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Abstract

In order to combat overfitting and in pur-
suit of better generalization, label smoothing
is widely applied in modern neural machine
translation systems. The core idea is to penal-
ize over-confident outputs and regularize the
model so that its outputs do not diverge too
much from some prior distribution. While
training perplexity generally gets worse, label
smoothing is found to consistently improve
test performance. In this work, we aim to
better understand label smoothing in the con-
text of neural machine translation. Theoreti-
cally, we derive and explain exactly what la-
bel smoothing is optimizing for. Practically,
we conduct extensive experiments by varying
which tokens to smooth, tuning the probability
mass to be deducted from the true targets and
considering different prior distributions. We
show that label smoothing is theoretically well-
motivated, and by carefully choosing hyperpa-
rameters, the practical performance of strong
neural machine translation systems can be fur-
ther improved.

1 Introduction

In recent years, Neural Network (NN) models bring
steady and concrete improvements on the task of
Machine Translation (MT). From the introduction
of sequence-to-sequence models (Cho et al., 2014;
Sutskever et al., 2014a), to the invention of the at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015), end-to-end sequence learning with
attention becomes the dominant design choice for
Neural Machine Translation (NMT) models. From
the study of convolutional sequence to sequence
learning (Gehring et al., 2017a,b), to the prosperity
of self-attention networks (Vaswani et al., 2017;
Devlin et al., 2019), modern NMT systems, es-
pecially Transformer-based ones (Vaswani et al.,
2017), often deliver state-of-the-art performances

(Bojar et al., 2018; Barrault et al., 2019), even un-
der the condition of large-scale corpora (Ott et al.,
2018; Edunov et al., 2018).

In Transformer-based models, label smoothing
is a widely applied method to improve model per-
formance. Szegedy et al. (2016) initially introduce
the method when making refinements to the Incep-
tion (Szegedy et al., 2015) model, with the mo-
tivation to combat overfitting and improve adapt-
ability. In principle, label smoothing discounts a
certain probability mass from the true label and
redistributes it uniformly across all the class la-
bels. This lowers the difference between the largest
probability output and the others, effectively dis-
couraging the model to generate overly confident
predictions. Since information entropy (Shannon,
1948) can be thought of as a confidence measure
of a probability distribution, Pereyra et al. (2017)
add a negative entropy regularization term to the
conventional cross entropy training criterion and
compare it with uniform smoothing and unigram
smoothing. Müller et al. (2019) deliver further in-
sightful discussions about label smoothing, empiri-
cally investigating it in terms of model calibration,
knowledge distillation and representation learning.

Label smoothing itself is an interesting topic that
brings insights about the general learnability of a
neural model. While existing methods are rather
heuristical in their nature, the fact that simply dis-
counting some probability mass from the true label
and redistributing it with some prior distribution
(see Figure 1 for an illustration) works in practice,
is worth to be better understood.

In this paper, we raise two high-level research
questions to outline our work:

1. Theoretically, what is label smoothing (or the
related confidence penalty) optimizing for?

2. Practically, what is a good recipe in order to
apply label smoothing successfully in NMT?
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Figure 1: An illustration of label smoothing with various prior distributions. m and B are discounted probabiltiy
masses. V is the vocabulary size and v0 is the correct target word. 1

V , A and rv are prior distributions. Smoothing
with (a), m is equally redistributed across the vocabulary. Smoothing with (b), A is implicitly 1

V everywhere
as well, and the exact value of B can be obtained (Section 3.2). Smoothing with (c), m goes to each class in
proportion to an arbitrary smoothing prior rv (Section 4.3).

The presentation of our results is organized into
three major sections:

• First, we introduce a generalized formula for
label smoothing and derive the theoretical so-
lution to the training problem.

• Second, we investigate various aspects that
affect the training process and show an empir-
ically good recipe to apply label smoothing.

• Finally, we examine the implications in search
and scoring and motivate further research into
the mismatch between training and testing.

2 Related Work

The extensive use of NNs in MT (Bojar et al., 2016,
2017, 2018; Barrault et al., 2019) is a result of
many pioneering and inspiring works. Continuous-
valued word vectors lay the foundation of modern
Natural Language Processing (NLP) NNs, captur-
ing semantic and syntactic relations and provid-
ing numerical ways to calculate meaningful dis-
tances among words (Bengio et al., 2001; Schwenk
et al., 2006; Schwenk, 2007; Sundermeyer et al.,
2012; Mikolov et al., 2013a,b). The investiga-
tions of sequence-to-sequence learning (Cho et al.,
2014; Sutskever et al., 2014b), the studies of at-
tention mechanism (Bahdanau et al., 2015; Luong
et al., 2015) and the explorations into convolutional
and self-attention NNs (Gehring et al., 2017a,b;
Vaswani et al., 2017) mark steady and important
steps in the field of NMT. Since the introduction of
BERT (Devlin et al., 2019), the Transformer model
(Vaswani et al., 2017) becomes the de facto archi-
tectural choice for many competitive NLP systems.
Among the numerous ingredients that make Trans-
former networks successful, label smoothing is one
that must not be overlooked and shall be the focus
of this work.

The idea of smoothing is not new in itself. For
instance, many smoothing heuristics and functions
are investigated in the context of count-based lan-
guage modeling (Jelinek and Mercer, 1980; Katz,
1987; Church and Gale, 1991; Kneser and Ney,
1995; Chen and Goodman, 1996). Interestingly,
when training NNs, the idea of smoothing comes in
a new form and is applied on the empirical one-hot
target distributions.

Proposed to counteract overfitting and pursue
better generalization, label smoothing (Szegedy
et al., 2016) finds its first applications in NNs in
the field of computer vision. Later, the method
is shown to be effective in MT (Vaswani et al.,
2017). Furthermore, it is also helpful when ap-
plied in other scenarios, e.g. Generative Adver-
sarial Networks (GANs) (Salimans et al., 2016),
automatic speech recognition (Chiu et al., 2018),
and person re-identification (Ainam et al., 2019).
Since the method centralizes on the idea of avoid-
ing over-confident model outputs on training data,
it is reanalyzed in Pereyra et al. (2017). The authors
include an additional confidence penalty regular-
ization term in the training loss, and compare it to
standard label smoothing with uniform or unigram
prior. While label smoothing boosts performance
significantly compared to using hard target labels,
the difference in performance gains when com-
paring different smoothing methods is relatively
small. Müller et al. (2019) bring recent advance-
ments towards better intuitive understandings of
label smoothing. They observe a clustering effect
of learned features and argue that label smoothing
improves model calibration, yet hurting knowledge
distillation when the model is used as a teacher for
another student network.

As a regularization technique in training, label
smoothing can be compared against other methods
such as dropout (Srivastava et al., 2014) and Dis-
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turbLabel (Xie et al., 2016). Intuitively, dropout
can be viewed as ensembling different model archi-
tectures on the same data and DisturbLabel can be
viewed as ensembling the same model architecture
on different data, as pointed out in Xie et al. (2016).
Interestingly, label smoothing can also be under-
stood as estimating the marginalized label dropout
during training (Pereyra et al., 2017). In this paper,
we propose two straightforward extensions to label
smoothing, examining token selection and prior
distribution. Salimans et al. (2016) and Zhou et al.
(2017) investigate a similar issue to the former. In
the context of GANs, they select only those posi-
tive examples to smooth while we consider the task
of MT, discussing how many tokens to smooth and
how they should be selected. Pereyra et al. (2017)
and Gao et al. (2019) talk about ideas similar to the
latter. In their respective contexts, one experiments
with unigram probabilities for label smoothing and
the other uses Language Model (LM) posteriors to
softly augment the source and target side of MT
training data.

3 Solving the Training Problem

The standard label smoothing (STN) loss, as used
by Vaswani et al. (2017), can be expressed as:

LSTN = −
N∑
n=1

V∑
v=1

(
(1−m)pv +m

1

V

)
log qv

(1)
where LSTN denotes the cross entropy with stan-
dard label smoothing, n is a running index in the
total number of training tokens N , v is a running
index in the target vocabulary V , m is the hyper-
parameter that controls the amount of probability
mass to discount, pv is the one-hot true target dis-
tribution and qv is the output distribution of the
model.

The confidence penalty (CFD) loss, as used by
Pereyra et al. (2017), can be expressed as:

LCFD = −
N∑
n=1

V∑
v=1

(
pv −m′qv

)
log qv (2)

where LCFD denotes the confidence-penalized
cross entropy, m′ in this case is the hyperparameter
that controls the strength of the confidence penalty
and thus differs from m in Equation 1.

In both cases, the outer summation is over all
of the training tokens N , implicating that all of
the target token probabilities are smoothed. The

dependencies of qv and pv on n are omitted for
simplicity.

Additionally for Equation 1, authors of both pa-
pers (Vaswani et al., 2017; Pereyra et al., 2017)
point out that the uniform prior can be replaced
with alternative distributions over the target vocab-
ulary. One more thing to notice is the negative sign
in front of the non-negative term m′ in Equation
2, which means that pv −m′qv is not a probability
distribution anymore. One can nonetheless apply
tricks to normalize the term inside the parentheses
so that it becomes a probability distribution, e.g.:

LCFD
normalized1 = −

N∑
n=1

V∑
v=1

log qv ·

(pv −m′qv)−min(pv −m′qv)∑V
v′=1 (pv′ −m′qv′)−min(pv′ −m′qv′)

(3)

or

LCFD
normalized2 = −

N∑
n=1

V∑
v=1

log qv ·

exp(pv −m′qv)∑V
v′=1 exp(pv′ −m′qv′)

(4)

and implement it as an additional layer of activation
during training, where v′ is an alternative running
index in the vocabulary. In any case, the integration
of Equation 2 into the form of Equation 1 cannot be
done without significantly modifying the original
confidence penalty, and we leave it for future work.

3.1 Generalized Formula
In an effort to obtain a unified view, we propose a
simple generalized formula and make two major
changes. First, we separate the outer summation
over the tokens and divide it into two summations,
namely “not to smooth” and “to smooth”. Sec-
ond, we modify the prior distribution to allow it to
depend on the position, current token and model
output. In this case, r could be the posterior from
some helper model (e.g. an LM), and during train-
ing, obtaining it on-the-fly is not expensive, as pre-
viously shown (Bi et al., 2019; Wang et al., 2019).
The generalized label smoothing (GNR) loss can
be expressed as:

LGNR = −
∑
n∈A

V∑
v=1

pv log qv −

∑
n∈B

V∑
v=1

((1−m)pv +mrv,qv) log qv (5)
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where LGNR denotes the generalized cross entropy,
A is the set of tokens not to smooth, B is the set of
tokens to smooth, rv,qv is an arbitrary prior distri-
bution for smoothing and again we drop the depen-
dencies of pv, qv and rv,qv on n for simplicity.

A natural question when explicitly writing outA
and B, s.t. A∩B = ∅ and |A ∪ B| = N , is which
tokens to include in B. Here, we consider two sim-
ple ideas: uniform random sampling (RND) and
an entropy-based uncertainty heuristic (ENT). The
former chooses a certain percentage of tokens to
smooth by sampling tokens uniformly at random.
The latter prioritizes those tokens whose prior dis-
tributions have higher entropy. The logic behind
the ENT formulation is that when the prior distribu-
tion is flattened out, yielding a higher entropy, the
helper model is uncertain about the current posi-
tion, and the model output should thus be smoothed.
Formally, the two heuristics can be expressed as:

BRND = {n; ρn ∼ U(0, 1), ρn ≤ π} (6)

BENT = {b1, b2, ..., bdπNe} (7)

where ρn is a sample from the uniform distribution
U in [0, 1], π is a hyperparameter controlling the
percentage of tokens to smooth and {b1, b2, ..., bN}
is a permutation of data indices {1, 2, ...N} in de-
scending order of the entropy of prior r, i.e. ∀1 ≤
i ≤ j ≤ N , −

∑
V rbi log rbi ≥ −

∑
V rbj log rbj .

The hyperparameter m in Equation 5 deserves
some further notice. This is essentially the parame-
ter that controls the strength of the label smoothing
procedure. When it is zero, no smoothing is done.
When it is one and |B| = N , the model is opti-
mized to output the prior distribution r. One can
obviously further generalize it so that m depends
also on n, v and qv. However in this work, we focus
on the outer summation in N and alternative priors
r, and leave the exploration of adaptive smoothing
strength mn,r,qv for future work.

3.2 Theoretical Solution
When it comes to the analysis of label smooth-
ing, previous works focus primarily on intuitive
understandings. Pereyra et al. (2017) observe that
both label smoothing and confidence penalty lead
to smaller gradient norms during training. Müller
et al. (2019) argue that label smoothing helps beam-
search by improving model calibration. They fur-
ther visualize the learned features and show a clus-
tering effect of features from the same class. In
this work, we concentrate on finding a theoretical

solution to the training problem, and show exactly
what label smoothing and confidence penalty are
optimizing for.

Consider the optimization problem when train-
ing with Equation 1:

min
q1,q2,...,qV

LSTN
n , s.t.

V∑
v=1

qv = 1 (8)

While in practice we use gradient optimizers to
obtain a good set of parameters of the NN, the
optimization problem actually has well-defined an-
alytical solutions locally:

q̃STN
v = (1−m)pv +m

1

V
(9)

which is simply a linear interpolation between the
one-hot target distribution pv and the smoothing
prior 1

V , with m ∈ [0, 1] being the interpolation
weight. One can use either the divergence inequal-
ity or the Lagrange multiplier method to obtain this
result (see Appendix A).

Consider the optimization problem when train-
ing with Equation 2:

min
q1,q2,...,qV

LCFD
n , s.t.

V∑
v=1

qv = 1 (10)

The problem becomes harder because now the regu-
larization term also depends on qv. Introducing the
Lagrange multiplier λ and solving for optima will
result in a transcendental equation. Making use of
the Lambert W function (Corless et al., 1996), the
solution can be expressed as (see Appendix A for
detailed derivation):

q̃CFD
v =

pv

m′W0

(
pv
m′ e

1+ λ
m′
) (11)

whereW0 is the principal branch of the LambertW
function and λ is the Lagrange multiplier, which is
numerically solvable1 when non-negative m′ and
probability distribution pv are given. Equation 11
essentially gives a non-linear relationship between
q̃CFD
v and pv, controlled by the hyperparameter m′.

Now that theoretical solutions are presented in
Equation 9 and 11, it is possible to plot the graphs
of optimal q̃v, with respect to m and m′. Shown in
Figure 2, as expected for both STN and CFD, the
overall effect is to decrease qv when pv = 1 and in-
crease qv when pv = 0. When m or m′ gets large

1One can use limm′→0 q̃
CFD
v to avoid division by zero.
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Figure 2: Graphs of optimal q̃v w.r.t. m or m′. Note the logarithmic scale in horizontal axes, with m ∈ [0, 1]
and m′ ≥ 0. In order to obtain numerical solutions for q̃STN

v and q̃CFD
v , we set V = 32000, which is a common

vocabulary size when operating on sub-word levels.

enough, the total probability mass is discounted
and 1

V is redistributed to each token in the vocab-
ulary. The graph of GRN2 is similar to STD, only
changing the limit from 1

V to rv as m approaches
one, and not included here for brevity. One last
thing to notice is that the outer summation over the
tokens is ignored. If it is taken into consideration, q̃
is dragged towards the empirical distribution given
by the corpus3.

4 Finding a Good Recipe

In this section, we describe our results and insights
towards a good recipe to successfully apply label
smoothing. We experiment with six IWSLT2014
datasets: German (de), Spanish (es), Italian (it),
Dutch (nl), Romanian (ro), Russian (ru) to En-
glish (en), and one WMT2014 dataset: English to
German. The statistics of these datasets are sum-
marized in Table 1. To prepare the subword tokens,
we adopt joint byte pair encoding (Sennrich et al.,
2016), and use 10K and 32K merge operations
on IWSLT and WMT, respectively. When prepro-
cessing IWSLT, we remove sentences longer than
175 words, lowercase both source and target sides,
randomly subsample roughly 4.35% of the training
sentence pairs as development data and concatenate
all previously available development and test sets
as test data, similar to Gehring et al. (2017a). As
for the preprocessing of WMT, we follow the setup
in Ott et al. (2018). Using the Transformer architec-

2Assuming r only depends on n, v and not qv . In the latter
case, one needs to solve the optimization problem ignoring
the outer summation and reusing the Lagrange multiplier.

3For an intuitive understanding, consider the case when
two sentence pairs have the exact same context up to a certain
target position but the next tokens are different (e.g. “Danke .”
in German being translated to “Thank you .” and “Thank you
very much .” in English, the period in the first translation and
“very” in the second translation have the same context.)

ture (Vaswani et al., 2017), we apply the base setup
for IWSLT and the big setup for WMT. For all lan-
guage pairs, we share all three embedding matrices.
All helper models are also Transformer-based. We
conduct all experiments using fairseq (Ott et al.,
2019), monitor development set perplexity during
training, and report BLEU (Papineni et al., 2002)
scores on test sets after beam search.

4.1 Token Selection

The first thing to determine is how to select tokens
for smoothing and how many tokens to smooth.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

π

-0.5

+0.0

+0.5

+1.0

B
L
E
U

RND

ENT

Figure 3: Smoothing with RND versus ENT on de-en.
m is set to 0.1. The development and test perplexities
of the helper LM are 53.8 and 46.5.

For this purpose, we begin by considering mod-
els smoothed with an LM helper. The helper LM is
trained on target sentences from the corresponding
parallel data till convergence. Figure 3 shows a
comparison between RND and ENT, varying the
percentage of smoothed tokens π and using the ab-
solute performance improvements in BLEU as the
vertical axis. Since the two methods only affect
the order in which tokens are selected, they should
yield the exact same results when all tokens are
selected. This can be clearly seen from the figure
and serves as a sanity check for the correctness of
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dataset IWSLT WMT
language pair de-en es-en it-en nl-en ro-en ru-en en-de

number of
sentence pairs

train 160K 169K 167K 154K 168K 153K 4.50M
valid 7.3K 7.7K 7.6K 7.0K 7.6K 7.0K 3.0K

test 6.8K 5.6K 6.6K 5.4K 5.6K 5.5K 3.0K

Table 1: Data statistics of IWSLT and WMT datasets.

the implementation. The RND and ENT curves
follow a similar trend, increasing with the number
of smoothed tokens. From the curves, neither se-
lection method is consistently better than the other,
indicating that the entropy-based selection heuris-
tics is probably an oversimplification considering
the stochasticity introduced when altering the num-
ber of smoothed tokens. We continue to examine
the uphill trend seen in Figure 3 in other cases.
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(a) uniform as rv , m = 0.1
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Figure 4: Smoothing different percentages of tokens.

Figure 4 reveals the relationship between abso-
lute BLEU improvements and π, when smooth-
ing with uniform or unigram (RND) distributions.
While for each language pair the actual changes in
BLEU differ, it is clear to conclude that, the more
tokens smoothed, the better the performance. This
conclusion is rather universal and holds true for
the majority of our experiment settings (varying m
and r). From here on, we smooth all tokens, i.e.
|B| = N , by default.

4.2 Probability Mass
Our next goal is to find good values of m.
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Figure 5: Discounting different probability masses.

The discounted probability mass m is a tunable
hyperparameter that is set to 0.1 in the original
Transformer (Vaswani et al., 2017) paper. We
vary this parameter in the case of uniform smooth-
ing and unigram smoothing, and plot the results
in Figure 5. As shown in Figure 5a, the BLEU
score immediately improves at m = 0.1, then
plateaus when m ∈ [0.3, 0.6], slowly decreases
when m ∈ [0.7, 0.9] and quickly drops to zero
when m approaches one. When m = 1, the model
is optimized towards a uniform distribution and
completely ignores the training data. Because per-
plexity can be thought of as the effective vocabulary
size of a model, we examine the perplexities when
m = 1 for both language pairs. As expected, the
development perplexities are around 10K, which is
in the same order of magnitude as the correspond-
ing vocabulary sizes. Another interesting obser-
vation is that the BLEU scores only drop when
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m gets close to one and the model produces ac-
ceptable translations elsewhere. This indicates that
NN models trained with gradient optimizers are
very good at picking out the effective training sig-
nals even when they are buried in much stronger
noise signals (the uniform smoothing priors in the
case of Figure 5a). This could be further related
to multi-task learning (Ruder, 2017), where the
system performances are also related to the regular-
ization weights of the auxiliary losses. For unigram,
we vary m in {0.1, 0.2, 0.3}. As seen in Figure
5b, while smoothing with m = 0.1 gives a large
improvement over no smoothing, setting m = 0.3
further boosts the performance, consistently for all
six IWSLT language pairs.

4.3 Prior Distribution

Furthermore, we explore the use of LM and MT
posteriors as prior distributions for smoothing.

1.0 31.0 52.9 100.2 195.6

helper model perplexity

36.5
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uniform
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(a) ro-en, LM posterior as rv , m = 0.1

4.62 4.72 4.85 4.93 5.02 5.15 5.29

helper model perplexity

33.5
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34.5

35

B
L
E
U

MT

no smoothing

uniform

unigram

(b) de-en, MT posterior as rv , m = 0.1

Figure 6: Smoothing with LM and MT posteriors.

We train systems using Transformer LMs and
MT models of different qualities for label smooth-
ing, as in Figure 6. To obtain very good LMs, we
train them with test data and mark the cheating
LMs in Figure 6a. We additionally plot the BLEU
scores of models with no smoothing, smoothed
with uniform and unigram, as horizontal lines to
compare the absolute performances. Intuitively, the
curve should follow a downhill trend, meaning that
the worse the helper model performs, the worse the

model smoothed with it performs. This is loosely
the case for LM, with cheating LMs giving bet-
ter performances than uniform and unigram, and
normal LMs lacking behind. As for MT, improve-
ment over the no smoothing case is seen in Figure
6b. However, neither the downhill trend nor the
competence over other priors in terms of BLEU,
is seen. This suggests that the model is probably
not utilizing the information in the soft distribu-
tion effectively. Related to knowledge distillation
(Hinton et al., 2015; Kim and Rush, 2016), a train-
able teacher (the helper model in our case) might
be further beneficial (Bi et al., 2019; Wang et al.,
2018).

One important thing to mention is that, while nei-
ther LM nor MT outperforms uniform or unigram
in terms of test BLEU score in our experiments,
we see significant drops in development set per-
plexities when smoothing with LM or MT. This
signals a mismatch between training and testing,
and suggests that smoothing with LM or MT in-
deed works well for the optimization criterion, but
not as much for the final metric, the calculation
of which involves beam search and scoring of the
discrete tokens.

4.4 Final Results

Finally, we report BLEU scores of our best sys-
tems across all language pairs in Table 2. While
applying uniform label smoothing significantly im-
proves over the baselines, by using a good recipe,
an additional improvement of around +0.5 BLEU
is obtained across all language pairs. For the hyper-
parameters, we find that smoothing all tokens by
m = 0.3 with a unigram prior is a good recipe,
consistently giving one of the best BLEU scores.

5 Analyzing the Mismatch

As discussed in Section 4.3, models smoothed with
LMs or MT model posteriors yield very good devel-
opment set perplexities but no big improvements
in terms of test BLEU scores. Here, we further
investigate this phenomenon in terms of search and
scoring.

5.1 Search

We first plot the test BLEU scores with respect
to the beam size used during search. In Figure 7,
we see that the dashed curves for “no smoothing”,
“uniform” and “unigram” initially increase and then
plateau, which is an expected shape (see Figure 8
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dataset IWSLT WMT
language pair de-en es-en it-en nl-en ro-en ru-en en-de

no label smoothing 33.6 39.3 31.2 36.5 37.0 22.3 28.0
Vaswani et al. (2017) 34.4 40.8 32.4 37.5 38.5 23.4 28.4

our best recipe 35.0 41.5 32.8 38.0 39.0 23.9 29.0

Table 2: BLEU scores can be significantly improved with good label smoothing recipes. The first row of numbers
corresponds to using only the cross entropy criterion for training. The second row of numbers corresponds to the
Transformer baselines. The last row contains scores obtained with our best hyperparameters.

1 2 3 4 5 6 7 8 9 10

beam size

32

33

34

35

B
L
E
U

no smoothing

uniform, m = 0.1

unigram, m = 0.3

LM, m = 0.3

Figure 7: BLEU versus beam size on de-en.

in Zhou et al. (2019)). However, the solid curve
for LM drops quickly as beam size increases (see
Stahlberg and Byrne (2019) for more insight). A
possible explanation is that models smoothed with
LMs generate search spaces that are richer in prob-
ability variations and more diversified, compared to
e.g. uniform label smoothing. As search becomes
stronger, hypotheses that have higher probabilities,
but not necessarily closer to the true targets, are
found. This suggests that the mismatch in devel-
opment set perplexity and test BLEU is a complex
phenomenon and calls for more analysis.

5.2 Scoring

We further examine test BLEU with respect to de-
velopment (dev) BLEU and dev perplexity. As
shown in Figure 8a, test BLEU is nicely correlated
with dev BLEU, indicating that there is no mis-
match between dev and test in the dataset itself.
However, as in Figure 8b, although test BLEU in-
creases with a decreasing dev perplexity, in regions
of low dev perplexities, there exist many systems
with very different test performances ranging from
39.3 BLEU to 41.5 BLEU. Despite perplexity be-
ing directly related to the cross entropy training
criterion, this is an example where it fails to be
a good proxy for the final BLEU metric. Against
this mismatch between training and testing, either a
more BLEU-related dev score or a more perplexity-
related test metric needs to be considered.
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data
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(a) Dev BLEU is a good proxy for test BLEU.
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(b) Dev perplexity is a bad proxy for test BLEU.

Figure 8: Relationships between test BLEU and dev
metrics. 79 converged es-en models with different la-
bel smoothing hyperparameters are scattered.

6 Conclusion

In this work, we investigate label smoothing in
neural machine translation. Considering important
aspects in label smoothing: token selection, prob-
ability mass and prior distribution, we introduce
a generalized formula and derive theoretical solu-
tions to the training problem. Examining the effect
of various hyperparameter choices, practically we
show that with a good label smoothing recipe, one
can obtain consistent improvements over strong
baselines. Delving into search and scoring, we fi-
nally emphasize the mismatch between training and
testing, and motivate future research. Reassuring
that label smoothing brings concrete improvements
and considering that it only operates at the output
side of the model, our next step is to explore similar
smoothing ideas at the input side.
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timization problem in Equation 8 can be solved
analytically and the optimization problem in Equa-
tion 10 can be solved numerically.

A.1 Minimizing LSTD
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p and q are probability distributions in x. The
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Alternatively, one can use the Lagrange multi-
plier and calculate first order derivatives:

LSTD
n (qv, λ) = LSTD

n + λ

(∑
v

qv − 1

)
∂LSTD

n

∂qv
=

(1−m)pv +m 1
V

qv
+ λ

∂LSTD
n

∂λ
=
∑
v

qv − 1

Afterwards, set them to zero and solve for λ:

∂LSTD
n

∂qv
= 0⇒ qv =

(1−m)pv +m 1
V

−λ
∂LSTD

n

∂λ
= 0⇒ λ = −1

Plugging λ back in yield qv, which should be fur-
ther checked to see if it is a maxima or minima.

In both methods, the minimum is obtained when:

q̃STD
v = (1−m)pv +m

1

V

A.2 Minimizing LCFD
n

Applying the Lagrange multiplier, the first order
derivatives can be derived:

LCFD
n (qv, λ) = LCFD

n + λ
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v
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)
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n

∂qv
=
−(pv −m′qv)
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Note that setting ∂LCFD
n
∂qv

to zero results in a tran-
scendental equation in the form of:

Ax+ bx log x = C

where A = (m′ + λ), B = m′, C = pv and
x = qv.

Consider that the Lambert W function is the
inverse function of:

f(W ) =WeW

we can rewrite the transcendental equation until we

reach a similar form:

Ax+Bx log x = C

t= 1
x==⇒ A

t
− B log t

t
= C

A = Ct+B log t

A
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=
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B
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)
reversing the variable replacements:

u =
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B
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· 1
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⇒ x =
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· 1
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BW
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B e
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)
Finally, plugging in A, B and C, we arrive at

Equation 11:

q̃CFD
v =

pv

m′W0

(
pv
m′ e

1+ λ
m′
)

When p is a one hot distribution and m′ is given,
one can use the constraint of qv being a probability
distribution to numerically solve for λ. Once λ is
obtained, actual values of q̃CFD

v can be calculated.


