
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 10th International Joint Conference on Natural Language Processing, pages 80–86

December 4 - 7, 2020. c©2020 Association for Computational Linguistics

80

A Simple and Effective Usage of Word Clusters for CBOW Model

Yukun Feng1, Chenlong Hu1, Hidetaka Kamigaito1, Hiroya Takamura1,2 and Manabu Okumura1

1Tokyo Institute of Technology
2National Institute of Advanced Industrial Science and Technology (AIST)
{yukun,huchenlong,kamigaito,oku}@lr.pi.titech.ac.jp

takamura@pi.titech.ac.jp

Abstract

We propose a simple and effective method for
incorporating word clusters into the Continu-
ous Bag-of-Words (CBOW) model. Specifi-
cally, we propose to replace infrequent input
and output words in CBOW model with their
clusters. The resulting cluster-incorporated
CBOW model produces embeddings of fre-
quent words and a small amount of cluster em-
beddings, which will be fine-tuned in down-
stream tasks. We empirically show our replac-
ing method works well on several downstream
tasks. Through our analysis, we show that our
method might be also useful for other similar
models which produce word embeddings.

1 Introduction

Word embeddings have been widely applied to
various natural language processing (NLP) tasks.
These embeddings can be pretrained on a large cor-
pus and carry useful semantic information. One of
the most well-known methods for obtaining word
embeddings is based on Continuous Bag-of-Words
(CBOW) (Mikolov et al., 2013a) and there have
been many research efforts to extend it.

In this paper, we focus on incorporating word
clusters into CBOW model. Each word cluster
consists of words that function similarly. By aggre-
gating such words, we can alleviate data sparsity,
even though each of those words is infrequent. In
the past few years, word clusters have been applied
to various tasks, such as named-entity recognition
(Ritter et al., 2011), machine translation (Wuebker
et al., 2013) and parsing (Kong et al., 2014). Many
word clustering algorithms can be applied to a raw
corpus with different languages and help us obtain
word clusters easily without additional language
resources.

In our method, we keep only very frequent words
and replace the other words with their clusters for
both input and output words in the CBOW model.

This is motivated by the fact that word clusters
are more reliable than infrequent words. Thus,
only very frequent word embeddings and a small
amount of cluster embeddings are produced as the
output. When fine-tuning the trained embeddings
on downstream tasks, the embeddings of infrequent
words within one cluster are initialized by the em-
bedding of their cluster to increase the coverage of
pretrained word embeddings.

Since word embeddings are usually trained on
the large-scale dataset. For making clusters on the
large-scale dataset, we choose bidirectional, inter-
polated, refining, and alternating (BIRA) predictive
exchange algorithm (Dehdari et al., 2016)1 as our
clustering method. Because BIRA was reported to
be faster than many other methods. Notably, it can
produce 800 clusters on 1 billion English tokens in
1.4 hours.

We evaluate our cluster-incorporated word em-
beddings2 on downstream tasks, in which fine-
tuning of word embeddings is involved. The eval-
uation for frequent words, for which our method
also works well, on word similarity tasks can be
found in appendix A. For the downstream tasks,
we choose language modeling (LM) tasks, which
are a fundamental task in NLP, as well as two ma-
chine translation (MT) tasks. To verify the effect of
word clusters across different languages, 8 typolog-
ically diverse languages are further selected for the
LM task. Finally, an analysis is provided for our
method. In summary, our replacing method can be
used to improve the embeddings of frequent and
infrequent words, to reduce the number of word
embeddings and to make training more effective.

1We used ClusterCat (https://github.com/jonsafari/clustercat)
as the implementation.

2https://github.com/yukunfeng/cluster-cbow



81

2 Related Work

A number of related research efforts have been
done to help to learn better word embeddings aim-
ing at different aspects. For example, Neelakan-
tan et al. (2014) proposed an extension that learns
multiple embeddings per word type. Ammar et al.
(2016) proposed methods for estimating embed-
dings for different languages in a single shared
embedding space. There is also a lot of work that
incorporates internal information of words, such as
character-level information (Chen et al., 2015; Bo-
janowski et al., 2017) and morpheme information
(Luong et al., 2013; Qiu et al., 2014). Our research
aims at another aspect and focuses on incorporating
word clusters into the CBOW model, which has not
been studied before.

There have also been some previous researches
that utilized word clusters for reducing the num-
ber of word embeddings. Botha et al. (2017) used
word clusters to reduce the network size for the
part-of-speech tagging task. Shu and Nakayama
(2018) attempted to compress word embeddings
without losing performance by constructing the em-
beddings with a few basic vectors. Our goal is
different from the previous work in that we attempt
to learn better word embeddings and do not aim
at reducing the parameters when our embeddings
are fine-tuned in downstream tasks. Nonetheless,
the reduction of the number of word embeddings
from the CBOW model before fine-tuning is still
one of our goals as we can save space to store these
embeddings and save time to download them. For
example, Google News Vectors have around 3 mil-
lion words, and we need only 2% of the number of
the word embeddings if we choose 100K most fre-
quent words and 10K word clusters in our method.

3 Our Method

3.1 CBOW Model

Let wt denote the t-th word in a given text. We
adopt the basic CBOW model architecture for learn-
ing word embeddings. The CBOW model predicts
the output word wt given the input words in the
window which precede or follow the output word.
When the window size is 2, as an example, the in-
put words are wt−2, wt−1, wt+1, wt+2. We denote
the input and output embeddings of wordwi respec-
tively as ~xi and ~oi. The CBOW model computes

the hidden representation as follows:

~h =
1

2c

c∑
i=−c,i 6=0

~xt+i, (1)

where c is the window size. We use negative sam-
pling (Mikolov et al., 2013b) to train the CBOW
model by maximizing the following objective func-
tion:

logσ(~hT~ot) +
k∑

j=1

logσ(−~hT~oj), (2)

where k is the size of the negative sample, ~oj is
the j-th noise word embedding and σ is the sig-
moid function. Each word in the negative sample
is drawn from the unigram distribution.

AYerage

replace

Zord
embeddings

clXsWer
embeddings

replace

WargeW

noise

inpXW Zords
oXWpXW Zords

Figure 1: CBOW architecture with our replacing
method for input and output words trained with nega-
tive sampling. Suppose that wt−2, wt+1, o1 and o3 are
infrequent words.

3.2 Replacing Methods
As a method for incorporating word clusters, we
propose to replace infrequent words with their clus-
ters for the input and output. The architecture is
shown in Figure 1. This is motivated by the in-
tuition that the embeddings of clusters should be
more reliable than those of infrequent words. We
denote the embedding of the cluster for word wt+i

as ~dt+i. We present the following two replacing
methods:

• ReIn: In the input, ~xt+i in Eq. (1) will be
replaced with ~dt+i if the frequency of wt+i is
less than threshold fin.

• ReOut: In the output, output words whose
frequency is less than fout are replaced with
their clusters. Thus, in negative sampling, a
noise word will be sampled from clusters and
frequent words.



82

As with the standard CBOW model, we use the
input word embeddings and input cluster embed-
dings for downstream tasks. Thresholds fin and
fout are set to 100 in all experiments. Due to
this large value, each cluster contains many infre-
quent words, which share the same embedding. We
use two methods together, which is referred to as
ReIn+ReOut in the following experiments.

3.2.1 Motivation of ReIn and ReOut
Since the embeddings of clusters are learned by
aggregating many infrequent words, they are more
robust than the embeddings of the infrequent words.
During the fine-tuning process for a downstream
task, the embeddings of infrequent words are first
initialized with the embeddings of their clusters.
As most of these infrequent words appear only a
few times, these embeddings will not be updated
far away from each other within one cluster. The
visualization of these embeddings before and af-
ter fine-tuning can be found in the appendix B. As
a result, these embeddings for infrequent words
become more reliable since originally most infre-
quent word embeddings are updated only several
times and are not far away from where they were
randomly initialized. Since the context of frequent
words becomes less noisy by replacing all the in-
frequent words with their clusters, the learned fre-
quent word embeddings are also better, as shown
later in our experiments.

The standard CBOW model is usually trained
with negative sampling, which is designed for
speeding up the training process. By using ReOut,
infrequent noise words will be replaced with their
clusters, which contain more noise words than the
original CBOW model. As a result, ReOut makes
the training of the CBOW model more effective, as
shown later in our experiments.

4 Experiments on LM and MT

We applied our embeddings to downstream tasks:
language modeling (LM) and low-resource ma-
chine translation (MT). When applying to the down-
stream tasks, we only used the training data of the
specific task to obtain word clusters and embed-
dings without any extra data. We then used the
learned embeddings to initialize the lookup table
of word embeddings for the task. In this paper,
we limit the applications of our model to relatively
small datasets to demonstrate the usefulness of our
method. We plan to conduct larger-scale experi-
ments on more downstream tasks in future work. In

the following tables, CBOW and ReIn+ReOut indi-
cate that they are initialization methods for specific
downstream tasks.

4.1 Hyper-parameter Settings
In this section, we describe the hyper-parameters
for producing word clusters and word embeddings.
As we mentioned before, we obtained word clusters
through the ClusterCat software. For most hyper-
parameters, we used its default values. We set the
number of clusters to 600 in all our experiments.
Since our work involves many tasks in total, it is
hard to choose the optimal number of word clus-
ters for each task. We experimented with several
values (600, 800 and 1000) and observed the same
trend. Thus, we simply chose 600, for convenience,
for all tasks. For producing word embeddings, our
implementation was based on the fasttext 3. Our
cluster-incorporated CBOW model and the stan-
dard CBOW model were trained under the same
hyper-parameters. We set most hyper-parameters
as its default values. Namely, we set the training
epoch to 5, the number of negative examples to 5,
the window size to 5, and the minimum count of
word occurrence to 54.

4.2 LM on Standard English Datasets
We test ReIn+ReOut based on the recent state-of-
the-art awd-lstm-lm codebase5(Merity et al., 2018)
using two standard language modeling datasets:
Penn Treebank (PTB) and WikiText-2 (Wiki2). We
followed exactly the same setting in the source
code. The results are shown in Table 1, and we
found that our ReIn+ReOut is effective even with
the strong baseline.

PTB Wiki2
AWD-LSTM w/o fine-tuning
(Merity et al., 2018) 58.80 66.00

CBOW 58.39 65.48
ReIn+ReOut 57.85 63.93

Table 1: Perplexity results on PTB and Wiki2.

4.3 Low-resource NMT
We applied our method to the standard long-short
term memory networks (LSTMs) based sequence-
to-sequence (seq2seq) model on two datasets:
German-English (de-en) with 153K sentence pairs

3https://github.com/facebookresearch/fastText
4When we set the minimum count of word occurrence to

1, the standard CBOW does not perform well.
5https://github.com/salesforce/awd-lstm-lm



83

from IWSLT 2014 (Cettolo et al., 2014), English-
Vietnamese (en-vi) with 133K sentence pairs from
IWSLT 2015 (Cettolo et al., 2012). The detailed
data statistics of two low-resource NMT datasets is
in Table 2. We used the opennmt-py toolkit6 with a
2-layer bidirectional LSTM with hidden size of 500
and set the training epoch to 30. The word embed-
ding size is set to 500 and the batch size is 64. We
trained the seq2seq models by the SGD optimizer
with start learning rate being 1.0, which will be de-
cayed by 0.5 if perplexity does not decrease on the
validation set. Other hyper-parameters were kept
default. We also include some published results
based on LSTM-based seq2seq models to gauge the
result of our baseline. As shown in Table 3, without
any extra language pair resources, the ReIn+ReOut
initialization improves the BLEU score over the
baseline by 1.29 and 0.51 points on de-en, en-vi
respectively.

de-en en-vi
#Training pairs 153,348 133,317
#Test pairs 6,750 1,268
#Valid pairs 6,970 1,553
Train Vocab (source) 103,796 54,169
Train Vocab (target) 50,045 25,615

Table 2: Data statistics of two low-resource NMT
datasets.

de-en en-vi
seq2seq with attention (Luong and Manning, 2015) - 23.3
AC+LL (Bahdanau et al., 2017) 28.53 -
NPMT (Huang et al., 2018) 29.92 27.69
Our seq2seq with attention 28.95 28.16
CBOW 29.25 28.24
Our ReIn+ReOut 30.24 28.67

Table 3: BLEU scores on two low-resource MT
datasets. NPMT in Huang et al. (2018) used a neural
phrase-based machine translation model and AC+LL in
Bahdanau et al. (2017) used a one-layer GRU encoder
and decoder with attention.

4.4 LM in Diverse Languages
To verify the effect of word clusters on different lan-
guages, we selected 8 datasets containing typologi-
cally diverse languages from LM datasets released
by Gerz et al. (2018). The data statistics of 8 LM
datasets is in Table 5. We basically used standard
LSTMs instead of AWD-LSTM-LM to save time.
We chose the available standard LSTM-LM code7.
Hyper-parameters of our standard LSTM model on

6https://github.com/OpenNMT/OpenNMT-py
7https://github.com/pytorch/examples/tree/master/

word language model

language modeling tasks is in Table 4. The results
are shown in Table 6. Our LSTM-LM obtained bet-
ter results than the one from Gerz et al. (2018) on
all datasets. As we see, ReIn+ReOut is effective for
typologically diverse languages and also requires
a smaller input vocabulary. For example, the input
vocabulary of ReIn+ReOut for en dataset contains
1.3K words while the full vocabulary 50K.

Embedding size 200
Epochs 40
LSTM layers 2
Optimizer SGD
LSTM sequence length 35
Learning rate 20
LSTM hidden unit 200
Learning rate decay 4
Param. init: rand uniform [-0.1,0.1]
Gradient clipping 0.25
Dropout 0.2
Batch size 20

Table 4: Hyper-parameters of our standard LSTM
model on language modeling task.

5 Analysis

In this section, we analyse ReIn+ReOut on the
basis of LM experiments with en and de datasets.

5.1 Targeted Perplexity Results

To show the gain for frequent and infrequent words,
we measured the perplexity for frequent and infre-
quent words in the test data separately. Specifically,
we calculated the perplexity of the next word, when
an infrequent word is given as the current word. A
similar analysis on language models can be found
in Vania and Lopez (2017). Our analysis do not
contain new words in the test dataset. The results
are shown in Table 7. As we see, ReIn+ReOut is
more effective than CBOW in learning both the
embeddings of frequent and infrequent words, as
we explained in Sec. 3.2.1.

5.2 Ablation Study

The results of ablation study are in Table 8. Com-
paring the methods ReIn and CBOW, we found
replacing only input infrequent words in CBOW
also works better than the original CBOW. We can
also conclude that replacing only output infrequent
words in CBOW works better than the original
CBOW, by comparing ReOut and CBOW. Both
ReIn and ReOut work well even when they are
used alone. As mentioned in the motivation of Re-
Out, it makes the training more effective. To verify



84

Typology Train
vocab

#Train
tokens

#Test
tokens

#Valid
tokens

#Input vocab
of ReIn+ReOut

zh (Chinese) Isolating 43674 746K 56.8K 56.9K 1661
vi (Vietnamese) Isolating 32065 754K 61.9K 64.8K 1716
de (German) Fusional 80743 682K 51.3K 52.6K 1163
en (English) Fusiona 55522 783K 59.5K 57.3K 1381
ar (Arabic) Introflexive 89091 723K 54.7K 55.2K 1431
he (Hebrew) Introflexive 83223 719K 54.7K 52.9K 1345
et (Estonian) Agglutinative 94184 556K 38.6K 40.0K 1285
tr (Turkish) Agglutinative 90847 627K 45.2K 47.4K 1241

Table 5: Data statistics of 8 language modeling datasets and size of input vocabulary of our ReIn+ReOut.

Dataset Random CBOW ReIn+ReOut
zh 555 527 494
vi 153 145 138
de 609 542 484
en 365 317 289
ar 1647 1447 1305
he 1482 1236 1175
et 1451 1157 1004
tr 1379 1220 1148

Table 6: Perplexity results of standard LSTM LM on 8
datasets with different initialization methods.

Freq. Infreq. All

en CBOW 340 198 283
ReIn+ReOut 316 184 264

de CBOW 591 352 489
ReIn+ReOut 564 318 458

Table 7: Targeted perplexity results of standard LSTM
LM with different initializations.

this, we increased the number of negative samples
for ReIn and CBOW. The training will be more
effective if we increase the number of negative
samples, while training the model will also take
longer time. As we increased the size of negative
samples, we obtained better results for both ReIn
and CBOW. We increased it only to 30 because we
did not observe improvements when we made it
further larger. This result indicates that we can use
word clusters to obtain better results with a small
amount of negative samples. In reality, we can also
use off-the-shelf word clusters to avoid spending
time for producing word clusters.

en de en de
ReIn 300 528 CBOW 317 542
ReIn neg+10 293 499 CBOW neg+10 309 523
ReIn neg+30 300 494 CBOW neg+30 312 554
ReIn+ReOut 289 484 ReOut 312 515

Table 8: Perplexity results of LSTM LM by changing
the number of negative samples. ’+neg’ represents the
number of negative samples, which is 5 at default.

5.3 LM Results on Off-the-shelf Vectors
To gauge the improvements, we used off-the-shelf
pretrained word vectors in English: GloVe vectors
(Pennington et al., 2014) and Google News Vec-
tors8. We obtained 258, 290 and 289 perplexity
scores on en with Google News Vectors, Glove
vectors and ReIn+ReOut respectively. Although
ReIn+ReOut underperforms Google News Vectors,
which were trained on 100 billion tokens, it ob-
tained the results comparable to Glove Vectors,
trained on 6 billion tokens. This indicates that
our ReIn+ReOut is effective even without extra
training data (only 783K training tokens in en).

en
Google News Vectors 258
GloVe Vectors 290
ReIn+ReOut 289

Table 9: Perplexity results of standard LSTM compared
with off-the-shelf vectors.

6 Conclusion

We proposed a simple and effective method to in-
corporate word clusters into the CBOW model. Our
method is effective on several downstream tasks.
For future work, we will test our methods on larger
corpora and also add more downstream tasks. We
will also study how to combine word clusters and
subword information.

Acknowledgments

We would like to thank anonymous reviewers for
their constructive comments and Hu also thanks his
support from China Scholarship Council.

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A Smith.

8https://code.google.com/archive/p/word2vec/



85

2016. Massively multilingual word embeddings.
arXiv preprint arXiv:1602.01925.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron C.
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction. In International
Conference on Learning Representations.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex
Salcianu, David Weiss, Ryan T. McDonald, and Slav
Petrov. 2017. Natural language processing with
small feed-forward networks. In EMNLP.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Confer-
ence of the European Association for Machine Trans-
lation (EAMT), pages 261–268, Trento, Italy.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In
Proceedings of the International Workshop on Spo-
ken Language Translation, Hanoi, Vietnam, page 57.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

Jon Dehdari, Liling Tan, and Josef van Genabith. 2016.
BIRA: Improved predictive exchange word cluster-
ing. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL), pages 1169–1174, San Diego, CA,
USA. Association for Computational Linguistics.

Daniela Gerz, Ivan Vulić, Edoardo Ponti, Jason Narad-
owsky, Roi Reichart, and Anna Korhonen. 2018.
Language modeling for morphologically rich lan-
guages: Character-aware modeling for word-level
prediction. Transactions of the Association of Com-
putational Linguistics, 6:451–465.

Po-Sen Huang, Chong Wang, Sitao Huang, Dengyong
Zhou, and Li Deng. 2018. Towards neural phrase-
based machine translation. In International Confer-
ence on Learning Representations.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A Smith. 2014. A dependency parser for
tweets. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1001–1012.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domain. In International Workshop on
Spoken Language Translation.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with re-
cursive neural networks for morphology. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 104–113.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing lstm
language models. In International Conference on
Learning Representations.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
141–150.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011.
Named entity recognition in tweets: an experimental
study. In Proceedings of the conference on empiri-
cal methods in natural language processing, pages
1524–1534. Association for Computational Linguis-
tics.

Raphael Shu and Hideki Nakayama. 2018. Compress-
ing word embeddings via deep compositional code
learning. In International Conference on Learning
Representations.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2016–2027, Vancouver,
Canada. Association for Computational Linguistics.

Joern Wuebker, Stephan Peitz, Felix Rietig, and Her-
mann Ney. 2013. Improving statistical machine
translation with word class models. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1377–1381.

https://openreview.net/forum?id=SJDaqqveg
https://openreview.net/forum?id=SJDaqqveg
http://www.aclweb.org/anthology/N16-1139.pdf
http://www.aclweb.org/anthology/N16-1139.pdf
https://openreview.net/forum?id=HktJec1RZ
https://openreview.net/forum?id=HktJec1RZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184
https://doi.org/10.18653/v1/P17-1184


86

A Experiments on Word Similarity Task

The word similarity task is not necessarily suitable
for our replacing method due to many infrequent
words sharing the same embedding within one clus-
ter. Thus, we report the results of the task for three
different groups of test word pairs: frequent-word-
pair consisting of frequent word pairs, infrequent-
word-pair consisting of word pairs that share a clus-
ter embedding with other words, and all-word-pair
consisting of all test word pairs. We used the pub-
licly available enwik89 corpus as the training data
to obtain both word embeddings and word clus-
ters. Note that we use this data only for the word
similarity task, not for downstream tasks such has
language modelling and machine translation. We
preprocessed the corpus by lowercasing all words,
removing words that contain non-alphabetical char-
acters, and removing words whose frequency is less
than 5. The final corpus contains approximately 12
million tokens and 60K word types. We chose
MEN, MTurk287, MTurk771, RW and WS353
as our datasets. Then, we evaluated the quality
of these representations by computing Spearman's
rank correlation coefficient. One straightforward
method to incorporate word cluster into CBOW
model is to average the embeddings of word and
its cluster referred as to AvgIn.

Dataset
(#word pairs) CBOW ReIn+

ReOut AvgIn AvgIn+
ReOut

Frequent
word
pair

MTurk287 (198) 65.12 66.03 64.22 66.56
MEN (1296) 65.09 68.74 61.03 63.34
WS353 (244) 69.51 70.36 63.20 62.00
RW (169) 49.13 51.57 45.59 48.83
MTurk771 (530) 54.10 56.83 48.37 51.34

Infrequent
word
pair

MTurk287 (86) 49.50 34.28 43.83 36.89
MEN (1686) 46.71 23.58 23.01 26.61
WS353 (89) 52.12 33.68 32.35 31.08
RW (828) 31.42 21.49 20.75 20.68
MTurk771 (237) 50.88 25.55 31.08 31.35

All
word
pair

MTurk287 (284) 60.98 58.14 58.49 58.42
MEN (2982) 54.79 44.65 40.55 43.70
WS353 (333) 64.41 58.61 53.26 52.96
RW (997) 35.15 25.12 23.92 24.78
MTurk771 (767) 52.73 46.93 42.50 45.10

Table 10: Spearman's rank correlation coefficient on
word similarity datasets for different groups. The best
scores in each group are in bold.

We first applied ClusterCat to the preprocessed
corpus to obtain word clusters and then pro-
duced cluster-incorporated word embeddings with
ReIn+ReOut. The results are shown in Table 10. In
ReIn+ReOut, the number of input words is 10,203,
which is the sum of 9,603 frequent words and 600
clusters. This is only 16.9% of the number of in-

9http://mattmahoney.net/dc/enwik8.zip

Figure 2: Visualization of the embeddings of frequent
words and clusters before fine-tuning (left) and the em-
beddings of frequent and infrequent words after fine-
tuning (right). The red circle represents frequent words.
The color of infrequent words within different clusters
are different (right), and the big circle represents word
clusters (left).

put words for the original CBOW, which main-
tains 60K input words. In all word pair group,
CBOW outperformed ReIn+ReOut on all datasets.
This is because ReIn+ReOut does not perform well
in infrequent-word-pair group as many infrequent
words share exactly the same embedding in one
cluster. In this experiment, each cluster had 82
words on average. However, ReIn+ReOut outper-
formed CBOW on frequent-word-pair group in all
datasets. This result suggests that ReIn+ReOut
is effective in learning embeddings for frequent
words with much fewer parameters. AvgIn under-
performed CBOW in all-word-pair group, which
suggests that this straightforward way to incorpo-
rate word clusters is not effective. We also found
that AvgIn+ReOut can improve the performance
on 3 datasets in all-word-pairs group compared
with AvgIn. However, AvgIn+ReOut still underper-
formed CBOW on all datasets.

B Visualization of Word Embeddings

We visualize word embeddings using t-SNE projec-
tions. Specifically, we randomly chose 15 clusters
and all frequent words from en and visualize fre-
quent and infrequent word embeddings in these 15
clusters in Figure 2. The embeddings of infrequent
words within one cluster are located close together
after being fine-tuned. Some infrequent word em-
beddings are updated only several times and are
not far away from where they were randomly ini-
tialized, and now they become more reliable.

http://mattmahoney.net/dc/enwik8.zip

