

{
ut1, . . . ,u

t
N

}
.

In addition, because there is a strong time depen-
dence between utterances (see Fig. 2), we in-
form the model about the preceding and follow-
ing utterances when encoding Ut. To accom-
plish this, we prepend (resp. append) to Ut a
context vector containing information about the

previous (resp. next) utterances, finally obtain-
ing Ut =

{
utpre,u

t
1, . . . ,u

t
N ,u

t
post

}
∈ R(N+2)×d.

We then use a non-stacked bidirectional Recur-
rent Neural Network (RNN) with Gated Recurrent
Units (GRU) (Cho et al., 2014) to transform Ut

into a sequence of annotations Ht ∈ R(N+2)×2d.
In practice, the pre and post-context vectors in-

directly initialize the left-to-right and right-to-left
RNNs with information about the utterances pre-
ceding and following Ut. This is similar in spirit to
the warm-start method of Wang et al. (2017), that
directly initializes the hidden states of the RNNs
with the context vectors.
Self-attention. We then pass the annotations Ht to
a self-attention mechanism (Vaswani et al., 2017;
Lin et al., 2017). More precisely, Ht go through
a dense layer and the output is compared via dot
product with a trainable vector uγ , initialized ran-
domly. Then, a probability distribution over the
N + 2 tokens in Ut is obtained via a softmax:

γγγt = softmax(uγ · tanh(WγH
t)) (9)

The attentional vector for Ut is finally computed
as a weighted sum of its annotations, and, as shown
in Fig. 4, is finally passed to a dense layer to obtain
the utterance embedding ut ∈ Rdf :

ut = dense

(
N+2∑
i=1

γtih
t
i

)
(10)

uγ can be interpreted as a learned representation
of the “ideal word”, on average. The more similar
a token vector is to this representation, the more
attention the model pays to the token.
Context encoder: level 1. The pre and post-
context vectors that we prepend and append to Ut

are obtained by aggregating information from the
C utterances preceding and following Ut:

utpre ← aggregatepre
({

Ut−C , . . . ,Ut−1}) (11)

utpost ← aggregatepost
({

Ut+1, . . . ,Ut+C}) (12)

where C, the context size, is a hyperparameter.
Since utpre and utpost will become part of utterance
Ut which is a sequence of token vectors, and fed to
the RNN, we need them to live in the same space as
any other token vector. This forbids the use of any
nonlinear or dimension-changing transformation
in aggregate, such as convolutional or recurrent
operations. Therefore, we use self-attention only.
More precisely, we propose a two-level hierarchical
architecture that makes use of a different type of
self-attention at each level (see left part of Fig. 4).
The pre and post-context encoders share the exact
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utterance encoder

𝑢1𝑡−𝐶𝑢2𝑡−𝐶 𝑢𝑁𝑡−𝐶… 𝑢1𝑡−1𝑢2𝑡−1 𝑢𝑁𝑡−1…

…

𝑢1𝑡−2𝑢2𝑡−2 𝑢𝑁𝑡−2…
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pre-context encoder (CEpre)

 α
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 γ

content-aware self-attention

time-aware self-attention
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𝑢2𝑡
WE WE

…
CEpre CEpost

𝑢𝑝𝑜𝑠𝑡𝑡
𝑈𝑡

dense

Figure 4: Our proposed utterance encoder GW . Only the pre-context encoder is shown. C is the context size.

same architecture, so we only describe the pre-
context encoder in what follows.
Content-aware self-attention. At level 1, we apply
the same attention mechanism to each utterance in{
Ut−C , . . . ,Ut−1}. E.g., for Ut−1:

αααt−1 = softmax

(
uα · tanh

(
WαU

t−1 +W′
N∑
i=1

uti

))
(13)

This mechanism is the same as in Eq. 9, except for
two differences. First, we operate directly on the
matrix of token vectors of the previous utterance
Ut−1 rather than on RNN annotations. Second,
there is an extra input that consists of the element-
wise sum of the token vectors of the current ut-
terance Ut. The latter modification is inspired by
the coverage vectors used in translation and sum-
marization to address under(over)-translation and
repetition, e.g., (Tu et al., 2016; See et al., 2017). In
our case, we hope that by letting the model know
about the tokens in the current utterance Ut, it
will be able to extract complementary -rather than
redundant- information from its context, and thus
produce a richer embedding.

To recapitulate, the content-aware attention
mechanism transforms the sequence of utterance
matrices

{
Ut−C , . . . ,Ut−1} ∈ RC×N×d into a

sequence of vectors
{
ut−C , . . . ,ut−1

}
∈ RC×d.

These vectors are then aggregated into a single pre-
context vector utpre ∈ Rd as described next.

Note that since there is no inherent difference
between preceding and following utterances3, we
use the same content-aware self-attention mecha-
nism for the pre and post contexts. This also gives
us a more parsimonious and faster model. One
should note, however, that the pre and post-context
encoders still differ in terms of their time-aware
attention mechanisms at level 2, described next.

3indeed, the latter become the former as we slide the win-
dow over the transcription

Context encoder: level 2. As can be seen in Fig.
2, two utterances close to each other in time are
much more likely to be related (e.g., adjacency
pair, elaboration...) than any two randomly se-
lected utterances. To enable our model to cap-
ture such time dependence, we use the trainable
universal time-decay attention mechanism of
Su et al. (2018).
Time-aware self-attention. The mechanism com-
bines three types of time-decay functions via
weights wi. The attentional coefficient for ut−1

is:

βt−1 = w1β
convt−1

+ w2β
lint−1

+ w3β
conct−1

(14)

=
w1

a(dt−1)b
+ w2[ed

t−1 + k]+ +
w3

1 +
(
dt−1

D0

)l
where [∗]+=max(∗, 0) (ReLU), dt−1 is the offset

between the positions of Ut−1 and Ut, i.e., dt−1 =

|t − (t − 1)| = 1, and the wi’s, a, b, e, k, D0, and l
are scalar parameters learned during training.
The convex (conv), linear (lin), and concave
(conc) terms respectively assume the strength of
dependence to weaken rapidly, linearly, and slowly,
as the distance in time increases. The post-context
mechanism can be obtained by symmetry. It has
different parameters.

5 Community detection

Once the utterance encoder GW presented in Sec-
tion 4 has been trained within the siamese or triplet
meta-architecture presented in Section 3, it is used
to project the summary-worthy utterances from a
given test transcription to a compact embedding
space. We assume that if training was successful,
the distance in that space encodes community struc-
ture, so that a basic clustering algorithm such as
k-means (MacQueen, 1967) is enough to capture it.
However, since we need to detect overlapping com-
munities, we use a probabilistic version of k-means,
the Fuzzy c-Means (FCM) algorithm (Bezdek et al.,
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1984). FCM returns a probability distribution over
all communities for each utterance. More details
are provided in App. E.

6 Experimental setup

6.1 Dataset
We experiment on the AMI corpus (McCowan et al.,
2005), with the manual annotations v1.6.2. The cor-
pus contains data for more than 100 meetings, in
which participants play 4 roles within a design team
whose task is to develop a prototype of TV remote
control. Each meeting is associated with the anno-
tations described in the introduction and shown in
Fig. 2. There are 2368 unique abstractive commu-
nities in total, whose statistics are shown in Table
1. We adopt the officially suggested scenario-only
partition4, which provides 97, 20, and 20 meetings
respectively for training, validation and testing. We
use manual transcriptions, and do not apply any par-
ticular preprocessing except filtering out specific
ASR tags, such as vocalsound.

type abstract action problem decision total
unique 1147 247 380 594 2368

disjoint 528 124 69 45 766
overlapping 349 17 163 149 678

singleton 49 162 38 244 493

Table 1: Statistics of abstractive communities.

6.2 Baselines
Full baseline details are provided in App. B.
• Encoders. First, we evaluate our utterance en-
coder against two encoders that are trained within
the energy framework: (1) LD (Lee and Dernon-
court, 2016), a sequential sentence encoder devel-
oped for dialogue act classification; and (2) HAN
(Yang et al., 2016), a hierarchical self-attentive net-
work for document embedding. Note that to be fair,
we ensure that both LD and HAN have access to
context (see details in App. B).
We also compare our full pipeline against unsuper-
vised and supervised systems.
• Unsupervised systems. In (1) tf-idf, we com-
bine the TF-IDF vectors of the current utterance
and the context utterances, each concatenated
with their discourse features, and apply FCM. In
(2) w2v, we repeat the same approach with the
word2vec centroids of the words in each utterance.
We also compare our full pipeline against LCseg
(Galley et al., 2003), a lexical-cohesion based topic

4http://groups.inf.ed.ac.uk/ami/
corpus/datasets.shtml

segmenter that directly clusters utterances without
computing embeddings.
• Supervised systems. Finally, here, we use an ap-
proach similar to that of Murray et al. (2012). More
precisely, we train a MLP to learn abstractive links
between utterances, and then apply the CONGA
community detection algorithm to the utterance
graph.

We also considered 4 variants of our model: (1)
CA-S: we replace the time-aware self-attention
mechanism of the context encoder with basic self-
attention. (2) S-S: we replace both the content-
aware and the time-aware self-attention mech-
anisms of the context encoder with basic self-
attention. (3) (0,0): our model, without using the
contextual encoder. (4) (3,0): our model, using
only pre-context, with a small window of 3, to
enable fair comparison with the LD baseline.

6.3 Training details

Word encoder. Discourse features consist of two
one-hot vectors of dimensions 4 and 16, respec-
tively for speaker role and dialogue act. The po-
sitional feature is a scalar in [0, 1], indicating the
normalized position of the utterance in the tran-
scription. We used the pre-trained vectors learned
on the Google News corpus with word2vec by
(Mikolov et al., 2013), and randomly initialized
out-of-vocabulary words (1645 out of 12412). As
a preprocessing step, we reduced the dimensional-
ity of the pre-trained word vectors from 300 to 21
with PCA, in order to give equal importance to dis-
course and textual features. In the end, tokens are
thus represented by a d = 42-dimensional vector.
Layer sizes. For our model, and the LD and HAN
baselines, we set df = 32 (output dimension of the
final dense layer).
LD. We set d1=3 and d2=0, which is very close to
(2,0), the best configuration reported in the original
paper.
HAN. Again, for the sake of fairness, we give the
HAN baseline access to contextual information, by
feeding it the current utterance surrounded by the
Cb preceding and Cb following utterances in the
transcription, where Cb denotes the best context
size reported in Section 7.
Training details. The exact same token represen-
tations and settings were used for our model, its
variants, and the baselines. Models were trained
on the training set for 30 epochs with the Adam
(Kingma and Ba, 2015) optimizer. The best epoch

http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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was selected as the one associated with the lowest
validation loss. Batch size and dropout (Srivas-
tava et al., 2014) were set to 16 and 0.5. Dropout
was applied to the word embedding layer only. To
account for randomness, we average results over
10 runs. Also, following (Hoffer and Ailon, 2015;
Liu et al., 2019), we use a different, small subset
of all possible triplets for training at each epoch
(more precisely, 15594 triplets). This intelligently
maximizes data usage while preventing overfitting.
To enable fair comparison with the siamese ap-
proach, 15594 genuine and 15594 impostor pairs
were sampled at the beginning of each epoch, since
we consider that one triplet essentially equates one
genuine pair and one impostor pair.
Performance evaluation. We evaluate perfor-
mance at the distance and the clustering level, us-
ing respectively precision, recall, and F1 score at
k, and the Omega Index (Collins and Dent, 1988)
following the previous ACD work of Murray et al.
(2012). For P, R, and F1, we evaluate the quality
of the ranking of the closest utterances to a given
query utterance. We use a fixed k=10 and also a
variable k (denoted as k=v), where k is equal to
the size of the community of the query utterance
minus one. In that case, P=R=F1. More details and
examples are given in Appendices C and D.

For the Omega Index, we report results with
a fixed number of communities |Q|=11, and also
a variable |Q| (|Q|=v), where |Q| is equal to the
number of ground truth communities. More details
and examples are given in App. C.

Due to the stochastic nature of the FCM algo-
rithm, we select the run yielding the smallest ob-
jective function value over 20 runs.

7 Results

Context sizes. Larger contexts bring richer infor-
mation, but increase the risk of considering un-
related utterances. Using our proposed encoder
within the triplet meta-architecture, we tried dif-
ferent values of C on the validation set, under two
settings: (pre,post) = (C, 0), and (pre,post) =
(C,C). Results are shown in Fig. 5. We can ob-
serve that increasingC always brings improvement,
with diminishing returns. Results also clearly show
that considering the following utterances in addi-
tion to the preceding ones is useful. Note that the
curves look similar for F1@k = 10. In the end,
we selected (11,11) as our best context sizes.
Quantitative results. Final test set results are

0 3 5 7 9 11 13

0.48

0.49

0.50

0.51

0.52

with pre context only
with pre and post contexts

Figure 5: Impact of context size on the validation P@k = v,
for our model trained within the triplet meta-architecture.

shown in Table 2. All variants of our model sig-
nificantly outperform LD. While HAN is much
stronger than LD, our model and its variants using
best context sizes manage to outperform it every-
where, except in the siamese/P@k=v case (row j).
One of the reasons for the superiority of our utter-
ance encoder is probably that it considers contex-
tual information while encoding the current utter-
ance, while HAN and LD take as input the context
utterances together with the current utterance, with-
out distinguishing between them. Moreover, we
use an attention mechanism dedicated to temporal-
ity, whereas HAN is only able to capture an implicit
notion of time through the use of recurrence (RNN),
and LD, with its dense layers, completely ignores it.
Also, all variants of our model using best context
sizes (11,11) outperform the ones using reduced
(3,0) or no (0,0) context, regardless of the meta-
architecture. This confirms the value added by our
context encoder.

For siamese, our model outperforms its two vari-
ants (CA-S and S-S) for all metrics, indicating that
both the content-aware and the time-aware self-
attention mechanisms are useful. However, it is in-
teresting to note that when training under the triplet
configuration, the CA-S variant of our model is bet-
ter, suggesting that in that case, the content-aware
mechanism is beneficial, but the time-aware one is
not.

LCseg (row m) and tf-idf (11,11) (row n3) are
the best of all (un)supervised baseline systems, but
both perform significantly worse than all energy-
based approaches, highlighting that training with
the energy framework is beneficial. In terms of
Omega Index, supervised baseline systems are log-
ically better than unsupervised ones.

w2v generally outperforms tf-idf when there
is no context (rows k1,l1,n1,o1) or short con-
text (k2,l2,n2,o2), but not with large contexts
(k3,l3,n3,o3). Results also show that overall, using



320

(pre, P P R F1 Omega index ×100
post) @k = v @k = 10 |Q| = v |Q| = 11

a1) our model (0, 0) 54.59 46.05 62.45 43.18 49.09 48.81
a2) our model (3, 0) 55.17 46.17 62.80 43.25 49.78 49.70
a3) our model (11, 11) 58.58 46.73 63.82 43.83 49.90 49.28

Triplet b) our model (CA-S) (11, 11) 59.52? 46.98? 64.01? 44.06? 50.11 49.73
c) our model (S-S) (11, 11) 58.96 46.81 63.65 43.87 49.59 49.88
d) LD (3, 0) 52.04 44.82 60.41 41.82 48.70 48.14
e) HAN (11, 11) 58.72 45.76 62.60 42.89 49.32 48.88

f1) our model (0, 0) 53.01 45.10 60.97 42.12 50.56 49.65
f2) our model (3, 0) 53.78 45.54 61.33 42.48 51.01 50.00
f3) our model (11, 11) 56.64 46.47 62.54 43.40 52.44? 51.88?

Siamese g) our model (CA-S) (11, 11) 56.46 46.08 61.92 43.02 51.60 50.98
h) our model (S-S) (11, 11) 55.68 45.64 61.17 42.53 52.26 51.11
i) LD (3, 0) 52.13 44.83 60.85 41.86 51.18 50.70
j) HAN (11, 11) 58.54 45.72 61.55 42.74 50.51 49.82

k1) tf-idf (0, 0) 29.28 26.67 34.69 24.19 13.12 13.66
k2) tf-idf (3, 0) 34.77 30.27 40.83 27.79 10.22 10.17
k3) tf-idf (11, 11) 58.94 43.94 61.36 41.45 38.09 39.47

Unsupervised l1) w2v (0, 0) 29.02 27.46 37.39 25.11 13.89 13.50
l2) w2v (3, 0) 34.11 29.92 39.55 27.32 10.61 10.77
l3) w2v (11, 11) 58.30 44.08 61.59 41.59 37.75 38.28
m) LCSeg - - - - - 38.98 41.57

n1) tf-idf (0, 0) - - - - 25.04 25.14
n2) tf-idf (3, 0) - - - - 27.33 26.95

Supervised n3) tf-idf (11, 11) - - - - 45.26 44.91
o1) w2v (0, 0) - - - - 25.32 25.25
o2) w2v (3, 0) - - - - 29.14 29.02
o3) w2v (11, 11) - - - - 43.31 43.08

Table 2: Results (averaged over 10 runs). ?: best score per column. Bold: best score per section. -: does not apply
as the method does not produce utterance embeddings.

larger contexts always brings improvement.

Qualitative results. We visualize in App. A that
the three self-attention mechanisms behave in a
cooperative manner to produce a meaningful utter-
ance representation. We also inspect the closest
utterances to a given query utterance in App. D.
We also visualize the time-aware self-attention co-
efficients in Fig. 6, and find that interestingly, the
distributions over the pre and post-context are not
symmetric. Indeed, only the utterances immedi-
ately following Ut (t+ 1→ t+ 5) seem to matter,
while the attention weights are much more uniform
across the utterances preceding Ut. This suggests
that in dialogues, considering a long history of
preceding utterances helps understanding the cur-
rent one. Overall, the three terms (see Eq. 14)
altogether do produce a universal function that
decreases as time distance increases, which is in
accordance with intuition.

Simplified task. Finally, we also experimented on
a much simpler task, where only the communities
of type ABSTRACT were considered. This makes
ACD much simpler, because most of the overlap-
ping communities are of the other types (see Table
1). For this simplified task, we have 1147 unique

-1-2-3-4-5-6-7-8-9-10-11 t +1 +2 +3 +4 +5 +6 +7 +8 +9+10+11
0.00
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Figure 6: Normalized time-aware self-attention weights for
pre and post-contexts, averaged over 10 runs.

communities, of which 78.99% are disjoint. our
model achieves 72.09 in terms of P@k = v and
55.67 in terms of Omega Index when |Q| = v.
P,R, F1@k = 15 are respectively equal to 55.07,
74.37, and 54.00, and the Omega Index is 54.30
when |Q| = 8.

8 Conclusion

This paper proposes one of the first applications of
energy-based learning to ACD. Using the siamese
and triplet meta-architectures, we showed that our
novel contextual utterance encoder learns better dis-
tance and communities than state-of-the-art com-
petitors.
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Veit Schwämmle and Ole Nørregaard Jensen. 2010. A
simple and fast method to determine the parameters
for fuzzy c–means cluster analysis. Bioinformatics,
26(22):2841–2848.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. ACL.

Guokan Shang, Wensi Ding, Zekun Zhang, An-
toine Tixier, Polykarpos Meladianos, Michalis Vazir-
giannis, and Jean-Pierre Lorré. 2018. Unsuper-
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-11 ID: And we'll need to custom desi design a circuit board ,

-10 ID: because the circuit board has to take the button input and send it to ...

-9 ID: But once we come up with a design we'll send it to the circuit ...

-8 ID: Um , standard parts include the buttons and the wheels , um the iPod-style ...

-7 ID: The infrared LED is actually gonna be included in the circuit board that comes ...

-6 ID: Um , we need a radio sender and receiver , those are standard .

-5 ID: And al we also need a beeper or buzzer or other sort of noise ...

-4 ID: So we have some material options .

-3 ID: Um , we can use rubber , plastic , wood or titanium .

-2 ID: Um , I'd recommendagainst titanium

-1 ID: because it can only be used in the flat cases and it's really heavy .

tt ID:
PRE Um , and the rubber case requires rubber buttons , so if we definitely

want plastic buttons , we shouldn't have a rubber case . POST

+1 PM: And why not wood ?

+2 ID: And ,

+3 ID: hmm ?

+4 PM: And why not wood ?

+5 ID: Uh , well we can use wood .

+6 ID: I don't know why we'd want to .

+7 ID: Um and also we should note that if we want an iPod-style wheel button ...

+8 ID: We can't use the minimal chip , we need the next higher grade , ...

+9 ID: I don't think it's much more expensive , but it is more expensive .

+10 ID: So that's what I've got on design .

+11 PM: 'S good .

Figure 7: Visualization of attention distributions around an utterance from the ES2011c meeting. Some utterances
are truncated for readability.

Appendices

A Attention visualization

The aim of this section is to show, with an exam-
ple, what the three self-attention mechanisms pay
attention to while encoding the current utterance
Ut (here, an utterance from the ES2011c valida-
tion meeting). Fig. 7 shows the attention distri-
butions over Ut (highlighted by the black frame),
and over its pre-context {Ut−1, . . . ,Ut−11} and
post-context {Ut+1, . . . ,Ut+11} utterances. We
use three colors that are consistent with the ones
used in Fig. 4 to denote the three different attention
mechanisms: green for content-aware (α), blue for
time-aware (β), and red for basic self-attention (γ).
Remember that α and β are both in the context
encoder, while γ is in the utterance encoder. Color
shades indicate attention intensity (the darker, the
stronger).
We can observe in Fig. 7 that:
• The content-aware self-attention mechanism α
(green) focuses on the informative and complemen-
tary words in the contexts that are central to under-
standing the utterance at time t, such as: “custom”,
“design” from Ut−11, “material” from Ut−4, “rec-
ommend”, “titanium” from Ut−2, “wood” from
Ut+1, etc.

• The time-aware self-attention mechanism β
(blue) places more importance over the context
utterances that are close to Ut, i.e., the importance
decreases when the time distance increases. How-
ever, the patterns are different for the pre and post-
contexts (see Fig. 6).
• The self-attention mechanism γ (red) focuses
mainly on the special pre-context token PRE, mean-
ing that the pre-context is more important than the
post-context in the example considered. Generally
speaking, the pre and post-context tokens contain
richer information than any token from the current
utterance, as the context tokens originate from the
fusion of {Ut−11, . . . ,Ut, . . . ,Ut+11}. It is thus
possible that the utterance encoder has learned to
always pay more attention to these information-rich
tokens than to any regular token.
• It is also interesting to note that considerable at-
tention is being paid to punctuation marks. This
makes sense, since they are important pieces of
information indicative of utterance type (e.g., state-
ment or question).

To summarize, the visualization results show that
the three self-attention mechanisms of our model
are able to adaptively focus on different informa-
tion, in order to cooperatively produce a meaning-
ful representation.
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B Baselines

B.1 Baseline encoders

• LD (Lee and Dernoncourt, 2016) is a sequential
sentence encoder developed for dialogue act clas-
sification. The model takes into account a fixed
number of utterances from the pre-context when
classifying the current one. More precisely, CNN
or RNN with max-pooling is first applied separately
to the current utterance and each pre-context utter-
ance, and the resulting vectors are then aggregated
through two levels of dense layers, based on two
hyper-parameters, d1 and d2, which represent the
history size at level 1 and level 2 (respectively).
Although the original paper reported that the CNN
encoder slightly outperforms the RNN one (for
DA classification), in our experiments, we used
the RNN variant, since our model and the HAN
baseline are RNN-based. Note that here, we used
LSTM cells as Lee and Dernoncourt (2016) re-
ported them to work better than GRU cells in their
experiments.

• HAN (Yang et al., 2016). The Hierarchical At-
tention Network, developed for document classifi-
cation, is a two-level architecture, where at level
1, each sentence in the document is separately en-
coded by the same sentence encoder, resulting in a
sequence of sentence vectors. That sequence is then
processed at level 2 by the document encoder which
returns a single vector representing the entire doc-
ument. The sentence and document encoders are
both self-attentional bidirectional Recurrent Neu-
ral Networks (RNNs), with different parameters.
We give HAN access to contextual information by
feeding it the current utterance surrounded by the
Cb preceding and Cb following utterances in the
transcription, where Cb denotes the best context
size reported in Section 7.

B.2 Unsupervised baseline systems

• tf-idf. A TF-IDF vector is used as the utterance
embedding, compressed to a dimension of 21 with
PCA, and concatenated with the 21-dimensional
discourse feature vector, thus forming a vector of
dimension d = 42. This vector is then again com-
pressed to a df = 32-dimensional vector. The
compression steps are applied for consistency with
the energy-based systems, in which textual and
discourse features have the same dimensionality
d/2 = 21, and the output of the utterance encoder
is df -dimensional (see Subsection 6.3). To make

this baseline context-aware, the embeddings of the
current utterance and the context utterances are
averaged. In the end, FCM is applied. Note that
the TF-IDF vocabulary is obtained from the entire
conversation, giving this baseline a competitive ad-
vantage over the others, which never have access
to the full transcription.

• w2v. Identical to the previous baseline, but using
the average of the word2vec vectors of a given
utterance instead of TF-IDF vector.

• LCseg is an unsupervised system adapted from
previous work (Oya et al., 2014; Banerjee et al.,
2015; Singla et al., 2017), in which disjoint topic
segments are assumed to be abstractive commu-
nities. A lexical-cohesion based topic segmenter
LCseg (Galley et al., 2003) is first applied on tran-
scriptions to get the desired number of segments
(|Q| = v/11), and then only summary-worthy ut-
terances within segments are retained for evalua-
tion.

B.3 Supervised baseline systems

As discussed in the literature review (see Section 2),
original approaches to ACD (Murray et al., 2012;
Mehdad et al., 2013) are supervised and non energy-
based. They have no publicly available implemen-
tations, and are hard to precisely reimplement due
to lack of details about handcrafted features and
dependency on external textual entailment corpora.
Nevertheless, we implemented two baselines sim-
ilar in spirit, taking as input the representations
produced by the tf-idf and w2v unsupervised base-
lines previously described. More precisely, the two
df -dimensional representations of a pair of utter-
ances are fed into a 3-layer feed-forward neural
network (with 2df , df , and 1 hidden units) which
is trained on the task of predicting whether the
two utterances belong to the same abstractive com-
munity or not (binary classification task). Then,
like in the aforelisted studies, an utterance graph
is built, where utterances are linked based on the
predictions of the MLP. Finally, the CONGA al-
gorithm (Gregory, 2007), an extension of the well-
known Girvan-Newman algorithm, is applied to
detect overlapping communities in the utterance
graph.

C Performance evaluation

We evaluate performance at the distance and the
clustering level.
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C.1 Distance
First, we test whether the distance in the final em-
bedding space is meaningful. To do so, for a given
query utterance, we rank all other utterances in de-
creasing order of similarity with the query. We then
use precision, recall, and F1 score at k to evaluate
the quality of the ranking. A detailed example was
provided in App. D.

Singleton communities are excluded from the
evaluation at this stage. We set k=10, which is
equal to the average number of non-singleton com-
munities minus one (since the query utterance can-
not be part of the results). We also report results
for a variable k (k=v), where k is equal to the size
of the community of the query utterance minus one.
In that case, P=R=F1.

The same procedure is repeated for all utter-
ances. To account for differences in community
size, scores are first averaged at the community-
level, and then at the meeting-level. Note that the
distance is Euclidean for triplet and Manhattan for
siamese (see Subsections 3.2 and 3.3).

C.2 Clustering
Second, we compare our community assignments
to the human ground truth using the Omega In-
dex (Collins and Dent, 1988), a standard metric
for comparing non-disjoint clustering, used in the
ACD literature (Murray et al., 2012). The Omega
Index evaluates the degree of agreement between
two clustering solutions based on pairs of objects
being clustered. Two solutions s1 and s2 are con-
sidered to agree on a given pair of objects, if two
objects are placed by both solutions in exactly the
same number of communities (possibly zero). The
Omega Index ω is computed as shown in Eq. 15.
The numerator is the observed agreement ωobs ad-
justed by expected (chance) agreement ωexp, while
the denominator is the perfect agreement (value
equals to 1) adjusted by expected agreement.

ω(s1, s2) =
ωobs(s1, s2)− ωexp(s1, s2)

1− ωexp(s1, s2)
(15)

Observed and expected agreements are calculated
as below:

ωobs(s1, s2) =
1

Ntotal

min(J,K)∑
j=0

Aj (16)

ωexp(s1, s2) =
1

N2
total

min(J,K)∑
j=0

Nj1Nj2 (17)

where Aj is the number of pairs agreed to be as-
signed to j number of communities by both so-
lutions, Nj1 is the number of pairs assigned to j
communities in s1, Nj2 is the number of pairs as-
signed to j communities in s2, J and K represent
respectively the maximum number of communi-
ties in which any pair of objects appear together in
solutions s1 and s2, and Ntotal = n(n − 1)/2 is
the total number of pairs constructed over n num-
ber of objects. To give an example, consider two
clustering solutions for 5 objects:

s1 = {{a, b, c}, {b, c, d}, {c, d, e}, {c, d}}
s2 = {{a, b, c, d}, {b, c, d, e}}

Solutions are transformed into the table 3, from
what we can obtain Ntotal = 10, J = 3,K =
2,min(J,K) = 2. Two solutions agree to place
(a, e) together in no community, the pairs (a, b),
(a, c), (c, e) and (d, e) in one community, and
the pair (b, c) in two communities. We have
A0 = 1, A1 = 4, A2 = 1. Thus the observed
agreement is (1 + 4 + 1)/10 = 0.6. Since
N01 = 3, N11 = 5, N21 = 1 and N02 =
1, N12 = 6, N22 = 3, the expected agreement then
is (3 ∗ 1 + 5 ∗ 6 + 1 ∗ 3)/102 = 0.36. Finally,
Omega Index for this simple example is computed
as: ω(s1, s2) = (0.6− 0.36)/(1− 0.36) = 0.375.

solution s1 solution s2 solutions
#communities #communities s1 and s2

the pair is assigned the pair is assigned agree on the pair?
(a, b) 1 1 yes
(a, c) 1 1 yes
(a, d) 0 1 no
(a, e) 0 0 yes
(b, c) 2 2 yes
(b, d) 1 2 no
(b, e) 0 1 no
(c, d) 3 2 no
(c, e) 1 1 yes
(d, e) 1 1 yes

Table 3: Omega Index example.

Since FCM yields a probability distribution over
communities for each utterance, we need to use
a threshold to assign a given utterance to one or
more communities. We selected 0.2 after trying
multiple values in [0, 0.5] with steps of 0.05 on the
validation set. Whenever one or more utterances
were not assigned to any community, we merged
them into a new community. Furthermore, we set
the number of clusters |Q| to 11, which corresponds
to the average number of ground truth communities
per meeting (after merging). We also report results
with a variable |Q| equal to the number of ground
truth communities (variant denoted by |Q| = v).
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dist pos DA role text

0 t inf ID Um , and the rubber case requires rubber buttons , so if we definitely want plastic buttons ,
we shouldn’t have a rubber case .

0.11 -3 inf ID Um , we can use rubber , plastic , wood or titanium .
0.12 -5 inf ID And al we also need a beeper or buzzer or other sort of noise thing for locating the remote .
0.38 -2 sug ID Um , I’d recommend against titanium
0.42 +7 inf ID Um and also we should note that if we want an iPod-style wheel button , it’s gonna require a m qu

slightly more expensive chip .
0.54 +5 ass ID Uh , well we can use wood .
0.57 -8 inf ID Um , standard parts include the buttons and the wheels , um the iPod-style wheel .
0.68 +6 ass ID I don’t know why we’d want to .
0.96 -11 inf ID And we’ll need to custom desi design a circuit board ,
1.26 -13 inf ID Um , I assume we’ll be custom designing our case ,
1.27 -14 inf ID Um , so we need some custom design parts , and other parts we’ll just use standard .
1.43 -17 inf ID So I’ve been looking at the components design .
1.66 +12 off ME Um , can I do next ? Because I have to say something about the material
2.24 +18 inf ME and the findings are that the first thing to aim for is a fashion uh , fancy look and feel .
2.57 +19 inf ME Um . Next comes technologic technology and the innovations to do with that .
3.21 +20 inf ME And th last thing is the easy to use um factor .
3.92 +69 inf UI Uh , so people are going to be looking at this little screen .
4.02 +92 inf ME But the screen can come up on the telly , the she said .
· · ·
8.81 +623 inf ID It didn’t give me any actual cost .
8.84 +622 inf ID All it said was it gave sort of relative , some chips are more expensive than others , sort of things .
8.89 +616 inf ME So if you throw it , it’s gonna store loads of energy , and you don’t need to buy a battery because

they’re quite f I find them annoying .
9.00 +617 sug ME But we need to find cost .
9.06 +621 el.inf ME Does anyone have costs on the on the web ?
9.95 +652 inf PM And you’re gonna be doing protu product evaluation .
9.96 +650 inf PM Oh when we move on , you two are going to be playing with play-dough .

10.15 +651 inf PM Um , and working on the look and feel of the design and user interface design .

Table 4: Ranking example.

Note that since FCM does not return nested
groupings, we merged the ground truth commu-
nities nested under the same community.

D Ranking example

For the same utterance from the ES2011c meet-
ing as used in App. A, we show below in Table
4 the closest and furthest utterances, in terms of
Euclidean distance in the embedding space. Recall
that meeting ES2011c belongs to the validation
set. Utterances belonging to the ground truth com-
munity of the query utterance are shown in bold.
Roles are ID: industrial designer, ME: marketing
expert, UI: user interface designer, PM: project
manager. For this example, P@k = v is equal to
77.78 (where v = 9), and P , R, and F1@k are
80.00, 88.89, 84.21 respectively (where k = 10).

We can see that semantic similarity obviously

plays a role, as most of the closest utterances
are about buttons and materials. But other
parameters come into play. E.g., the utterances And
al we also need a beeper or buzzer or

other sort of noise thing for locating

the remote, and I don’t know why we’d want

to, respectively ranked 2nd and 7th, are not
semantically related to the query utterance. Such
utterances might be placed close to the query
utterance based on their positional and discourse
features (speaker role and dialogue act), but also
because their contexts are similar. The community
where the query utterance belongs to (utterances
shown in bold in the table above) is associated with
the following sentence in the human abstractive
summary: The Industrial Designer gave her

presentation on components and discussed

which would have to be custom-made and

which were standard.
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E FCM algorithm

The goal of the Fuzzy c-Means algorithm or FCM
(Bezdek et al., 1984) is to minimize the weighted
within group sum of squared error objective func-
tion:

J(M,Q) =

|Q|∑
q=1

T∑
t=1

(mqt)
fuz‖ut − cq‖22 (18)

where M and Q are the sets of membership prob-
ability distributions and community centroid vec-
tors, mqt ∈ [0, 1] is the probability that the t-th
utterance belongs to the q-th community (with∑|Q|

q=1mqt = 1), fuz is a parameter that con-
trols the amount of fuzziness, ‖.‖2 denotes the Eu-
clidean distance in the triplet case (we replace it
with Manhattan distance ‖.‖1 in the siamese case),
ut is the t-th utterance vector, and cq is the q-th
community centroid vector.
M and Q are iteratively updated with equations:

mqt =
( |Q|∑
j=1

(‖ut − cq‖2
‖ut − cj‖2

) 2
fuz−1

)−1
(19)

cq =

∑T
t=1(mqt)

fuzut∑T
t=1(mqt)fuz

(20)

When fuz → +∞, ∀q ∈ |Q|, ∀t ∈ T , mqt tends
to be equal to 1/|Q|, thus utterances have identi-
cal membership to each community. While when
fuz → 1, FCM becomes equivalent to traditional
k-means, in which mqt is either 0 or 1 for a given
utterance ut and community centroid cq. Usually
in practice, fuz = 2 (Schwämmle and Jensen,
2010). Learning stops when the maximum number
of iterations is reached or J(M,Q) decreases by
less than a predefined threshold.

F On our choice of loss functionals

The softmax triplet loss (STL) performed better in
our experiments than the margin-based loss used
in (Schroff et al., 2015) and (Wang et al., 2014).
One of the reasons may be that STL is able to
capture a finer notion of distance. Indeed, with a
margin-based loss, the Euclidean distance between
the anchor and the negative (let us compactly de-
note it as d−) need to satisfy d− > d+ +m, where
m is the margin (see Fig. 8a). In other words, the
distance between the positive and the negative is at
least m, when all three points are aligned.
However, the objective of STL is simply d− > d+,
without imposing an absolute lower bound on the
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Figure 8: •, -, + denote anchor, negative, and positive.

distance between positives and negatives. That is,
only the distance ratio is of interest (see Fig. 8b),
which gives more freedom to the model.
For consistency, we also adopt a margin-free loss
functional for siamese (MSE, see Eq. 5). It per-
formed better than the traditional contrastive loss
(Chopra et al., 2005; Neculoiu et al., 2016) in early
experiments.


